All-Pairs Minimum Cuts in Near-Linear Time for
Surface-Embedded Graphs*!

Glencora Borradaile!, David Eppstein?, Amir Nayyeri2, and
Christian Wulff-Nilsen*

1 School of Electrical Engineering and Computer Science, Oregon State
University, Corvallis, USA
glencora@eecs.oregonstate.edu

2 Computer Science Department, Donald Bren School of Information and
Computer Sciences, University of California, Irvine, USA
eppstein@uci.edu

3 School of Electrical Engineering and Computer Science, Oregon State
University, Corvallis, USA
nayyeria@eecs.oregonstate.edu

4 Department of Computer Science, University of Copenhagen (DIKU),
Copenhagen, Denmark
koolooz@diku.dk

—— Abstract

For an undirected n-vertex graph G with non-negative edge-weights, we consider the following
type of query: given two vertices s and ¢ in GG, what is the weight of a minimum st-cut in G7 We
solve this problem in preprocessing time O(n log® n) for graphs of bounded genus, giving the first
sub-quadratic time algorithm for this class of graphs. Our result also improves by a logarithmic
factor a previous algorithm by Borradaile, Sankowski and Wulff-Nilsen (FOCS 2010) that applied
only to planar graphs. Our algorithm constructs a Gomory—Hu tree for the given graph, providing
a data structure with space O(n) that can answer minimum-cut queries in constant time. The
dependence on the genus of the input graph in our preprocessing time is 20(5%),

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases minimum cuts, surface-embedded graphs, Gomory-Hu tree

Digital Object Identifier 10.4230/LIPIcs.SoCG.2016.22

1 Introduction

In recent years, problems of speeding up graph algorithms by taking advantage of low-genus
embeddings onto topological surfaces have become an important subtopic of computational
topology [11, 12, 7, 8, 6, 13, 10, 5]; in this paper, we do so for the all-pairs minimum cut
problem. In the all-pairs minimum cut problem we seek the minimum st-cut for every pair
{s,t} of vertices in an edge-weighted, undirected graph G. Gomory and Hu [15] showed that
these minimum cuts can be represented by a single edge-weighted tree such that:

the nodes of the tree correspond one-to-one with the vertices of G,

* This material is based upon work supported by the National Science Foundation under Grant Nos.
CCF-0963921, CCF-1228639, and CCF-1252833 and by the Office of Naval Research under Grant No.
N00014-08-1-1015.

t For the full version of the paper see http://arxiv.org/abs/1411.7055.

© Glencora Borradaile, David Eppstein, Amir Nayyeri, and Christian Wulff-Nilsen;
37 licensed under Creative Commons License CC-BY

32nd International Symposium on Computational Geometry (SoCG 2016).

Editors: Sandor Fekete and Anna Lubiw; Article No. 22; pp. 22:1-22:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.22
http://arxiv.org/abs/1411.7055
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2

All-Pairs Minimum Cuts in Near-Linear Time for Surface-Embedded Graphs

for any distinct vertices s and ¢, the minimum-weight edge on the unique s-to-t path in
the tree has weight equal to the min st-cut in G, and
removing this minimum-weight edge from the tree creates a partition of the nodes into
two sets corresponding to a min st-cut in G.
We call such a tree a minimum cut tree; it is also known as a Gomory—Hu tree or cut-
equivalent tree. Gomory and Hu showed how to find this tree with n — 1 calls to a minimum
cut algorithm by building up a collection of nested cuts, in each step adding a minimum
st-cut that separates a previously-unseparated pair of vertices.

New results. We provide the first subquadratic algorithm for all-pairs minimum cuts in
bounded-genus graphs. We can find the Gomory—Hu tree of a graph of genus ¢ in time
20(92)nlog3 n, giving a data structure of size O(n) which can answer minimum-cut queries
in constant time. The best previous method for this class of graphs uses the standard
Gomory—Hu algorithm and has a running time of O(g®n? log? nlog? C) (for integer edge
weights summing to C') using the best maximum-flow algorithm to find minimum cuts [8] or
20(9)n2logn using the best minimum-cut algorithm [12] for graphs of bounded genus. Our
result hinges in part on an improvement in the time for constructing Gomory—Hu trees in
planar graphs. Borradaile, Sankowski and Wulff-Nilsen showed how to solve this problem
in O(nlog*n) time [4]. In this paper, we improve this running time to O(nlog®n) time
(Section 4). Due to space constraints, some of the proofs are deferred to the full version.

