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Abstract
For points p1, . . . , pn in the unit square [0, 1]2, an anchored rectangle packing consists of interior-
disjoint axis-aligned empty rectangles r1, . . . , rn ⊆ [0, 1]2 such that point pi is a corner of the
rectangle ri for i = 1, . . . , n (ri is anchored at pi). We show that for every set of n points in
[0, 1]2, there is an anchored rectangle packing of area at least 7/12−O(1/n), and for every n ∈ N,
there are point sets for which the area of every anchored rectangle packing is at most 2/3. The
maximum area of an anchored square packing is always at least 5/32 and sometimes at most 7/27.

The above constructive lower bounds immediately yield constant-factor approximations, of
7/12 − ε for rectangles and 5/32 for squares, for computing anchored packings of maximum
area in O(n logn) time. We prove that a simple greedy strategy achieves a 9/47-approximation
for anchored square packings, and 1/3 for lower-left anchored square packings. Reductions to
maximum weight independent set (MWIS) yield a QPTAS and a PTAS for anchored rectangle
and square packings in nO(1/ε) and exp(poly(log(n/ε))) time, respectively.
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1 Introduction

Let P = {p1, . . . , pn} be a finite set of points in an axis-aligned bounding rectangle U . An
anchored rectangle packing for P is a set of axis-aligned empty rectangles r1, . . . , rn that lie
in U , are interior-disjoint, and pi is one of the four corners of ri for i = 1, . . . , n; rectangle ri

is said to be anchored at pi. For a given point set P ⊂ U , we wish to find the maximum total
area A(P ) of an anchored rectangle packing of P . Since the ratio between areas is an affine
invariant, we may assume that U = [0, 1]2. However, if we are interested in the maximum
area of an anchored square packing, we must assume that U = [0, 1]2 (or that the aspect
ratio of U is bounded from below by a constant; otherwise, with an arbitrary rectangle U ,
the guaranteed area is zero).
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Figure 1 For P = {p1, p2}, with p1 = ( 1
4 , 3

4 ) and p2 = ( 3
8 , 7

8 ), a greedy algorithm selects rectangles
of area 3

4 ·
3
4 + 1

8 ·
5
8 = 41

64 (left), less than the area 1
4 ·

3
4 + 5

8 ·
7
8 = 47

64 of the packing on the right.

Table 1 Table of results for the four variants studied in this paper. The last two columns refer
to lower-left anchored rectangles and lower-left anchored squares, respectively.

Anchored packing with rectangles squares LL-rect. LL-sq.
Guaranteed max. area 7

12 −O( 1
n

) ≤ A(n) ≤ 2
3

5
32 ≤ Asq(n) ≤ 7

27 0 0
Greedy approx. ratio 7/12− ε 9/47 0.091 [20] 1/3
Approximation scheme QPTAS PTAS QPTAS PTAS

Finding the maximum area of an anchored rectangle packing of n given points is suspected
but not known to be NP-hard. Balas and Tóth [8] observed that the number of distinct
rectangle packings that attain the maximum area, A(P ), can be exponential in n. From the
opposite direction, the same authors [8] proved an exponential upper bound on the number
of maximum area configurations, namely 2nCn = Θ(8n/n3/2), where Cn = 1

n+1
(2n

n

)
=

Θ(4n/n3/2) is the nth Catalan number. Note that a greedy strategy may fail to find A(P );
see Fig. 1.

Variants and generalizations. We consider three additional variants of the problem. An
anchored square packing is an anchored rectangle packing in which all rectangles are squares;
a lower-left anchored rectangle packing is a rectangle packing where each point pi ∈ ri is the
lower-left corner of ri; and a lower-left anchored square packing has both properties.

We suspect that all variants, with rectangles or with squares, are NP-hard. Here, we put
forward several approximation algorithms, while it is understood that the news regarding
NP-hardness can occur at any time or perhaps take some time to establish.

Contributions. Our results are summarized in Table 1. Due to space limitations, some
proofs are omitted; the reader is referred to [7] for details.
(i) We first deduce upper and lower bounds on the maximum area of an anchored rectangle

packing of n points in [0, 1]2. For n ∈ N, let A(n) = inf |P |=n A(P ). We prove that
7

12 −O(1/n) ≤ A(n) ≤ 2
3 for all n ∈ N (Sections 2 and 3).

(ii) Let Asq(P ) be the maximum area of an anchored square packing for a point set P , and
Asq(n) = inf |P |=n Asq(P ). We prove that 5

32 ≤ Asq(n) ≤ 7
27 for all n (Sections 2 and 4).

(iii) The above constructive lower bounds immediately yield constant-factor approximations
for computing anchored packings of maximum area (7/12− ε for rectangles and 5/32
for squares) in O(n logn) time (Sections 3 and 4). In Section 5 we show that a (natural)
greedy algorithm for anchored square packings achieves a better approximation ratio,
namely 9/47 = 1/5.22 . . ., in O(n2) time. By refining some of the tools developed for
this bound, in Section 6 we prove a tight bound of 1/3 for the approximation ratio of a
greedy algorithm for lower-left anchored square packings.

