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Abstract
We present an elementary proof of the classical result that the leftmost outermost strategy
is normalizing for left-normal orthogonal rewrite systems. Our proof is local and extends to
hyper-normalization and weakly orthogonal systems. Based on the new proof, we study basic
normalization, i.e., we study normalization if the set of considered starting terms is restricted to
basic terms. This allows us to weaken the left-normality restriction. We show that the leftmost
outermost strategy is hyper-normalizing for basically left-normal orthogonal rewrite systems.
This shift of focus greatly extends the applicability of the classical result, as evidenced by the
experimental data provided.
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1 Introduction

The (hyper-)normalization of the leftmost outermost strategy is a fundamental result in
Combinatory Logic and λ-calculus. The importance of hyper-normalization as opposed to
normalization stems from the fact that this property is essential to show that all partial
recursive functions are definable in λ-calculus and Combinatory Logic. Consequently, nu-
merous (hyper-)normalization proofs can be found in the literature and the result is of
foundational interest.

On the other hand, as already observed by O’Donnell [20] effective normalization results
are of significant practical interest. Functional programming languages need to be efficiently
implemented. For this it is mandatory to study computable and normalizing strategies. Our
motivation is mainly concerned with such practical considerations. Consider the term rewrite
system (TRS for short) consisting of the rewrite rules

primes(n)→ take(n, sieve(from(s(s(0))))) filter(0, y : z, w)→ 0 : filter(w, z, w)
sieve(0 : y)→ sieve(y) filter(s(x), y : z, w)→ y : filter(x, z, w)

sieve(s(x) : y)→ s(x) : sieve(filter(x, y, x)) take(0, y)→ nil
from(x)→ x : from(s(x)) take(s(n), x : y)→ x : take(n, y)

encoding the sieve of Eratosthenes.
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When normalizing a term like primes(s(s(s(0)))), it is important to adopt a good evalua-
tion strategy in order to avoid getting trapped in an infinite computation, which happens for
instance with any innermost strategy. Efficiency is another desirable property of a strategy.

Since the TRS is orthogonal, we know that the maximal (parallel) outermost strategy is
normalizing (see O’Donnell [20]) but it is also known that the maximal outermost strategy is
not optimal in the sense that redexes are contracted which do not contribute to the normal
form. Needed reduction is an optimal one-step normalizing strategy for orthogonal TRSs but
in general not computable [15]. As a matter of fact, our example TRS happens to be strongly
sequential and hence admits a computable optimal one-step strategy [16]. This strategy can
be implemented using advanced data structures (matching dags [16], definitional trees [2]
for constructor TRSs). Moreover, showing strong sequentiality of orthogonal TRSs is a
non-trivial matter [7].

What about a popular and easy to implement strategy like leftmost outermost? Since
left-normality is not satisfied, we actually do not know whether the leftmost outermost
strategy is normalizing for this TRS. In this situation, we propose a shift of focus. Instead of
contemplating normalization of all terms, we restrict our attention to specific starting terms,
following the example of the term primes(s(s(s(0)))). That is, for practical considerations
it seems sufficient if we restrict the set of starting terms to basic terms, which are terms
that contain exactly one defined symbol, at the root position. This allows us to replace
left-normality by a significant weaker restriction. This restriction, which we name basic
left-normality, is satisfied for the above and many other non-left-normal TRSs, as witnessed
by the experimental data that we present in this paper.

The proof is based on usable replacement maps, which were originally introduced by
Fernández [10] for innermost termination analysis and adapted for complexity analysis of
(full) rewriting in [14]. Effective computation of an approximation of usable replacement
maps based on unification and fixed point computation is established in [14]. Employing
this approximation in the context of basic left-normality yields an easily decidable criterion
that ensures the normalization of the leftmost outermost strategy. Furthermore the strategy
itself is very easy to implement.

There is a strong and ongoing trend to certify well-established results in all areas of
rewriting. Certification not only helps to identify bugs in automated tools, but may also
reveal mistakes in the underlying theory. Moreover, the huge body of research in this area
shows that it is not unrealistic to aim for the certification of competitive tools. As our
motivation is practical, certifiability of strategy tools is clearly of interest to us. Thus in
addition to providing a simple and easy to implement strategy for basically left-normal
TRS, we provide a formal foundation that is eventually machine-checkable, in order to yield
certified evaluations.