From planar to bounded genus. We reduce the problem of computing the minimum-cut
tree in a graph of genus ¢ to the same problem in a set of 20(9”) planar graphs. The minimum
cut, viewed as an even subgraph of the dual graph, is a collection of cycles belonging to
one of 229 homology classes. Our main observation is that one can reduce the problem of
finding a minimum cut that is composed of dual cycles in certain homology classes to a
planar problem before taking into account the vertices that should be separated. This allows
us to find a cut tree whose cuts are composed of dual cycles in certain homology classes.
We describe this reduction in Section 3. Through this reduction, we compute minimum cut
trees in 2009°) different planar graphs such that the minimum st-cut in the original graph is
represented in at least one of these 20(9°) cut trees. Although this would already solve the
minimum cut query problem, we also show in the full version of this paper how to produce
a single minimum cut tree for the original graph, by merging these cut trees in a way that
preserves minimum cuts in time O(kn log? n) where k is the number of cut trees to merge.
This tree-merging algorithm does not rely on the surface embedding. Note that one could
use the Gomory-Hu algorithm of Gusfield to merge these trees, but Gusfield’s algorithm has
an O(n?) overhead independent of the method for finding minimum cuts [16].

Planar speed-up. The algorithm of Borradaile et al. [4] for planar graphs implements the
Gomory—Hu algorithm by using Miller’s recursive cycle separator decomposition [20] to
guide the selection of pairs of vertices to separate. Starting with the leaf-most pieces of
the decomposition, the algorithm separates all pairs of vertices in a piece that are not yet
separated. We refer to this algorithm as the cycle-based algorithm as it works in the dual
graph finding minimum separating cycles of pairs of faces.

We improve the running time of this algorithm by addressing two bottlenecks. The first
bottleneck is in finding a separating cycle. The cycle-based algorithm incurs an O(log3 n)
factor per cycle; multiplied by the depth of the recursive decomposition of the planar graph
this results in an O(log*n) factor in the overall runtime. Instead, we find a minimum cut by

G. Borradaile, D. Eppstein, A. Nayyeri, and C. Wulff-Nilsen

way of first computing a maximum flow, using the recursive flow techniques [2, 19], which,
surprisingly (because max flow computations usually dominate minimum cut computations),
reduces the overhead per cycle to O(log2 n). We refer to this algorithm as the flow-based
algorithm (Section 4.4). The second bottleneck is in adding a cut to the collection; we
improve the overhead from an amortized O(log4 n) per cut to an amortized O(log?’ n) per
cut (Section 4.5).

Minimum cycle bases. By duality [17], our algorithm also finds the cycle weights in a
minimum cycle basis of a planar graph in the same time bound; in fact, the planar all pairs
min cut algorithm is really a minimum cycle basis algorithm in the dual graph. However, in
graphs of higher genus and even in toroidal graphs, the minimum cycle basis appears to be
mostly unrelated to the dual of minimum cuts. Borradaile et al. [1] study computing the
minimum cycle bases and the minimum homology basis on surface embedded graphs.

2 Preliminaries

We consider a graph G with n vertices with a cellular embedding on an orientable surface of
genus ¢.' In this paper, we use cycle in its topological sense, that is a closed curve; graph
theoretically, a cycle in this sense corresponds to a closed walk. We specify simple cycle
when we refer to a closed curve that visits each point (vertex, edge) at most once.

Duality. For every connected, surface embedded graph G (the primal) there is another
connected graph embedded on the same surface, the dual G*. The faces of G are the vertices
of G* and vice versa. The edges of G correspond one-for-one with the edges of G*: for each
edge e in G, there is an edge e* in G* whose endpoints correspond to the faces of G incident
to e. Dual edges inherit the weight of the corresponding primal edges; namely, w(e*) = w(e).

Surgery. For a cycle C' we define the operation of cutting along C in G and denote it G+ C.
G +# C' is the graph obtained by cutting along C' in the drawing of G on the surface, creating
two copies of every edge in C. The edges in the copies of C' inherit the weights of the original
edges. We view G +# C' as being embedded on a surface with two punctures, corresponding to
the two resulting copies of C. Similarly, for a path P with endpoints on different boundary
components of GG, we define cutting along P in G and denote it G # P. We view G 4 P
as being embedded on a surface with the boundary components containing P’s endpoints
unified.

Z2-homology. Z. homology as we use it in this paper is described by Erickson and Nayy-
eri [12]; we refer the reader to their paper for formal definitions of the following. For further
background on surface topology and homology we refer the reader to Hatcher [18]. Here,
when we talk about homology we mean homology with Zs coeflicients.

A subgraph is called even if it has even degree at every vertex, or equivalently if it is
the edge-disjoint union of simple cycles. An even subgraph is null-homologous if it is the
boundary of a union of faces in G. Two even subgraphs are homologous if their symmetric
difference is null-homologous. A homology basis is a set {C1,Cy, ..., Ca4} of simple cycles
in G* that generates the homology class of all cycles of G*; it can be constructed in linear

1 An embedding is cellular if every face is a topological disk. If G has any embedding on a surface of
genus ¢, then the rotation system of the embedding gives a cellular embedding of G on a surface of
genus at most g.