(iv) We obtain a polynomial-time approximation scheme (PTAS) for the maximum area
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anchored square packing problem, and a quasi-polynomial-time approximation scheme
(QPTAS) for the maximum area anchored rectangle packing problem, via a reduction to
the maximum weight independent set (MWIS) problem for axis-aligned squares [16] and
rectangles [2], respectively. Given n points, an (1− ε)-approximation for the anchored
square packing of maximum area can be computed in time nO(1/ε); and for the anchored
rectangle packing of maximum area, in time exp(poly(log(n/ε))). Both results extend
to the lower-left anchored variants; see [7, Section 7].

Motivation and related work. Packing axis-aligned rectangles in a rectangular container,
albeit without anchors, is the unifying theme of several classic optimization problems. The
2D knapsack problem, strip packing, and 2D bin packing involve arranging a set of given
rectangles in the most economic fashion [2, 9]. The maximum area independent set (MAIS)
problem for rectangles (squares, or disks, etc.), is that of selecting a maximum area packing
from a given set [3]; see classic papers such as [5, 28, 29, 30, 31] and also more recent
ones [10, 11, 20] for quantitative bounds and constant approximations. These optimization
problems are NP-hard, and there is a rich literature on approximation algorithms. Given
an axis-parallel rectangle U in the plane containing n points, the problem of computing a
maximum-area empty axis-parallel sub-rectangle contained in U is one of the oldest problems
studied in computational geometry [4, 17]; the higher dimensional variant has been also
studied [19]. In contrast, our problem setup is fundamentally different: the rectangles (one
for each anchor) have variable sizes, but their location is constrained by the anchors.

Map labeling problems in geographic information systems (GIS) [24, 25, 27] call for
choosing interior-disjoint rectangles that are incident to a given set of points in the plane.
GIS applications often impose constraints on the label boxes, such as aspect ratio, minimum
and maximum size, or priority weights. Most optimization problems of such variants are
known to be NP-hard [21, 22, 23, 26]. In this paper, we focus on maximizing the total area
of an anchored rectangle packing.

In a restricted setting where each point pi is the lower-left corner of the rectangle ri and
(0, 0) ∈ P , Allen Freedman [32, 33] conjectured almost 50 years ago that there is a lower-left
anchored rectangle packing of area at least 1/2. The current best lower bound on the area
under these conditions is (about) 0.091, as established in [20]. The analogous problem of
estimating the total area for lower-left anchored square packings is much easier. If P consists
of the n points (i/n, i/n), i = 0, 1, . . . , n− 1, then the total area of the n anchored squares is
at most 1/n, and so it tends to zero as n tends to infinity. A looser anchor restriction, often
appearing in map labeling problems with square labels, requires the anchors to be contained
in the boundaries of the squares, however the squares need to be congruent; see e.g., [34].

In the context of covering (as opposed to packing), the problem of covering a given
polygon by disks with given centers such that the sum of areas of the disks is minimized has
been considered in [1, 14]. In particular, covering [0, 1]2 with `∞-disks of given centers and
minimal area as in [12, 13] is dual to the anchored square packings studied here.

Notation. Given an n-element point set P contained in U = [0, 1]2, denote by OPT =
OPT(P ) a packing (of rectangles or squares, as the case may be) of maximum total area. An
algorithm for a packing problem has approximation ratio α if the packing it computes, Π,
satisfies area(Π) ≥ α area(OPT), for some α ≤ 1. A set of points is in general position if no
two points have the same x- or y-coordinate. The boundary of a planar body B is denoted
by ∂B, and its interior by int(B).

SoCG 2016
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Figure 2 Left: 2/3 upper bound construction for anchored rectangles. Right: 7/27 upper bound
construction for anchored squares.

2 Upper Bounds

I Proposition 1. For every n ∈ N, there exists a point set Pn such that every anchored
rectangle packing for Pn has area at most 2

3 . Consequently, A(n) ≤ 2
3 .

Proof. Consider the point set P = {p1, . . . , pn}, where pi = (xi, yi) = (2−i, 2−i), for
i = 1, . . . , n; see Fig. 2 (left). Let R = {r1, . . . , rn} be an anchored rectangle packing for P .
Since p1 = ( 1

2 ,
1
2 ), any rectangle anchored at p1 has height at most 1

2 , width at most 1
2 , and

hence area at most 1
4 .

For i = 2, . . . , n, the x-coordinate of pi, xi, is halfway between 0 and xi−1, and yi is
halfway between 0 and yi−1. Consequently, if pi is the lower-right, lower-left or upper-left
corner of ri, then area(ri) ≤ ( 1

2i )(1 − 1
2i ) = 1

2i − 1
4i . If, pi is the upper-right corner of ri,

then area(ri) ≤ 1
4i . Therefore, in all cases, we have area(ri) ≤ 1

2i − 1
4i . The total area of an

anchored rectangle packing is bounded from above as follows:

A(P ) ≤
n∑

i=1

(
1
2i
− 1

4i

)
=
(

1− 1
2n

)
− 1

3

(
1− 1

4n

)
= 2

3 −
1
2n

+ 1
3 · 4n

≤ 2
3 . J

I Proposition 2. For every n ∈ N, there exists a point set Pn such that every anchored
square packing for Pn has area at most 7

27 . Consequently, Asq(n) ≤ 7
27 .