Contribution. In this paper we introduce the class of basically left-normal weakly orthog-
onal TRSs, for which we establish the fundamental result of hyper-normalization for the
leftmost outermost strategy starting from basic terms. Along the way we present an ele-
mentary proof of the hyper-normalization of the leftmost outermost strategy for the class
of left-normal weakly orthogonal TRSs, which is a known result (Toyama [25]). Our proof
is based on abstract quasi-commutation properties in connection with a careful analysis of
the interplay of single leftmost outermost steps and parallel non-leftmost outermost steps.
This gives rise to a local proof which lends itself better to future formalization efforts. We
provide experimental evidence which clearly shows the applicability of our result.
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Organization. The remainder of the paper is organized as follows. In the next section we
recall some rewriting preliminaries and we present the abstract results on which our hyper-
normalization proof is based. Section 3 contains the new proof that the leftmost outermost
strategy is hyper-normalizing for left-normal weakly orthogonal TRSs. This result is ex-
tended to basic hyper-normalization in Section 4, where we also report on our experiments.
In Section 5, we discuss related work. Finally, in Section 6, we conclude, where we also
discuss future work.

2 Preliminaries

We assume familiarity with term rewriting and all that (e.g., [3]) and only shortly recall
notions that are used in the following.

An overlap (`1 → r1, p, `2 → r2)µ of a TRS R consists of variants `1 → r1 and `2 → r2
of rules of R without common variables, a position p ∈ PosF (`2), and a most general unifier
µ of `1 and `2|p. If p = ε then we require that `1 → r1 and `2 → r2 are not variants of
each other. The pair ((`2µ)[r1µ]p, r2µ) is called a critical pair of R. A pair (s, t) is trivial
if s = t. Left-linear TRSs without critical pairs are called orthogonal. A left-linear TRS is
weakly orthogonal if all critical pairs are trivial.

I Definition 1. The relations <l and <lo on positions is inductively defined as follows:

i < j

i p <l j q

p <l q

i p <l i q

p 6= ε

ε <lo p

i < j

i p <lo j q

p <lo q

i p <lo i q

Here i and j are positive integers and p and q are positions. Distinct positions are called
parallel if they are comparable with <l. For a set of parallel positions Q we write p <lo Q if
p <lo q for all q ∈ Q.

We have p <l q if and only if position p is to the left of q. It is easy to see that <lo is a
total order on positions. It is the union of <l and the standard prefix order <. So p <lo q if
and only if p is to the left of q or p is strictly above q.

I Definition 2. The rewrite step that contracts a redex at a position p is denoted by →p.
We write lo(t) for the smallest redex position with respect to <lo. A redex at position lo(t)
is called leftmost-outermost and we write t lo−→ u for t→lo(t) u.

I Definition 3. A term t is called left-normal if function symbols precede variables when
t is written in prefix notation. Formally, if p ∈ PosV(t) and q ∈ Pos(t) with p <lo q then
q ∈ PosV(t). A TRS R is left-normal if the left-hand side ` of every rule ` → r ∈ R is a
left-normal term.

I Definition 4. Parallel rewriting is inductively defined by the following three clauses:
t −−→‖ ∅ t for every term t,
`σ −−→‖ {ε} rσ for every rewrite rule `→ r and substitution σ,
f(s1, . . . , sn) −−→‖ P f(t1, . . . , tn) if si −−→‖ Pi

ti for all 1 6 i 6 n and P = {i p | 1 6 i 6 n

and p ∈ Pi}.
We write s −−→‖ t if s −−→‖ P t for some set of positions P .

We conclude this section by stating the abstract results that will be used in Section 3.
We deal with abstract rewrite systems (ARSs) 〈A,→〉 whose relation → is decomposed into
two, not necessarily disjoint, parts →α and →β . In order to reduce the number of arrows,
we denote the individual relations →α and →β of such an ARS 〈A, {→α,→β}〉 simply by α
and β.

RTA 2015



212 Leftmost Outermost Revisited

Let A = 〈A, {α, β}〉 be an ARS. We say that α quasi-commutes over β if the inclusion
→β · →α ⊆ →α · →∗ holds. The following easy result was first stated in [12].

I Lemma 5. Let A = 〈A, {α, β}〉 be an ARS. If →β · →α ⊆ →∗α · →=
β then →∗ ⊆ →∗α · →∗β.

Proof. From the assumption we obtain→β · →∗α ⊆ →∗α · →=
β by a straightforward induction

proof. We show→n ⊆ →∗α · →∗β by induction on n > 0. If n = 0 the inclusion holds trivially.
Suppose a → b →n c. The induction hypothesis yields a → b →∗α · →∗β c. We distinguish
two cases. If a→α b then a→∗α · →∗β c holds without further ado. If a→β b then we obtain
a→∗α · →=

β · →∗β c from the strengthened assumption and thus also a→∗α · →∗β c. J

The following result is due to Bachmair and Dershowitz [4]. Here α/β denotes the
relation →∗β · →α · →∗β and α/β-termination is perhaps better known as the termination of
α relative to β.