22:3

SoCG 2016

22:4

All-Pairs Minimum Cuts in Near-Linear Time for Surface-Embedded Graphs

time [12]. The signature of an edge [e] is defined as a 2g-bit vector, whose ith bit is 1 if and
only if e* € C;. Given two faces a and b and an a*-to-b* path P in G*, [¢]* is the extended
(29 4 1)-bit vector whose first bit is 1 if and only if e* € P and whose second to (2g + 1)st
bits are [e]. Note that [¢]*® depends on the choice of P. For any subgraph X C G we define
[X] = P.cx le] and [X]* = P, [€]*’. Two even subgraphs X and X’ are homologous if
and only if [X & X'] = [X] @ [X'] = 0. We use @ to denote the symmetric difference of sets
and the exclusive or of binary numbers.

Minimum cuts and minimum separating subgraphs. The dual of a minimum st-cut is
the minimum even subgraph X that is null-homologous and such that [X]5* = 1, i.e.
[X]*"*" =[10---0] (Lemma 3.1 [7]). We will call this the minimum s*t*-separating subgraph.
In a surface of genus g, a minimum separating subgraph is composed of at most g + 1 simple
cycles. In particular, a minimum separating subgraph in a planar graph is a simple cycle. The
all-pairs minimum cut problem is equivalent to the all-pairs minimum separating subgraph
problem in the dual.

Faces and boundaries. For a set of faces F', we define F to be the boundary of F', that
is, the set of edges that bound faces of F' and F. Finally, for any graph G, we use F(G) to
denote the set of faces of G. We additionally consider a special type of faces, boundary faces,
which correspond to the boundary of punctures in the surface and are introduced over the
course of our algorithm from the cutting along operation. If H = G 4 X for some set of edges
X, then F(H) is F(G) plus a set of additional boundary faces, bounded by edges of X.

» Claim 1. Let X be a set of edges such that G # X has one more boundary face than G.
Let S be an ab-separating subgraph in G # X for non-boundary faces a,b € F(G 4 X). Then
S is ab-separating in G.

Tight cycles and paths. We say that a cycle C is tight if it is the shortest cycle with
Zs-homology signature [C]. Tight cycles in all homology classes can be found in time
20@)nlogn time [12]. We say that an a-to-y path P is tight if P U zy is the shortest cycle
with signature [P U xy] in the graph G U zy where xy is embedded on a handle added to the
surface connecting a face incident with x to a face incident with y. Note that the faces may
coincide, and we may need to add extra edges (with large weights to ensure they are not
part of any tight cycle) to make the embedding cellular. In this way, a tight path can be
found in the same time bound as a tight cycle.

Crossing or non-crossing. Let H; and Hs be two subsets of edges. We say that Hy crosses
H, if there is a subset of edges S of H; N Hy such that contracting S results in a vertex s
such that the edges e, es, €], €} are incident to s and are in this clockwise order around s
with ey, e} € Hy and eq, e, € Hy. Otherwise, H; and Hs do not cross.

A cycle C is non-self-crossing if no two subpaths of C cross. A cycle is weakly simple if it
is non-self-crossing and traverses each edge at most once. A cycle decomposition of an even
subgraph H is a partition C = {C4,Cy, ...} of the edges of H such that each cycle in C is
simple and no two cycles in C cross. Chambers, Erickson and Nayyeri (Lemma 3.2 [7]) prove
that every even subgraph of a surface-embedded graph has a cycle decomposition.

Cuts. By abuse of notation, we use an xy-cut to refer to two notions: it can be either a
subset C of edges whose removal from the graph separates x and y, or a bipartition (X,Y)
of the vertices such that x € X and y € Y. The edge subset C is the set of edges with one

G. Borradaile, D. Eppstein, A. Nayyeri, and C. Wulff-Nilsen

endpoint in X and the other in Y. We say that a cut (4, B) crosses a cut (X,Y) if neither
AC X nor ACY.

Uniqueness of minimum cuts and shortest paths. We assume that minimum cuts do not
cross. That is, if (X,Y) is a minimum zy-cut and (A, B) is a minimum ab-cut, then (X,Y)
and (A, B) do not cross. This is automatically true when all minimum cuts are unique,
which, in turn can be assumed to be true with high probability by randomly perturbing the
edge weights slightly [4, 21]. This perturbation also allows us to assume that shortest paths
in the dual graph are unique, which is required for both the cycle- and flow-based planar
algorithms.