Proof. Consider the point set P = {p1, . . . , pn}, where pi = ( 4
3 · 2

−i, 4
3 · 2

−i), for i = 1, . . . , n;
see Fig. 2 (right). Let S = {s1, . . . , sn} be an anchored square packing for P . Since p1 = ( 2

3 ,
2
3 )

and p2 = ( 1
3 ,

1
3 ), any square anchored at p1 or at p2 has side-length at most 1

3 , hence area
at most 1

9 . For i = 3, . . . , n, the x-coordinate of pi, xi, is halfway between 0 and xi−1, and
yi is halfway between 0 and yi−1. Hence any square anchored at pi has side-length at most
xi = yi = 4

3·2i , hence area at most 16
9·4i . The total area of an anchored square packing is

bounded from above as follows:

Asq(P ) ≤ 2
9 + 1

9

n−1∑
j=1

1
4j

<
2
9 + 1

9

∞∑
j=1

1
4j

= 2
9 + 1

9 ·
1
3 = 7

27 . J

I Remark. Stronger upper bounds hold for small n, e.g., n ∈ {1, 2}. Specifically, A(1) =
Asq(1) = 1/4 attained for the center ( 1

2 ,
1
2 ) ∈ [0, 1]2, and A(2) = 4/9 and Asq(2) = 2/9

attained for P = {( 1
3 ,

1
3 ), ( 2

3 ,
2
3 )}.
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Figure 3 Left: Horizontal strips with anchored rectangles for 7 points. Middle: an example of
the partition for odd n (here n = 5). Right: an example of the partition for even n (here n = 6).
The strip that is discarded is shaded in the drawing.

3 Lower Bound for Anchored Rectangle Packings

In this section, we prove that for every set P of n points in [0, 1]2, we have A(P ) ≥ 7n−2
12(n+1) .

Our proof is constructive; we give a divide & conquer algorithm that partitions U into
horizontal strips and finds n anchored rectangles of total area bounded from below as
required. We start with a weaker lower bound, of about 1/2, and then sharpen the argument
to establish the main result of this section, a lower bound of about 7/12.

I Proposition 3. For every set of n points in the unit square [0, 1]2, an anchored rectangle
packing of area at least n

2(n+1) can be computed in O(n logn) time.

Proof. Let P = {p1, . . . , pn} be a set of points in the unit square [0, 1]2 sorted by their
y-coordinates. Draw a horizontal line through each point in P ; see Fig. 3 (left). These lines
divide [0, 1]2 into n+ 1 horizontal strips. A strip can have zero width if two points have the
same x-coordinate. We leave a narrowest strip empty and assign the remaining strips to the
n points such that each rectangle above (resp., below) the chosen narrowest strip is assigned
to a point of P on its bottom (resp., top) edge. For each point divide the corresponding
strip into two rectangles with a vertical line through the point. Assign the larger of the two
rectangles to the point.

The area of narrowest strip is at most 1
n+1 . The rectangle in each of the remaining n

strips covers at least 1
2 of the strip. This yields a total area of at least n

2(n+1) . J

A key observation allowing a stronger lower bound is that for two points in a horizontal
strip, one can always pack two anchored rectangles in the strip that cover strictly more than
half the area of the strip. Specifically, we have the following easy-looking statement with 2
points in a rectangle (however, we do not have an easy proof!); details are in [7].

I Lemma 4. Let P = {p1, p2} be two points in an axis-parallel rectangle R such that p1 lies
on the bottom side of R. Then there exist two empty rectangles in R anchored at the two
points of total area at least 7

12 area(R), and this bound is the best possible.

In order to partition the unit square into strips that contain two points, one on the
boundary, we need to use parity arguments. Let P be a set of n points in [0, 1]2 with
y-coordinates 0 ≤ y1 ≤ y2 ≤ · · · ≤ yn ≤ 1. Set y0 = 0 and yn+1 = 1. For i = 1, . . . , n + 1,
put hi = yi − yi−1, namely hi is the ith vertical gap. Obviously, we have

hi ≥ 0 for all i = 1, . . . , n+ 1, and
n+1∑
i=1

hi = 1. (1)

SoCG 2016
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Parity considerations are handled by the following lemma.

I Lemma 5.
(i) If n is odd, at least one of the following (n+ 1)/2 inequalities is satisfied:

hi + hi+1 ≤
2

n+ 1 , for (odd) i = 1, 3, . . . , n− 2, n. (2)

(ii) If n is even, at least one of the following n+ 2 inequalities is satisfied:

h1 ≤
2

n+ 2 , hn+1 ≤
2

n+ 2 , hi + hi+1 ≤
2

n+ 2 , for i = 1, 2, . . . , n. (3)

Proof. Assume first that n is odd. Put a = 2
n+1 and assume that none of the inequalities

in (2) is satisfied. Summation would yield
∑n+1

i=1 hi >
n+1

2 a = 1, an obvious contradiction.
Assume now that n is even. Put a = 2

n+2 and assume that none of the inequalities in (3)
is satisfied. Summation would yield 2

∑n+1
i=1 hi > (n+ 2)a = 2, again a contradiction. J

We can now prove the main result of this section.

I Theorem 6. For every set of n points in the unit square [0, 1]2, an anchored rectangle
packing of area at least 7(n−1)

12(n+1) when n is odd and 7n
12(n+2) when n is even can be computed

in O(n logn) time.