I Lemma 6. Let A = 〈A, {α, β}〉 be an ARS. If α quasi-commutes over β then every
α-terminating element is α/β-terminating.

Proof. From the quasi-commutation assumption we obtain →∗β · →α ⊆ →α · →∗ by a
straightforward induction argument. So α quasi-commutes over β∗. We prove that every α-
terminating element a ∈ A is α/β-terminating by well-founded induction on the restriction
of →α to α-terminating elements, which is a well-founded relation. If a ∈ NF(α/β) then the
claim is trivial. Consider an arbitrary step a →α/β b, i.e., a →∗β · →α · →∗β b. Using the
quasi-commutation of α over β, the latter sequence can be written as a →α a

′ →∗ b. The
element a′ is α-terminating because a is α-terminating and a →α a

′. Hence the induction
hypothesis yields that a′ is α/β-terminating. Since →∗ =→∗β ∪→∗α/β and α/β-terminating
elements are preserved under →β , it follows that b is α/β-terminating. Because this holds
for any step a→α/β b, element a is α/β-terminating. J

A rewrite strategy S for an ARS A = 〈A,→A〉 is a relation →S such that →S ⊆ →+
A

and NF(→S) = NF(A). A one-step strategy S satisfies →S ⊆ →A. We say that a strategy
S is deterministic if a = b whenever a S← · →S b. A rewrite strategy S for an ARS
A is normalizing if every A-normalizing element is S-terminating. Here an element a is
A-normalizing if a →∗A b for some b ∈ NF(A). We call S hyper-normalizing if every A-
normalizing element is S/A-terminating. Normalization is the property that by repeatedly
performing steps according the strategy a normal form will be computed, provided the
starting term has a normal form. Hyper-normalization is a much stronger property. It
guarantees that normal forms will still be computed even if between successive strategy
steps arbitrary but finitely many other steps are performed.

I Lemma 7. A deterministic rewrite strategy S for an ARS A is normalizing if there is an
ARS B with →∗A ⊆ →∗S · →∗B and NF(A) ⊆ NF(B−1).

Proof. If a→!
A b then a→∗S c→∗B b for some c. Because b ∈ NF(A) ⊆ NF(B−1), c = b and

thus a→!
S b. Since S is deterministic, it is terminating on a. J

I Theorem 8. A normalizing rewrite strategy S for an ARS A is hyper-normalizing if S
quasi-commutes over A.

Proof. Since every S-terminating element is S/A-terminating according to Lemma 6, the
result follows from the definitions of normalization and hyper-normalization. J
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3 Left-Normal Weakly Orthogonal Rewrite Systems

In this section we present a simple proof of the hyper-normalization of the leftmost outermost
strategy for the class of left-normal weakly orthogonal TRSs. The result is well-known and
different proofs can be found in the literature, especially for Combinatory Logic and left-
normal orthogonal TRSs, cf. the remarks on related work in Section 5. We give full proof
details in order to ease future certification efforts. Let R be a TRS and let → denote the
induced rewrite relation.

I Definition 9. A position p in t overlaps with q (from above) if there are a rule `→ r ∈ R
and p′ ∈ PosF (`) such that t|p is an instance of ` and q = pp′.

The key to our proof is the following restriction of parallel rewriting.

I Definition 10. We write s
¬lo
−−→‖ t if s −−→‖ P t such that lo(s) overlaps with none of the

positions in P . If P is a singleton set, we may write s ¬lo−−→ t.

For orthogonal TRSs we have s
¬lo
−−→‖ t if and only if s −−→‖ P t with lo(s) /∈ P . We start

our analysis with a number of results that do not rely on left-normality.
The following lemma is obvious from the definition of weak orthogonality, and will be

used silently throughout the remainder of this section.

I Lemma 11. If s→p t, s→q u, and p overlaps with q then t = u.

I Lemma 12. The identity → = lo−→∪ ¬lo−−→ holds for every weakly orthogonal TRS.

Proof. The inclusion from right to left is obvious. Suppose s→p t. If p = lo(s) then s lo−→ t

by definition. If lo(s) overlaps with p then s →lo(s) t by weak orthogonality and thus also
s lo−→ t. In the remaining case we have s ¬lo−−→ t by definition. J

The next result is essentially due to Takahashi [22].

I Lemma 13. Suppose s →p t and s −−→‖ Q u such that p overlaps with all positions in Q.
If |Q| > 2 then s = t = u.