Cut trees. For a graph G, an edge-weighted tree T on the same vertex set as G is a cut-tree
for G if, for every edge e in T, the weight of the cut in G corresponding to the bipartition
of the vertices given by T'\ {e} is w(e). T is a minimum cut-tree of G if for every pair of
vertices z,y the minimum zy-cut in T is the same (in value and bipartition of vertices) as
the minimum xy-cut in G.

Region trees. Within our algorithms, it is convenient to associate with a cut tree T a region
tree R [4]. R is the unique tree obtained from T by adding a leaf vertex to every node of
T. Thus, R has one leaf and one internal node for each of the n vertices of T'. The internal

edges of R are exactly the edges of T. Such a region tree is called a complete region tree.

The cut tree T can be recovered from R by contracting all the edges incident to leaves.

A partial region tree is any tree that can be obtained from a region tree by contracting
a subset of internal edges. A region tree may refer either to a complete region tree or to a
partial region tree, and should be clear from context. Contracting the leaf edges of a partial
region tree and mapping subsets of V' to the resulting nodes gives a representation of a
partial cut tree as maintained throughout the standard Gomory—Hu algorithm.

If a region tree R is rooted at an arbitrary internal node, then each of its internal nodes
u represents a region which is the graph obtained from G by contracting, for each non-leaf
child of v in T the leaves below it to a single vertex, and similarly contracting all leaves of T'
not below u to a single vertex (this definition is the same as in [4] except that we define a
region in the primal rather than the dual graph). For a non-root, internal node v of R, we
define S, to be the set of leaf descendents of v; S, is one side of the cut 7'\ {e} where e is
the parent edge of v. The root of R is the region that corresponds to the entire graph G.

Cartesian trees. Our query data structure is based on a Cartesian tree for an edge-weighted
tree T'. This is a binary tree in which the interior nodes represent edges of T and the leaves
represent vertices of 7. The root node represents the lightest edge of T" and its two children
are constructed recursively from the two subtrees formed from 7" by removing this lightest
edge. The minimum cut between any two vertices in 7" can then be found by answering a

lowest common ancestor query between the corresponding two leaves of the Cartesian tree.

Given an edge-weighted tree T" whose edges have been sorted by weight, the Cartesian tree
for T' can be constructed and processed for constant-time lowest common ancestor queries in
time and space O(n) [9)].

3 Reduction from bounded genus to planar

We show how to reduce the all-pairs minimum cut problem for a surface-embedded graph G
to the planar case. We do so by recursively cutting along (i) a tight cycle that belongs to

22:5

SoCG 2016

22:6

All-Pairs Minimum Cuts in Near-Linear Time for Surface-Embedded Graphs

some minimum cut or (ii) a tight cycle and a tight path connecting sides of the tight cycle
that some minimum cut does not cross.

3.1 Reducing the genus

If S is a minimum ab-separating subgraph in graph G and C'is a cycle in a cycle decomposition
of S then C is a minimum ab-separating cycle in G # (S \ C) for otherwise there would be
a cheaper minimum ab-separating subgraph G. The following lemma allows us to reduce
the problem of finding S to that of finding C'. That is, it allows us to find S\ C, and, in
particular to do so without specifying the faces we wish to separate.

» Lemma 2. Let S be the minimum ab-separating subgraph and let C1,Cs, ..., Ct be a cycle
decomposition of S with cycles ordered by increasing cost. Then C; is the cheapest cycle
having Z2-homology signature [C;] fori=1,...,t—1. Moreover, for any 1 < h <, U;:h C;

s a minimum ab-separating subgraph in G & U?;ll C;.

Proof. If t = 1, the lemma is trivially true. Herein, assume ¢ > 2. For a contradiction, let
C; be the first cycle such that C; is not the cheapest cycle having its homology signature
(with ¢ < ¢). Let C] be the cheapest cycle such that [C}] = [C;]. We have:

w(C)) <w(Ci) < w(Cipr) S w(S\Cy). (1)

Since S is null-homologous, [C}] = [C;] =[S\ Ci]. So, both C! & C; and C{ & (S\ C;) are
separating. Since [S]a® =1 = [C;]a* @[S\ C;]&° exactly one of [C;]a° or [S\ C;]&® = 1. That
is, exactly one of [C/]8* & [C;]a° or [C]?* &[S\ C;]a = 1. Thus, either C! & C; or CL & (S\ C;)
is ab-separating. By Equation 1, both w(C] ® C;) < w(S) and w(C} @ (S\ C;)) < w(S).
This contradicts that S is the minimum ab-separating subgraph.