Proof. Let P = {p1, . . . , pn} be a set of points in the unit square [0, 1]2 sorted by their
y-coordinates with the notation introduced above. By Lemma 5, we find a horizontal strip
corresponding to one of the inequalities that is satisfied.

Assume first that n is odd. Draw a horizontal line through each point in pj ∈ P , for j
even, as shown in Fig. 3. These lines divide [0, 1]2 into n+1

2 rectangles (horizontal strips).
Suppose now that the satisfied inequality is hi + hi+1 ≤ 2

n+2 for some odd i. Then we
leave a rectangle between y = yi−1 and y = yi+1 empty, i.e., ri is a rectangle of area 0.
For the remaining rectangles, we assign two consecutive points of P such that each strip
above y = yi+1 (resp., below y = yi−1) is assigned a point of P on its bottom (resp., top)
edge. Within each rectangle R, we can choose two anchored rectangles of total area at least
7

12 area(R) by Lemma 4. By Lemma 5(i), the area of the narrowest strip is at most 2
n+1 .

Consequently, the area of the anchored rectangles is at least 7
12 (1− 2

n+1 ) = 7(n−1)
12(n+1) .

Assume now that n is even. If the selected horizontal strip corresponds to the inequality
h1 ≤ 2

n+2 , then divide the unit square along the lines y = yi, where i is odd. We leave the
strip of height h1 empty, and assign pairs of points to all remaining strips such that one of
the two points lies on the top edge of the strip. We proceed analogously if the inequality
hn+1 ≤ 2

n+2 is satisfied. Suppose now that the satisfied inequality is hi + hi+1 ≤ 2
n+2 . If i is

odd, we leave the strip of height hi ≤ 2
n+2 (between y = yi−1 and y = yi) empty; if i is even,

we leave the strip of height hi+1 ≤ 2
n+2 (between y = yi and y = yi+1) empty. Above and

below the empty strip, we can form a total of n/2 strips, each containing two points of P ,
with one of the two points lying on the bottom or the top edge of the strip. By Lemma 5(i),
the area of the empty strip is at most 2

n+2 . Consequently, the area of the anchored rectangles
is at least 7

12 (1− 2
n+2 ) = 7n

12(n+2) , as claimed. J

4 Lower Bound for Anchored Square Packings

Given a set P ⊂ U = [0, 1]2 of n points, we show there is an anchored square packing of large
total area. The proof we present is constructive; we give a recursive partitioning algorithm
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(as an inductive argument) based on a quadtree subdivision of U that finds n anchored
squares of total area at least 5/32. We need the following easy fact:

I Observation 7. Let u, v ⊆ U be two congruent axis-aligned interior-disjoint squares sharing
a common edge such that u ∩ P 6= ∅ and int(v) ∩ P = ∅. Then u ∪ v contains an anchored
empty square whose area is at least area(u)/4.

Proof. Let a denote the side-length of u (or v). Assume that v lies right of u. Let p ∈ P
be the rightmost point in u. If p lies in the lower half-rectangle of u then the square of
side-length a/2 whose lower-left anchor is p is empty and has area a2/4. Similarly, if p lies in
the higher half-rectangle of u then the square of side-length a/2 whose upper-left anchor is p
is empty and has area a2/4. J

I Theorem 8. For every set of n points in U = [0, 1]2, where n ≥ 1, an anchored square
packing of total area at least 5/32 can be computed in O(n logn) time.

Proof. We first derive a lower bound of 1/8 and then sharpen it to 5/32. We proceed
by induction on the number of points n contained in U and assigned to U ; during the
subdivision process, the rôle of U is taken by any subdivision square. If all points in P lie
on U ’s boundary, ∂U , pick one arbitrarily, say, (x, 0) with x ≤ 1/2. (All assumptions in the
proof are made without loss of generality.) Then the square [x, x+ 1/2]× [0, 1/2] is empty
and its area is 1/4 > 5/32, as required. Otherwise, discard the points in P ∩∂U and continue
on the remaining points.

If n = 1, we can assume that x(p), y(p) ≤ 1/2. Then the square of side-length 1/2 whose
lower-left anchor is p is empty and contained in U , as desired; hence Asq(P ) ≥ 1/4. If n = 2
let x1, x2, x3 be the widths of the 3 vertical strips determined by the two points, where
x1 + x2 + x3 = 1. We can assume that 0 ≤ x1 ≤ x2 ≤ x3; then there are two anchored empty
squares with total area at least x2

2 + x2
3 ≥ 2/9 > 5/32, as required.

Assume now that n ≥ 3. Subdivide U into four congruent squares, U1, . . . , U4, labeled
counterclockwise around the center of U according to the quadrant containing the square.
Partition P into four subsets P1, . . . , P4 such that Pi ⊂ Ui for i = 1, . . . , 4, with ties broken
arbitrarily. We next derive the lower bound Asq(P ) ≥ 1/8. We distinguish 4 cases, depending
on the number of empty sets Pi.

Case 1: precisely one of P1, . . . , P4 is empty. We can assume that P1 = ∅. By Observa-
tion 7, U1 ∪ U2 contains an empty square anchored at a point in P1 ∪ P2 of area at least
area(U1)/4 = 1/16. By induction, U3 and U4 each contain an anchored square packing of
area at least c · area(U3) = c · area(U4). Overall, we have Asq(P ) ≥ 2c/4 + 1/16 ≥ c, which
holds for c ≥ 1/8.