Proof. Let Q = {q1, . . . , qn} with n > 2. For 1 6 i 6 n we denote the subterm of u at
position qi by ui. So s→qi

s[ui]qi
. Now for i 6= j we obtain

s

ts[ui]qi
s[uj ]qj

pqi qj

= =

Since qi and qj are parallel, we have ui = (s[ui]qi)|qi = (s[uj ]qj )|qi = s|qi . Consequently
s→qi

s[ui]qi
= s and thus s = t. Since this holds for all 1 6 i 6 n we obtain u = s. J

I Lemma 14. The inclusion −−→‖ ⊆ lo−→∗ ·
¬lo
−−→‖ holds for every weakly orthogonal TRS.

Proof. Suppose s −−→‖ P t. We use induction on |P |. Let P1 = {p ∈ P | lo(s) overlaps with p}
and P2 = P \ P1. There exists a term u such that s −−→‖ P1 u −−→‖ P2 t. If P1 = ∅ then s = u

and if |P1| > 2 then s = u follows from Lemma 13, and thus we have s
¬lo
−−→‖ P2 t. If

|P1| = 1 then we obtain s lo−→ u from weak orthogonality. The induction hypothesis yields
u lo−→∗ ·

¬lo
−−→‖ t and thus also s lo−→∗ ·

¬lo
−−→‖ t. J
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I Lemma 15. The leftmost outermost strategy is deterministic for every weakly orthogonal
TRS.

Proof. Since the leftmost outermost redex position is unique in any reducible term, the
statement holds for any TRS without non-trivial overlays. In particular, it holds for every
weakly orthogonal TRS. J

Because of the inclusion −−→‖ ⊆ →∗, which holds for arbitrary TRSs, every parallel
rewrite step can be serialized into a sequence of rewrite steps. For orthogonal TRSs it can
be shown that every

¬lo
−−→‖ step can be serialized into a sequence of ¬lo−−→ steps. However,

the following (original) example shows that serialization of
¬lo
−−→‖ does not extend to weakly

orthogonal TRSs.

I Example 16. Consider the weakly-orthogonal TRS R consisting of the four rewrite rules

a→ b f(g(a, b))→ f(g(b, b))
g(x, y)→ g(b, b) f(g(b, a))→ f(g(b, b))

Note that R is left-normal. Let s = f(g(a, a)) and t = f(g(b, b)). We have lo(s) = 1 and
s
¬lo
−−→‖ t since s −−→‖ {11,12} t and position 1 does not overlap with 11 or 12 in s. From s we

can perform two different ¬lo−−→ steps:

s ¬lo−−→ f(g(a, b)) s ¬lo−−→ f(g(b, a))

In both cases we obtain a term which is in normal form with respect to ¬lo−−→ because the
created redex at the root position equals a left-hand side.

For the results that follow we need the restriction to left-normal weakly orthogonal TRSs.

I Definition 17. A position p is said to be below a term t if p > q for some q ∈ PosV(t).

I Lemma 18. Let t be a left-normal term and σ a substitution. If p, q ∈ Pos(tσ) such that
p is below t and p <lo q then q is below t.

Proof. We have p > q′ for some position q′ ∈ PosV(t). If q > q′ then q is below t. If q > q′
does not hold then we must have p <l q and q′ <l q. If q ∈ Pos(t) then q ∈ PosV(t) by
left-normality. Otherwise q > q′′ for some position q′′ ∈ PosV(t). In both cases we conclude
that q is below t. J

The next result can be viewed as a special case of the Parallel Moves Lemma. Although
the statement appears plausible, the proof is subtle because of weak orthogonality. Below,
we denote i · P by {i p | p ∈ P}, and write σ −−→‖ τ [X] if xσ −−→‖ xτ holds for all x ∈ X.

I Lemma 19. If R is a left-normal weakly orthogonal TRS then lo←− ·
¬lo
−−→‖ ⊆ −−→‖ · lo←−.

Proof. Let s
¬lo
−−→‖ Q t and s lo−→p u. By induction on the sum ‖Q‖ of the lengths of the

positions in Q we show the existence of a term v such that t lo−→ v and u −−→‖ v. If Q = ∅
then s = t and we simply take u = v. If ε ∈ Q then Q = {ε} and so there is nothing to show
since the assumption s