Since S is ab-separating in G, H = U;:h C; is ab-separating in G' = G # U?;ll C;. For
a contradiction, suppose that H' # H is the minimum ab-separating cycle in G’, that is
w(H") < w(H). Tt follows that S’ = (Uf;ll C;)UH’ is ab-separating in G, and w(S") < w(S),

contradicting that S is the minimum ab-separating subgraph in G. |

The following lemma is stronger than Lemma 6.1 of Erickson et al. [11], but the proof
technique is similar.

» Lemma 3. Let S be the minimum ab-separating subgraph. Let A be any subgraph that does
not cross S, and let H be the minimum subgraph such that A ® H is null-homologous. Then
H does not cross S.

Proof. The even subgraph S separates the faces of G into two sets F,, and F,. Without loss
of generality, we assume that A and a are on the same side of S (i.e. contained in the same
piece of G4 S), a € F, and b € F},.

A @ H is a null-homologous even subgraph, so it separates the faces of G into subsets Jj
and J;. Assume, without loss of generality, that b € J,. Let F' = F;, NJ;, and note that a ¢ F'
and b € F, so O(F) is ab-separating. Also, each edge of O(F) is on the boundary of a face of
Fp, so it does not cross S. Finally, b € F, therefore, O(F) and b are on the same side of S.
In the rest of the proof, we show that O(F) must be identical to S, thus H does not cross S.

Since S is the minimum ab-separating subgraph,

w(dF) > w(S). (2)

G. Borradaile, D. Eppstein, A. Nayyeri, and C. Wulff-Nilsen

Each boundary edge of F' = F, N J, should be a boundary edge in at least one of F} and
Jp. Additionally, no boundary edge of F belongs to A\S as A and b (so A and J(F)) are on
different sides of S. Thus, 9F C HU S.

Let H = H® OF & S. Note that H' C HU S (since 0F C H U S). Because 9F and S

are boundaries of sets of faces, they are both null-homologous, so [H'] = [H]. Since H is
minimum,
w(H') > w(H). (3)

Finally, we show the following inequality by bounding the contribution of each edge
e € HUS to the sides of the inequality.

w(OF) +w(H") < w(S) + w(H). (4)

If e € SN H, then e contributes 2w(e) to the right side. Since, by the construction, at
most one copy of each edge is included in each of OF and H’, e can contribute at most
2w(e) to the left side.

If e € S® H, then e is in exactly one of OF and H' by the definition of H' (H' =
OF @ H @ 5). In this case, e contributes exactly w(e) to both sides of the inequality.

Therefore, all Inequalities (2), (3) and (4) must be equalities. In particular, w(0F) = w(S).

Thus, the uniqueness of the minimum cut (in the dual graph) implies that F and S are
identical, which in turn implies that H does not cross S. <

» Lemma 4. Let S be a minimum ab-separating subgraph. Let P be an x-to-y path that does
not cross S. Let H be the minimum weight subgraph such that H ® P is a null-homologous
even subgraph. H contains a tight x-to-y path P’ that does not cross S.

Proof. For H @& P to be an even subgraph, all vertices of H except z and y must be even
degree and = and y must have odd degree. Therefore, z and y must be in the same connected
component Cy,, of H @ P. Further, C,, has an Eulerian z-to-y walk (i.e., a walk that uses
every edge exactly once), and so Cy, can be decomposed into an z-to-y path P’ and a set
C,y of cycles by iteratively removing cycles from the walk.

Since H is the minimum weight subgraph such that H ¢ P is null-homologous, P’ must
be a tight path and all the cycles in C,, must be tight, for otherwise, one could replace P’ or
a cycle in Cgy, with a cheaper path or cycle while not changing [H & P].

By Lemma 3, H does not cross S, and so in particular, P’ does not cross S, giving this
lemma. <

Although cutting along a cycle C' that does not cross a minimum ab-separating subgraph
S reduces the genus of the surface, S may not be a minimum ab-separating subgraph in
G + C since the minimum ab-separating subgraph in G + C' may separate copies of C' and so
may not be separating in G. To overcome this, we use Lemma 4 to witness a tight path P
connecting the two copies of C'in G 4 C. G # (P UC) then has one boundary formed by two
copies of each edge in P U C. By Claim 1, a separating subgraph in G 4 (P U C') will also be
separating in G.

» Lemma 5. Let G be a graph embedded on a surface with b boundaries and genus g. Let S
be the minimum ab-separating subgraph of G. If S is composed of at most g cycles then there
is a tight cycle C' and a tight C-to-C' path P such that

1. G+ (CUP) is embedded on a surface of genus g — 1 with b+ 1 boundaries and

2. neither C nor P crosses S.

Moreover, S is the minimum ab-separating subgraph in G 4 (C U P).