Case 2: precisely two of P1, . . . , P4 are empty. We can assume that the pairs {P1, P2}
and {P3, P4} each consist of one empty and one nonempty set. By Observation 7, U1 ∪ U2
and U3 ∪ U4, respectively, contain a square anchored at a point in P1 ∪ P2 and P3 ∪ P4 of
area at least area(U1)/4 = 1/16. Hence Asq(P ) ≥ 2 · 1

16 = 1/8.

Case 3: precisely three of P1, . . . , P4 are empty. We can assume that P3 6= ∅. Let
(a, b) ∈ P be a maximal point in the product order (e.g., the sum of coordinates is maximum).
Then s = [a, a+ 1

2 ]× [b, b+ 1
2 ] is a square anchored at (a, b), s ⊆ [0, 1]2 since (a, b) ∈ U3, and

int(s) ∩ P = ∅. Hence Asq(P ) ≥ area(s) = 1/4.

SoCG 2016



13:8 Anchored Rectangle and Square Packings

sj
ai

pi

pjaj

(a) (b) (c)

Figure 4 (a–b) A 1/4 upper bound for the approximation ratio of Algorithm 9. (c) Charging
scheme for Algorithm 9. Without loss of generality, the figure illustrates the case when sj is a
lower-left anchored square.

Case 4: Pi 6= ∅ for every i = 1, . . . , 4. Note that Asq(P ) ≥
∑4

i=1 Asq(Pi), where the
squares anchored at Pi are restricted to Ui. Induction completes the proof in this case.

In all four cases, we have verified that Asq(P ) ≥ 1/8, as claimed. The inductive proof
can be turned into a recursive algorithm based on a quadtree subdivision of the n points,
which can be computed in O(n logn) time [6, 18]. In addition, computing an extreme point
(with regard to a specified axis-direction) in any subsquare over all needed such calls can
be executed within the same time bound. Note that the bound in Case 3 is at least 5/32
and Case 4 is inductive. Sharpening the analysis of Cases 1 and 2 yields an improved bound
5/32; since 5/32 < 1/4, the value 5/32 is not a bottleneck for Cases 3 and 4. Details are
given in [7]; the running time remains O(n logn). J

5 Constant-Factor Approximations for Anchored Square Packings

In this section we investigate better approximations for square packings. Given a finite point
set P ⊂ [0, 1]2, perhaps the most natural greedy strategy for computing an anchored square
packing of large area is the following.

I Algorithm 9. Set Q = P and S = ∅. While Q 6= ∅, repeat the following. For each point
q ∈ Q, compute a candidate square s(q) such that (i) s(q) ⊆ [0, 1]2 is anchored at q, (ii) s(q)
is empty of points from P in its interior, (iii) s(q) is interior-disjoint from all squares in
S, and (iv) s(q) has maximum area. Then choose a largest candidate square s(q), and a
corresponding point q, and set Q← Q \ {q} and S ← S ∪ {s(q)}. When Q = ∅, return the
set of squares S.

I Remark. Let ρ9 denote the approximation ratio of Algorithm 9, if it exists. The construction
in Fig. 4(a–b) shows that ρ9 ≤ 1/4. For a small ε > 0, consider the point set P = {p1, . . . , pn},
where p1 = (1/2 + ε, 1/2 + ε), p2 = (1/2, 0), p3 = (0, 1/2), and the rest of the points lie
on the lower side of U in the vicinity of p2, i.e., xi ∈ (1/2 − ε/2, 1/2 + ε/2) and yi = 0
for i = 4, . . . , n. The packing generated by Algorithm 9 consists of a single square of area
(1/2 + ε)2, as shown in Fig. 4(a), while the packing in Fig. 4(b) has an area larger than 1− ε.
By letting ε be arbitrarily small, we deduce that ρ9 ≤ 1/4.

We first show that Algorithm 9 achieves a ratio of 1/6 (Theorem 12) using a charging
scheme that compares the greedy packing with an optimal packing. We then refine our
analysis and sharpen the approximation ratio to 9

47 = 1/5.22 . . . (Theorem 17).
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Charging scheme for the analysis of Algorithm 9. Label the points in P = {p1, . . . , pn}
and the squares in S = {s1, . . . , sn} in the order in which they are processed by Algorithm 9
with q = pi and si = s(q). Let G =

∑n
i=1 area(si) be the area of the greedy packing, and

let OPT denote an optimal packing with A = area(OPT) =
∑n

i=1 area(ai), where ai is the
square anchored at pi.

We employ a charging scheme, where we distribute the area of every optimal square ai

with area(ai) > 0 among some greedy squares; and then show that the total area of the
optimal squares charged to each greedy square sj is at most 6 area(sj) for all j = 1, . . . , n.
(Degenerate optimal squares, i.e., those with area(ai) = 0 do not need to be charged). For
each step j = 1, . . . , n of Algorithm 9, we shrink some of the squares a1, . . . , an, and charge
the area-decrease to the greedy square sj . By the end (after the nth step), each of the
squares a1, . . . , an will be reduced to a single point.