¬lo
−−→‖ Q t is violated. In the remaining case we have s = f(s1, . . . , sn),

t = f(t1, . . . , tn), si −−→‖ Qi ti for all 1 6 i 6 n, and Q = {i q | 1 6 i 6 n and q ∈ Qi}. We
distinguish two further cases, depending on the position p.
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s = f(s1, . . . , sn) s′ f(t1, . . . , tn) = t

u u′ v

‖
¬lo

j·Qj

‖
Q′

lo p p′
p′

‖ ‖
Q′

lo

‖

sj tj

uj vj

‖
¬lo

Qj

lo pj

‖

loIH

p = j · pj p <lo j ·Qj p′ = j · lo(tj) p′ <l Q
′ p′ <lo j ·Qj

s′ = f(s1, . . . , sj−1, tj , sj+1, . . . , sn) u′ = f(s1, . . . , sj−1, vj , sj+1, . . . , sn)
u = f(s1, . . . , sj−1, uj , sj+1, . . . , sn) v = f(s1, . . . , sj−1, vj , tj+1, . . . , tn)

Figure 1 The critical case in the proof of Lemma 19.

If p = ε then there exist a rewrite rule ` → r and a substitution σ such that s =
`σ and u = rσ. Since the root symbol of s is f , we may write ` = f(`1, . . . , `n).
Fix i ∈ {1, . . . , n}. We have si = `iσ −−→‖ ti. Since lo(s) = ε does not overlap with
positions in Q, all steps in s

¬lo
−−→‖ Q t take place in the substitution σ. Using the linearity

of `, it is not difficult to prove the existence of a substitution τi such that ti = `iτi
and σ −−→‖ τi [Var(`i)]. We assume without loss of generality that dom(τi) ⊆ Var(`i).
Otherwise, we can always consider the restriction of τi to Var(`i) due to the linearity
of `. Thus the substitution τ = τ1 ∪ · · · ∪ τn is well-defined and satisfies `τ = t and
σ −−→‖ τ [Var(`)]. Let v = rτ . Since parallel rewriting is closed under substitutions, we
obtain u = rσ −−→‖ rτ = v. Furthermore, we obviously have t = `τ →p rτ = v with
lo(t) = ε = p.
If p 6= ε then p = j pj for some 1 6 j 6 n and position pj ∈ Pos(sj). This case is
illustrated in Figure 1. We have ‖Qj‖ < ‖Q‖ and Qi = ∅ for all 1 6 i < j because
p <lo Q. Moreover, sj

¬lo
−−→‖ Qj

tj follows from s
¬lo
−−→‖ Q t. Hence we can apply the induction

hypothesis, yielding a term vj such that tj lo−→ vj and uj −−→‖ vj . Let s′ = s[tj ]j ,
u′ = s[vj ]j , and p′ = j · lo(tj). We have u −−→‖ u′, s′ →p′ u′, and s′ −−→‖ Q′ t with
Q′ = Q \ Qj = {i q | j < i 6 n and q ∈ Qi}. Obviously, p′ <l Q

′ and thus there exists
a term v such that u′ −−→‖ Q′ v and t →p′ v. The parallel steps u −−→‖ u′ and u′ −−→‖ Q′ v

can be combined into a single parallel step u −−→‖ v because the redexes contracted in
u −−→‖ u′ are below position j and thus to the left of all positions in Q′. It remains to
show that t lo−→ v. This is obvious if p′ = lo(t). So suppose p′ 6= lo(t), which implies
lo(t) = ε. So t = `σ for some rewrite rule ` = f(`1, . . . , `n)→ r and substitution σ. We
distinguish two further cases.

If p′ is not below ` then we obtain t lo−→ v from weak orthogonality.
If p′ is below ` then, since p′ <l Q

′, all positions in Q′ are below ` according to
Lemma 18. Since

p′ = j · lo(tj) 6 j · pj = p 6lo j ·Qj

the same holds for the positions in j · Qj . It follows that s is an instance of `,
contradicting lo(s) 6= ε. J
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The following example shows the necessity of left-normality in Lemma 19.

I Example 20. Consider the orthogonal TRS consisting of the rewrite rules

a→ b f(x, b)→ c

and the term s = f(a, a). We have s lo−→ f(b, a) and s ¬lo−−→ f(a, b) but there is no term t such
that f(b, a) −−→‖ t and f(a, b) lo−→ t.

I Lemma 21. The inclusion
¬lo
−−→‖ ⊆ lo−→ · −−→‖ · lo←− ∪ = holds for every left-normal weakly

orthogonal TRS.

Proof. Let s
¬lo
−−→‖ P t. If P = ∅ then s = t. If P 6= ∅ then s is reducible and thus s lo−→ u

for some term u. We obtain u −−→‖ · lo←− t from Lemma 19 and thus s lo−→ · −−→‖ · lo←− t as
desired. J

Combining Lemmata 14, 15 and 21 gives the following result.