22:7

SoCG 2016

22:8

All-Pairs Minimum Cuts in Near-Linear Time for Surface-Embedded Graphs

Proof. Since S has at most g cycles, there is a non-separating cycle C’ in G+ S. Let H' be
the shortest even subgraph that is homologous to C’, and let C be any cycle in the cycle
decomposition of H'. By Lemma 3, H' does not cross S, so, in particular, C' does not cross
S. Since C' is non-separating, G 4 C has genus one less than G, or g — 1. Taking the copies
of C in G + C to be boundaries, G + C has b + 2 boundaries.

Since C' is non-separating for G + S, there exists a path P’ between the two copies of
C in G # C that does not cross S. Let H be the minimum subgraph such that P’ & H is
null-homologous. By Lemma 4, H contains a tight path P that does not cross S and connects
the two copies of C'in G # C. Then G + C' # P has genus g — 1 and b+ 1 boundaries.

Since S does not cross C and P, it is ab-separating in G’ = G#4(CUP). For a contradiction,
suppose that S’ # S is the minimum ab-separating subgraph in G’, that is w(S’) < w(S). By
Claim 1, S’ is ab-separating in G, which contradicts the assumption that S is the minimum
ab-separating subgraph in G. <

We call the cycle and path described by Lemma 5 a tight cycle-path pair. The following
lemma ensures the possibility of reducing the genus of a graph, while looking for a minimum
ab-separating subgraph, by cutting a long either a tight cycle or a tight cycle path pair.

» Lemma 6. Let S be a minimum ab-separating subgraph in a graph G embedded in a surface

of genus g. If g > 1, at least one of the following conditions holds.

1. There is a tight cycle C C S. In this case, S\C is a minimum ab-separating subgraph in
G#+C.

2. There is a tight cycle-path pair (C, P) in G such that C and P do not cross S. In this
case, S is a minimum ab-separating subgraph in G + (C' U P).

3.2 A collection of planar problems

We recursively use Lemma 6 to construct a set of planar graphs, each annotated with a
set of non-separating cycles of the original graph, that collectively contain the minimum
ab-separating subgraphs for all pair of faces, a and b. Starting with graph G of genus g, we
create a set of new graphs with genus g — 1, each obtained by either cutting along a tight
cycle C' that will belong to the separating subgraphs in the derived graphs (as per Lemma 6,
part (1)) or by cutting along a tight cycle-path pair that will not cross the separating
subgraphs of the derived graphs (as per Lemma 6, part (2)).

We use sep(H, a,b) and w(sep(H, a,b)) to refer to the minimum ab-separating subgraph
in H and its weight, respectively. Let C be the set of all tight cycles in G. Note that |C| = 229
by the definition of Zsy-homology. Let CP be the set of all tight cycle-path pairs. For each
tight cycle C' and each homology class h in G # C, CP contains one pair (C, P), where P
is the shortest path in homology class h that connects copies of C' in G 4 C. Therefore,
|CP| < 229 x 229 = 249, We find the following lemma helpful for computing C and CP.

» Lemma 7 (Erickson and Nayyeri [12], Theorem 6.3). Let G be an undirected graph with
nonnegative edge weights, cellularly embedded on a surface of genus g with b boundary
components. A minimum-weight even subgraph and a minimum weight cycle or path (with
endpoints on the boundary) of G in every Zs-homology class can be computed in 200+ logn
time.

» Lemma 8. The sets C and CP can be computed in 2°9nlogn time.

In the following, the positive real numbers are the annotations to the planar graphs that
correspond to the set of tight cycles that are cut along that should belong to the separating
subgraphs (as per Lemma 6, part (1)).

G. Borradaile, D. Eppstein, A. Nayyeri, and C. Wulff-Nilsen

» Lemma 9. Let G be a graph embedded in a surface of genus g. There exist a set H of at
most 229° planar graphs, each annotated with a set of at most g cycles, such that:

1. For any (H,C) € H, F(H) is F(G) plus a set of boundary faces.

2. For any (H,C) € H, for any a,b € F(G), w(sep(H, a,b)) + w(C) > w(sep(G,a,b)).

3. For any a,b € F(G) there exists (H,C) € H such that sep(H, a,b) UC = sep(G, a,b).
Moreover, H can be computed in 20(92)nlogn time.

Proof. We use induction on the genus of G. For g = 0, H = {(G,0)} and the properties of
the lemma trivially hold.