Specifically in step j, Algorithm 9 chooses a square sj , and: (1) we shrink square aj to a
single point; and (2) we shrink every square ai, i > j that intersects sj in its interior until
it no longer does so. This procedure ensures that no square ai, with i < j, intersects sj in
its interior in step j. Refer to Fig. 4(c). Observe three important properties of the above
iterative process:
(i) After step j, the squares s1, . . . , sj , a1, . . . , an have pairwise disjoint interiors.
(ii) After step j, we have area(aj) = 0 (since aj was shrunk to a single point).
(iii) At the beginning of step j, if ai intersects sj in its interior (and so i ≥ j), then

area(ai) ≤ area(sj) since sj is feasible for pi when aj is selected by Algorithm 9 due to
the greedy choice.

I Lemma 10. Suppose there exists a constant % ≥ 1 such that for every j = 1, . . . , n, square
sj receives a charge of at most % area(sj). Then Algorithm 9 computes an anchored square
packing whose area G is at least 1/% times the optimal.

Proof. Overall, each square sj receives a charge of at most % area(sj) from the squares in an
optimal solution. Consequently, A = area(OPT) =

∑n
i=1 area(ai) ≤ %

∑n
j=1 area(sj) = %G,

and thus G ≥ A/%, as claimed. J

In the remainder of this section, we bound the charge received by one square sj , for
j = 1, . . . , n. We distinguish two types of squares ai, i > j, whose area is reduced by sj :
Q1 = {ai : i > j, the area of ai is reduced by sj , and int(ai) contains no corner of sj},
Q2 = {ai : i > j, the area of ai is reduced by sj , and int(ai) contains a corner of sj}.

It is clear that if the insertion of sj reduces the area of ai, i > j, then ai is in either Q1
or Q2. Note that the area of aj is also reduced to 0, but it is in neither Q1 nor Q2.

I Lemma 11. Each square sj receives a charge of at most 6 area(sj).

Proof. Consider the squares in Q1. Assume that ai intersects the interior of sj , and it is
shrunk to a′i. The area-decrease ai \ a′i is an L-shaped region, at least half of which lies inside
sj ; see Fig. 4. By property (i), the L-shaped regions are pairwise interior-disjoint; and hence
the sum of their areas is at most 2 area(sj). Consequently, the area-decrease caused by sj in
squares in Q1 is at most 2 area(sj).

Consider the squares in Q2. There are at most three squares ai, i > j, that can contain a
corner of sj since the anchor of sj is not contained in the interior of any square ai. Since the
area of each square in Q2 is at most area(sj) by property (iii), the area decrease is at most
3 area(sj), and so is the charge received by sj from squares.

Finally, area(aj) ≤ area(sj) by property (iii), and this is also charged to sj . Overall sj

receives a charge of at most 6 area(sj). J
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The combination of Lemmas 10 and 11 readily implies the following.

I Theorem 12. Algorithm 9 computes an anchored square packing whose area is at least
1/6 times the optimal.

Refined analysis of the charging scheme. We next improve the upper bound for the charge
received by sj ; we assume for convenience that sj = U = [0, 1]2. For the analysis, we use only
a few properties of the optimal solution. Specifically, assume that a1, . . . , am are interior-
disjoint squares such that each ai: (a) intersects the interior of sj ; (b) has at least a corner
in the exterior of sj ; (c) does not contain (0, 0) in its interior; and (d) area(ai) ≤ area(sj).

The intersection of any square ai with ∂U is a polygonal line on the boundary ∂U ,
consisting of one or two segments. Since the squares ai form a packing, these intersections
are interior-disjoint.

Let ∆1(x) denote the maximum area-decrease of a set of squares ai in Q1, whose
intersections with ∂U have total length x. Similarly, let ∆2(x) denote the maximum area-
decrease of a set of squares ai in Q2, whose intersections with ∂U have total length x. By
adding suitable squares to Q1, we can assume that 4−x is the total length of the intersections
ai ∩ ∂U over squares in Q2 (i.e., the squares in Q1 ∪ Q2 cover the entire boundary of U).
Consequently, the maximum total area-decrease is given by

∆(x) = ∆1(x) + ∆2(4− x), and ∆ = sup
0≤x≤4

∆(x). (4)

We now derive upper bounds for ∆1(x) and ∆2(x) independently, and then combine
these bounds to optimize ∆(x). Since the total perimeter of U is 4, the domain of ∆(x) is
0 ≤ x ≤ 4.

I Lemma 13. The following inequalities hold:

∆1(x) ≤ 2, (5)
∆1(x) ≤ x, (6)
∆1(x) ≤ 1 + (x− 1)2, for 1 ≤ x ≤ 2, (7)

∆1(x) ≤ 1 + bxc4 + (x− bxc)2

4 , for 0 ≤ x ≤ 4. (8)

Proof. Inequality (5) was explained in the proof of Theorem 12. Inequalities (6) and (7)
follow from the fact that the side-length of each square ai is at most 1 and from the fact that
the area-decrease is at most the area (of respective squares); in addition, we use the inequality∑
x2

i ≤ (
∑
xi)2, for xi ≥ 0 and

∑
xi ≤ 1, and the inequality x2 + y2 ≤ 1 + (x+ y − 1)2, for

0 ≤ x, y ≤ 1, and x+ y > 1. Write

∆1(x) = ∆in
1 (x) + ∆out

1 (x), (9)

where ∆in
1 (x) and ∆out

1 (x) denote the maximum area-decrease contained in U and the
complement of U , respectively, of a set of squares in Q1 whose intersections with ∂U have
total length x, where 0 ≤ x ≤ 4. Obviously, ∆in

1 (x) ≤ area(U) = 1. We next show that

∆out
1 (x) ≤ bxc4 + (x− bxc)2

4 ,

and thereby establish inequality (8).
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Figure 5 Bounding the area-decrease; moving the squares in Q2 into canonical position. The
parts of ∂U covered by each square (after transformations) are drawn in thick red lines.