I Corollary 22. The inclusion
¬lo
−−→‖ · lo−→ ⊆ lo−→+ ·

¬lo
−−→‖ holds for every left-normal weakly

orthogonal TRS.

Proof. We have
¬lo
−−→‖ · lo−→ ⊆ ( lo−→ · −−→‖ · lo←− ∪ =) · lo−→ (Lemma 21)

= lo−→ · −−→‖ · lo←− · lo−→ ∪ = · lo−→

⊆ lo−→ · −−→‖ · = ∪ lo−→ (Lemma 15)

= lo−→ · −−→‖

⊆ lo−→ · lo−→∗ ·
¬lo
−−→‖ (Lemma 14)

= lo−→+ ·
¬lo
−−→‖ J

I Corollary 23. The relation lo−→ quasi-commutes over
¬lo
−−→‖ for every left-normal weakly

orthogonal TRS.

Proof. This follows from the preceding corollary and the inclusion lo−→+ ·
¬lo
−−→‖ ⊆ lo−→ · →∗.

J

I Corollary 24. The inclusion →∗ ⊆ lo−→∗ ·
¬lo
−−→‖ ∗ holds for every left-normal weakly orthog-

onal TRS.

Proof. This follows from Corollary 22 in connection with Lemmata 12 and 5 (with→α = lo−→
and →β =

¬lo
−−→‖ ). J

We arrive at the (hyper-)normalization theorem.

I Theorem 25. The leftmost outermost strategy is hyper-normalizing for every left-normal
weakly orthogonal TRS.

Proof. Normalization of lo−→ is obtained from Lemma 7, Corollary 24, and the inclusion
NF(R) ⊆ NF( ¬lo←−−) which follows from Lemma 19: If t /∈ NF( ¬lo←−−) then s ¬lo−−→ t for some
term s and thus s lo−→ u for some term u and hence u −−→‖ · lo←− t, so t /∈ NF(R). By
combining the normalization of lo−→ with Theorem 8 and Corollary 23, hyper-normalization
of lo−→ is concluded. J
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4 Basic Normalization

We recall a few notions from context-sensitive rewriting.

I Definition 26. A replacement map associates every n-ary function symbol to a subset
of {1, . . . , n}. Let µ be a replacement map. The set Posµ(t) of active positions in t is
inductively defined as follows:

Posµ(t) =
{
{ε} if t is a variable
{ε} ∪ {ip | i ∈ µ(f), 1 6 i 6 n, and p ∈ Posµ(ti)} if t = f(t1, . . . , tn)

The set PosV(t) ∩ Posµ(t) is abbreviated to PosµV(t).

We introduce basic normalization. Let R be a TRS and D = {root(`) | ` → r ∈ R} be
the set of all defined symbols in R. Terms t with PosD(t) = {ε} are called basic terms.

I Definition 27. A rewrite strategy S for a TRS R is basically normalizing if every R-
normalizing basic term is S-terminating.

By recasting the basic term condition of basic normalization in a replacement map for
context-sensitive rewriting, we establish a powerful criterion for basic normalization. As a
basis of this formulation, we use usable replacement maps [10, 14].

I Definition 28. A term t is accessible if s →∗ t for some basic term s. A replacement
map µ for a TRS R is usable if all redex positions in every accessible term t are included in
Posµ(t).

An effective technique for computation of usable replacement maps based on unification
and fixed point computation is suggested in [14]. The method adapts the cap-function ICAP
suitably [11]. The key observation is that through the cap-function usable arguments can
be delineated which is formalizable as a monotone operator ΥR. Applying Tarski’s fixed
point theorem we conclude the existence of a least fixed point which yields the desired
approximation, cf. [14, Definition 9].

We define basically left-normal TRSs. The notion of µ-left-normality in the following
definition was introduced in [18] for normalization of context-sensitive rewriting.

I Definition 29. A term t is called left-normal with respect to a replacement map µ, or
simply µ-left-normal, if p ∈ PosµV(t) and q ∈ Posµ(t) with p <lo q imply q ∈ PosV(t). Let
R be a TRS with a usable replacement map µ. The TRS R is basically left-normal if the
left-hand side ` of every rule `→ r ∈ R is µ-left-normal.

I Example 30. Consider the orthogonal TRS in the introduction. The map µ given by

µ(sieve) = {1} µ(primes) = µ(from) = µ(s) = µ(0) = ∅
µ(filter) = µ(take) = µ(:) = {2}

is a usable replacement map. For example, consider t = take(s(n), x : y). There are no
active positions p ∈ PosµV(t) = {22} and q ∈ Posµ(t) = {ε, 2, 22} such that p <lo q. So t
is µ-left-normal. In a similar way one can verify basic left-normality of all other left-hand
sides of the TRS left-normal. Hence, the TRS is basic left-normal with respect to µ.