Let Cg and CP¢s be the set of tight cycles and tight cycle-path pairs for graph G of
genus g. For any C € Cg, G # C has genus g — 1; let Hg o be the set of at most 229-1°
annotated planar graphs guaranteed by the inductive hypothesis for the graph G + C. For
any (C,P) € CPq, G+ (C U P) has genus g — 1; let Hgycup) be the set of at most 22(9-1)*
annotated planar graphs guaranteed by the inductive hypothesis for the graph G 4 (C U P).
Let

H= (U {H,cu0) : (H,C) GHGXC}) U U Harcup)
(

CeCa C,P)eCP¢
Since [Haye| < 220017 and Hercupy| < 22(9=1)” by the inductive hypothesis,
[H| = 229 x 22(6=1)° 4 949 92(9-1)° < 9 » 949 92(9-1)° < 920"

Let T'(n, g) be the running time of our algorithm to compute #H (for a graph of genus g with
n faces). Lemma 8 implies that C and CP can be computed in 2°@nlogn time. Since G +C
has two more faces that G and G + (C'U P) than G,

T(n,g) <2°9T(n+2,g—1)+2°9Dnlogn = 206" log n.

We show that H satisfies the remaining properties of the lemma.

Property (1). For any C (resp. (C, P)) we have F(G4C) 2 F(G) (resp. F(G#(CUP)) D
F(G) since cutting along C' (resp. C'U P) only adds boundary faces to G. Thus, this property
holds by induction.

Property (2). Let a,b € F(G). We prove that Property (2) holds for the annotated graphs
derived from Hgyc and from Hegycup) separately.

Consider any C € C. If S is an ab-separating subgraph in G 4 C then S U C is ab-
separating in G by Claim 1. In particular, the minimum ab-separating subgraph in G has
length at most w(sep(G # C, a,b)) + w(C): w(sep(G 4 C,a,b)) + w(C) > w(sep(G,a,b)). By
induction, we have that for any (H,C) € Hguc, w(sep(H,a,b)) +w(C) > w(sep(G + C,a,b)).
Therefore, since (H,C U C) € H, and by combining the previous two inequalities gives
w(sep(H, a,b)) +w(CUC) = w(sep(H,a,b)) + w(C) + w(C) > w(sep(G 4 C,a,b)) +w(C) >
w(sep(G, a,b)).

Likewise, for any (C, P) € CP, if S is an ab-separating subgraph in G+#(CUP) then it must
be ab-separating in G, also by Claim 1. In particular, the minimum ab-separating subgraph
in G is not heavier than S: w(sep(G # (C' U P),a,b)) > w(sep(G,a,b)). By the inductive
hypothesis, for any (H,C) € Haycup), we have sep(H, a,b) + w(C) > sep(G + (C'U P),a,b).
Since (H,C) € H and by combining these two inequalities we have sep(H,a,b) + w(C) >
w(sep(G, a, b)).

22:9

SoCG 2016

22:10

All-Pairs Minimum Cuts in Near-Linear Time for Surface-Embedded Graphs

Property (3). Let S be the minimum ab-separating subgraph in G. At least one of the
conditions of Lemma 6 must hold.

If the first condition of Lemma 6 holds, then there is a tight cycle C' € C such that S\C
is a minimum ab-separating subgraph in G 4 C. By the induction hypothesis, there is an
annotated planar graph (H,C) € Hgyo such that sep(H,a,b) UC = sep(G # C,a,b) = S\C.
Since (H,CUC) € H and sep(H,a,b) UCUC =sep(G + C,a,b) UC = S = sep(G, a,b), we
achieve the desired property.

If the second condition of Lemma 6 holds, then there is a tight cycle-path pair (C, P) € CP
such that S is a minimum ab-separating subgraph in G+ (C' U P). By the induction hypothsis,
there is an annotated planar graph (H,C) € Hgycup such that sep(H,a,b) UC = sep(G +
(CUP),a,b). Since (H,C) € H and sep(H, a,b)UC = sep(G4(CUP),a,b) = S = sep(G, a, b),
we achieve the desired property. |

3.3 The algorithm

We compute the set of annotated planar graphs H as per Lemma 9, and then for each
(H,C) € H, we solve the all-pairs separating cycle problem in the graph H; note that it is
only necessary to compute the minimum separating cycle for all pairs of non-boundary faces
of H. We represent the set of minimum separating cycles of H using a minimum cut-tree Ty
for the dual of the graph H. Since H is planar, we can compute Ty in O(n log® n) time using
the planar algorithm (Section 4). We then increase the weight of each edge in Ty by w(C).

Let T be the collection of all such cut trees. Note that |T| = |H| = 20(”) " All cut trees
in 7 can be computed in 20(92)n10g3 n time, and can be stored using 20(9°)p, space. For
faces a and b of G, a and b are non-boundary faces of H (Lemma 9, Property (1)). The
minimum ab-separating cycle in H corresponds to the minimum a*b*-cut represented by T,
and can be determined in O(1) time using a Cartesian tree representation of T.