Consider a square ai of side-length xi ≤ 1 in Q1. Let zi denote the length of the shorter
side of the rectangle ai \U . The area-decrease outside U equals xizi−z2

i and so it is bounded
from above by x2

i /4 (equality is attained when zi = xi/2).
Consequently,

∆out
1 (x) ≤ sup

∑
0≤xi≤1∑

xi=x

x2
i

4 = bxc4 + (x− bxc)2

4 ,

where the last equality follows from a standard weight-shifting argument, and equality is
attained when x is subdivided into bxc unit length intervals and a remaining shorter interval
of length x− bxc. J

Let k ≤ 3 be the number of squares ai in Q2, where i > j. We can assume that exactly 3
squares ai, with i > j, are in Q2, one for each corner except the lower-left anchor corner of
U , that is, k = 3; otherwise the proof of Lemma 11 already yields an approximation ratio of
1/5. Clearly, we have ∆2(x) ≤ k ≤ 3, for any x.

We first bring the squares in Q2 into canonical position: x monotonically decreases,
∆(x) does not decrease, and properties (a–d) listed earlier are maintained. Specifically, we
transform each square ai ∈ Q2 as follows (refer to Fig. 5):

Move the anchor of ai to another corner if necessary so that one of its coordinates is
contained in the interval (0, 1);
translate ai horizontally or vertically so that ai ∩ U decreases to a skinny rectangle of
width ε, for some small ε > 0.

I Lemma 14. The following inequality holds:

∆2(x) ≤ 2x− x2

3 , for 0 ≤ x ≤ 4. (10)

Proof. Assume that the squares in Q2 are in canonical position. Let yi denote the side-length
of ai, let xi denote the length of the longer side of the rectangle ai ∩ U and zi denote the
length of the shorter side of the rectangle ai \ U , i = 1, 2, 3. Since the squares in Q2 are in
canonical position, we have xi + zi = yi ≤ 1, for i = 1, 2, 3. We also have

∑3
i=1 xi = x−O(ε).

Letting ε→ 0, we have
∑3

i=1 xi = x.
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∆2(x) = sup
xi+zi=yi≤1

3∑
i=1

(y2
i − z2

i ) = sup
0≤x1,x2,x3≤1

3∑
i=1

(1− (1− x2
i ))

= sup
0≤x1,x2,x3≤1

3∑
i=1

(2xi − x2
i ) = 2x− inf

0≤x1,x2,x3≤1

3∑
i=1

x2
i = 2x− x2

3 . J

Observe that the inequality ∆2(x) ≤ 3, for every 0 ≤ x ≤ 4, is implied by (10). Putting
together the upper bounds in Lemmas 13 and 14 yields Lemma 15 (refer to [7] for the proof):

I Lemma 15. The following inequality holds:

∆ ≤ 38
9 . (11)

From the opposite direction, ∆ ≥ 4 holds even in a geometric setting, i.e., as implied by
several constructions with squares.

I Lemma 16. Each square sj receives a charge of at most 47
9 area(sj).

Proof. By Lemma 15, the area-decrease is at most 38/9 area(sj), and so is the charge received
by sj from squares in Q1 and from squares in Q2 with the exception of the case i = j. Adding
this last charge yields a total charge of at most

(
1 + 38

9
)

area(sj) = 47
9 area(sj). J

The combination of Lemmas 10 and 16 now yields the following.

I Theorem 17. Algorithm 9 computes an anchored square packing whose area is at least
9/47 times the optimal.

6 Constant-Factor Approximations for Lower-Left Anchored Square
Packings

The following greedy algorithm, analogous to Algorithm 9, constructs a lower-left anchored
square packing, given a finite point set P ⊂ [0, 1]2.

I Algorithm 18. Set Q = P and S = ∅. While Q 6= ∅, repeat the following. For each point
q ∈ Q, compute a candidate square s(q) such that (i) s(q) ⊆ [0, 1]2 has q as its lower-left
anchor, (ii) s(q) is empty of points from P in its interior, (iii) s(q) is interior-disjoint from
all squares in S, and (iv) s(q) has maximum area. Then choose a largest candidate square
s(q), and a corresponding point q, and set Q← Q \ {q} and S ← S ∪ {s(q)}. When Q = ∅,
return the set of squares S.