We show that the leftmost outermost strategy is basically normalizing for basically left-
normal TRSs.

RTA 2015



218 Leftmost Outermost Revisited

Table 1 Experimental results on 161 weakly orthogonal TRSs.

left-normal basically left-normal

# of TRSs 75 150
total time (in seconds) 0.63 1.03

I Lemma 31. Let µ be a replacement map, t a µ-left-normal term, and σ a substitution. If
p, q ∈ Posµ(tσ) such that p is below t and p <lo q then q is below t.

Proof. The proof of Lemma 18 goes through after replacing PosV(t) with PosµV(t): We have
p > q′ for some position q′ ∈ PosV(t). Hence q′ ∈ PosµV(t) follows from p ∈ Posµ(tσ). If
q > q′ then q is below t. If q > q′ does not hold then we must have p <l q and q′ <l q for
otherwise the assumption p <lo q would be violated. If q ∈ Posµ(t) then q ∈ PosV(t) by
µ-left-normality. Otherwise q > q′′ for some position q′′ ∈ PosµV(t) ⊆ PosV(t). In both cases
we conclude that q is below t. J

Let  be a relation on terms. The accessible version  a is defined as follows: s a t if
s is an accessible term and s  t. In Section 3 we used left-normality to show Lemma 19.
The next lemma is its counterpart for basic hyper-normalization.

I Lemma 32. Let R be a weakly orthogonal TRS with a usable replacement map µ. If R is
basically left-normal then the inclusion a

lo←−− ·
¬lo
−−→‖ a ⊆ −−→‖ a · a

lo←−− holds.

Proof. Let s
¬lo
−−→‖ a t and s lo−→a u. Since s is accessible and µ is usable, s

¬lo
−−→‖ Q t and

s lo−→p u hold for some Q ⊆ Posµ(s) and p ∈ Posµ(s). We obtain t −−→‖ · lo←− u as in the
proof of Lemma 19, provided that Lemma 31 is used instead of Lemma 18. Since accessibility
of s carries over to t and u, we conclude t −−→‖ a · a

lo←−− u. J

By using Lemma 32, one can lift all statements (and proofs) in Lemma 21 and Corollar-
ies 22, 23, and 24 to the accessible version in a straightforward way.

I Theorem 33. The leftmost outermost strategy is basically hyper-normalizing for every
basically left-normal weakly orthogonal TRS. J

We implemented and tested Theorems 8 and 33 on a collection of 161 weakly orthogonal
TRSs, consisting of the 153 systems for innermost, outermost, and context-sensitive rewrit-
ing in version 8.0.7 of the Termination Problem Data Base (TPDB)1 and 9 systems from van
de Pol’s examples for strategy annotations [21].2 Usable replacement maps for Theorem 33
are estimated by the fixed point computation of [14, Definition 9]. Table 1 summarizes the
results.3

5 Related Work

The (hyper-)normalization of the leftmost outermost strategy is a fundamental result in
Combinatory Logic and λ-calculus. The importance of hyper-normalization as opposed to

1 http://termcomp.uibk.ac.at/
2 http://wwwhome.cs.utwente.nl/~vdpol/jitty/
3 Details are available at: http://www.jaist.ac.jp/~hirokawa/15bn/

http://termcomp.uibk.ac.at/
http://wwwhome.cs.utwente.nl/~vdpol/jitty/
http://www.jaist.ac.jp/~hirokawa/15bn/
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normalization stems from the fact that this property is essential to show that all partial
recursive functions are definable in λ-calculus and Combinatory Logic. Consequently, nu-
merous (hyper-)normalization proofs can be found in the literature. Below we comment on
some of them.

Combinatory Logic and λ-calculus. The usual argument that the leftmost outermost strat-
egy is (hyper-)normalizing in Combinatory Logic or λ-calculus employs the standardization
theorem [8, 5], which in itself is based on the study of residuals. Avoiding residuals, Kashima
presents in [17] an interesting inductive treatment of standardization and thus provides a
simple proof of hyper-normalization of the leftmost outermost strategy for the λ-calculus.