I Remark. Let ρ18 denote the approximation ratio of Algorithm 18. The construction in
Fig. 6 shows that ρ18 ≤ 1/3. Specifically, for ε > 0, with ε−1 ∈ N, consider the point set
P = {(ε, ε), (0, 1

2 ), ( 1
2 , 0)} ∪ {( 1

2 + kε, 1
2 + kε) : k = 1, . . . , 1/(2ε) − 1}. Then the area of

the packing in Fig. 6 (right) is 3
4 − O(ε), but Algorithm 18 returns the packing shown in

Fig. 6 (left) of area 1
4 +O(ε).

We next demonstrate that Algorithm 18 achieves approximation ratio 1/3. According to
the above example, this is the best possible for this algorithm.

I Theorem 19. Algorithm 18 computes a lower-left anchored square packing whose area is
at least 1/3 times the optimal.
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Figure 6 A 1/3 upper bound for the approximation ratio of Algorithm 18.

sj
ai

pi

pj

sj

ai \ bi

pj
pi

bi

sj

pj
pi

bipk

ai \ bi
sk

Figure 7 Left: ai contains the upper-left corner of sj ; and area(ai) is charged to sj . Middle and
Right: ai contains no corner of sj , but it contains the lower-right corner of sk. Then area(ai \ bi) is
charged to sj and area(bi) is charged to sk.

Proof. Label the points in P = {p1, . . . , pn} and the squares in S = {s1, . . . , sn} in the
order in which they are processed by Algorithm 18 with q = pi and si = s(q). Let
G =

∑n
i=1 area(si) be the area of the greedy packing, and let OPT denote an optimal

packing with A = area(OPT) =
∑n

i=1 area(ai), where ai is the square anchored at pi.
We charge the area of every optimal square ai to one or two greedy squares s`; and then

show that the total area charged to s` is at most 3 area(s`) for all ` = 1, . . . , n. Consider
a square ai, 1 ≤ i ≤ n, with area(ai) > 0. Let j = j(i) be the minimum index such that
sj intersects the interior of ai. Let bi denote the candidate square associated to pi in step
j + 1 of Algorithm 18. Note that bi ⊂ ai, thus area(bi) < area(ai). If area(bi) > 0, then let
k = k(i) be the minimum index such that sk intersects the interior of bi.

We can now describe our charging scheme: If ai contains the upper-left or lower-right
corner of sj , then charge area(ai) to sj (Fig. 7, left). Otherwise, charge area(ai \ bi) to sj ,
and charge area(bi) to sk (Fig. 7, middle-right).

We first argue that the charging scheme is well-defined, and the total area of ai is charged
to one or two squares (sj and possibly sk). Indeed, if no square s`, ` < i, intersects the
interior of ai, then ai ⊆ si, and j(i) = i; and if ai 6⊆ sj and no square s`, j < ` < i, intersects
the interior of bi, then bi ⊆ si and k(i) = i.

Note that if area(ai) is charged to sj , then area(ai) ≤ area(sj). Indeed, if area(ai) >
area(sj), then ai is entirely free at step j, so Algorithm 18 would choose a square at least
as large as ai instead of sj , which is a contradiction. Analogously, if area(bi) is charged to
sk, then area(bi) ≤ area(sk). Moreover, if area(bi) is charged to sk, then the upper-left or
lower-right corner of sk is on the boundary of bi, and so this corner is contained in ai; refer
to Fig. 7 (right).

Fix ` ∈ {1, . . . , n}. We show that the total area charged to s` is at most 3 area(s`). If a
square ai, i = 1, . . . , n, sends a positive charge to s`, then ` = j(i) or ` = k(i). We distinguish
two types of squares ai that send a positive charge to s`; refer to Fig. 8:
T1 ai contains the upper-left or lower-right corner of s` in its interior.
T2 ai contains neither the upper-left nor the lower-right corner of s`.
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sℓ

ai

bi
pi

pℓ

aℓ

type T1

type T1type T2

type T2

Figure 8 The shaded areas are charged to square s`.

Since OPT is a packing, at most one optimal square contains each corner of s`. Con-
sequently, there is at most two squares ai of type T1. Since area(ai) ≤ area(s`), the charge
received from the squares of type T1 is at most 2 area(s`).

By [7, Lemma 9], s` receives a charge of at most area(s`) from squares of type T2. It
follows that each s` received a charge of at most 3 area(s`). Consequently,

A = area(OPT) =
n∑

i=1
area(ai) ≤ 3

n∑
`=1

area(s`) = 3G, and thus G ≥ A/3. J

7 Conclusion

We conclude with a few open problems:
1. Is the problem of computing the maximum-area anchored rectangle (respectively, square)

packing NP-hard?
2. Is there a polynomial-time approximation scheme for the problem of computing an

anchored rectangle packing of maximum area?
3. What lower bound on A(n) can be obtained by extending Lemma 4 concerning rectangles

from 2 to 3 points? Is there a short proof of Lemma 4?
4. Does Algorithm 9 for computing an anchored square packing of maximum area achieve a

ratio of 1/4? By Theorem 17 and the construction in Fig. 4, the approximation ratio is
between 9/47 = 1/5.22 . . . and 1/4. Improvements beyond the 1/5 ratio are particularly
exciting.

5. Is A(n) = 2
3? Is Asq(n) = 7

27?
6. What upper and lower bounds on A(n) and Asq(n) can be established in higher dimen-

sions?
7. A natural variant of anchored squares is one where the anchors must be the centers of

the squares. What approximation can be obtained in this case?
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