It is perhaps worthy of note that the proof of the (hyper-)normalization theorem is
absent from the well-known textbook by Hindley and Seldin [13]. The other recent book
covering Combinatory Logic by Bimbó [6, Lemma 2.2.8] contains the following short and
incomplete proof of the normalization theorem (here B1 refers to the rewrite relation of
Combinatory Logic, “lmrs” stands for the leftmost (outermost) strategy, and Theorem 2.1.14
is the Church-Rosser theorem):

If a CL-term has an nf, then there is a B1 reduction sequence of finite length. If the
leftmost reduction sequence is a finite B1 reduction sequence, then by theorem 2.1.14,
the last term is the nf of the starting term.
The other possibility is that the lmrs gives us an infinite B1 reduction sequence. There-
fore, if some redex other than the leftmost one is reduced in another B1 reduction se-
quence, then the leftmost redex remains in the term as long as the lmrs is not followed,
i.e., the term will not reduce to its nf. (qed)

Left-normal (orthogonal) term rewrite systems. O’Donnell [20] introduced left-normality
and proved the normalization of the leftmost outermost strategy for left-normal orthogonal
TRSs. A modern account of his proof, which is based on residual theory and cofinality of
leftmost-fair reductions, can be found in [23, Section 4.9].

Hyper-normalization of the leftmost outermost strategy for left-normal orthogonal TRSs
is obtained by van Oostrom and de Vrijer in [23, Theorem 9.3.21] as a corollary of the more
general statement that the leftmost outermost strategy is a needed strategy for left-normal
orthogonal TRSs.

Extending upon [24] Toyama proves in [25] that external reduction, which is a variation of
needed reduction, is a normalizing strategy for the class of left-linear root balanced joinable
external TRSs. Note that the studied TRSs may be ambiguous. As a corollary he obtains the
hyper-normalization of the leftmost outermost strategy for the class of left-linear left-normal
root balanced joinable TRSs. The latter class includes all left-normal weakly orthogonal
TRSs. It is an open problem whether our proof method extends to left-linear left-normal
root balanced joinable TRSs.

All these proofs can be characterized as global in the sense that definitions refer to
properties of rewrite sequences rather than single (parallel) steps, which are manipulated
throughout the proof. We believe this will hamper formalization efforts. In contrast, our
proof is elementary and local, as it makes essential use of abstract commutation properties.

Commutation properties In [1] Accattoli introduces an abstract framework for factoriza-
tion, relying on commutation properties similar to those exploited in Lemma 5 and 6 above.
The framework is general in the sense that it applies to a multitude of explicit substitutions
calculi. However, its applicability in our context is less straightforward. In order to employ
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a square factorization system [1, Definition 3.3] to prove our Corollary 24, we would need
to decompose the relations lo−→ and

¬lo
−−→‖ into four relations ( lo−→1,

lo−→2,
¬lo
−−→‖ 1,

¬lo
−−→‖ 2), such

that lo−→1 and
¬lo
−−→‖ 1 are terminating; a non-trivial task.

Dershowitz argues in [9, Note 20] that quasi-commutation applies to Combinatory Logic
and orthogonal TRSs, in connection with the inclusion lo←− · ¬lo−−→ ⊆ ¬lo−−→∗ · lo←−. Apart from
the missing left-normality condition, the inclusion does not hold, not even for Combinatory
Logic as Ix lo←− IIx ¬lo−−→ Ix but not Ix ¬lo−−→∗ · lo←− Ix.

6 Conclusion

In this paper we have presented an elementary proof of the classical result that the leftmost
outermost strategy is normalizing for left-normal orthogonal rewrite systems. Our proof
is local and extends to hyper-normalization and weakly orthogonal systems. Our interest
in leftmost outermost stems from the observation that archetypical TRSs often fail the
definition of left-normality, while morally these TRSs are left-normal, if the set of starting
terms is suitable restricted.

Based on this observation, we introduced basic normalization, i.e., normalization if the
set of considered starting terms is restricted to basic terms. This allowed us to weaken
the left-normality restriction. Building upon our new proof, we have shown that the left-
most outermost strategy is hyper-normalizing for basically left-normal weakly orthogonal
rewrite systems. This provides a simple and easy to implement strategy for basic terms in
a surprisingly large number of cases, as evidenced by the experimental data provided.

Despite the technical challenges found in the generalization of our result to weakly or-
thogonal systems, we have striven for an elementary proof, which we believe offers itself to
future formalization within an interactive theorem prover. Hopefully our results pave the
way for future certification efforts in the area of strategies.

In future work we will pursue an experimental and theoretical comparison of our results
with the normalizing strategies induced by strongly/inductively [16, 2] sequential TRSs. Fur-
thermore, we seek a simple proof of (hyper-)normalization of maximal (parallel) outermost
for weakly orthogonal TRSs (cf. [20, 19]).

Acknowledgements. We are grateful for the comments by the anonymous reviewers which
greatly helped us to improve the presentation of the paper.
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