By Lemma 9 (Property (2) and (3) and the weight added to each edge of Ty), the weight
of the minimum ab-separating cycle is given by

min w(minimum a*b*-cut in T).

TeT
Therefore, the minimum ab-separating cycle can be determined in O(|T]) = O(|H|) = 201"
time.

In the full version, we show how to merge k cut trees to preserve minimality in time
O(kn log? n) time. That is, we show how to, from the set 7, compute a single min-cut tree
T for minimum separating subgraphs in G (or minimum cuts in G*). The total time to
compute T by this method is 20(9°) (nlog®n) plus the time to compute 7, or 20(4%) (nlog®n).
This will give:

» Theorem 10. Let G be a graph embedded on a surface of genus g. The Gomory-Hu tree
of G can be computed in 20(92)nlog3 n time.

4 Speed-up for planar graphs

Borradaile, Sankowski and Wulff-Nilsen [3, 4] gave an O(nlog® n)-time cycle-based algorithm
for computing a Gomory—Hu tree of a planar graph G = (V, E), assuming that minimum
cuts are unique and so any two minimum cuts are guaranteed to nest. The algorithm is
guided by a recursive decomposition of the graph by small, balanced separators. Working
from leaf-to-root in this recursive decomposition, the algorithm finds all the minimum cuts

G. Borradaile, D. Eppstein, A. Nayyeri, and C. Wulff-Nilsen

between unseparated vertices in a piece of the decomposition by finding the corresponding
minimum separating cycles in the dual graph. The cycles are found by computing shortest
paths explicitly within the piece and implicitly outside the piece by relying on precomputed
distances outside the piece between all pairs of boundary vertices of the piece represented by
an external dense distance graph. Computing one cycle incurs a log® n factor in the runtime;
combined with the logarithmic depth of the recursive decomposition results in a log4 n factor
in the running time. We overcome this bottleneck by instead computing the maximum flow
between each pair of unseparated vertices and then extracting the minimum cut from this
flow. Similar ideas have been used for flow problems, but not for cut problems [2, 19].

In both the cycle- and flow-based algorithms, a partial region tree is updated with each
newly found cut. The running time due to this update, in the original cycle-based algorithm,
also met log? n-factor bottleneck. We improve this by using a slightly modified version of
the region-tree update step of the cycle-based algorithm. As in [4], we may assume, without
loss of generality, that G is triangulated and has bounded degree.

4.1 Recursive Decomposition

A piece P is a subset of E that we regard as a subgraph of G that inherits its embedding
from G. A boundary vertex of P is a vertex of P incident in G to a vertex not in P and
we let P denote the set of boundary vertices of P. A hole H of P is a face of P which is
not a face of G. We sometimes regard H as the subgraph of GG contained in H. Define the
boundary of H as 0H = 6P N H.

A decomposition of P is a set of sub-pieces of P such that every edge of P belongs to
a unique subpiece, except that edges with both endpoints in § P may belong to more than
one subpiece. A recursive decomposition of G is obtained by first finding a decomposition of
G and then recursing on each sub-piece until pieces of constant size are obtained. Ancest-
or/descendant relations between resulting set of pieces P are defined by their relations in
the recursion tree. The specific type of recursive decomposition we use can be computed in
O(nlogn) time and has the following properties (Section 6, [4]):

each piece of P is connected and has a constant number of holes and a constant number

of child pieces

S pep [E(P)| = O(nlogn)

> pep [0P|? = O(nlogn)
To simplify the analysis, we shall further assume that each non-leaf piece has exactly two
children; generalizing to a constant number of children is straightforward.

4.2 Dense dual-distance graphs

A dense distance graph is a weighted, complete graph on a subset of vertices of the original
graph where the weight of an edge equals the shortest path distance in the original graph.

In the cycle-based algorithm, computations of recursive decompositions, distances, etc.
stayed completely in the dual graph G*. In our flow-based algorithm, we instead use a
recursive decomposition of G, and compute flows and cuts in G; however, we rely on distances
precomputed in G*. For a piece P, rather than computing distances in G between vertices
of § P, we compute distances in G* between vertices of G* that correspond to faces of G that
are incident to 6P. Let F}(P) (resp. F3(P)) denote the vertices of G* that correspond to
faces of G that are incident to 6P and in P (resp. not in P). Since G is triangulated and has
bounded degree, Y- pep |Ff (P)|? = O(nlogn) and Y pop |Fp(P)[> = O(nlogn).

22:11

SoCG 2016

22:12

All-Pairs Minimum Cuts in Near-Linear Time for Surface-Embedded Graphs

The external dense dual-distance graph DDG(P) for a piece P is the dense distance
graph for the vertex set Fj(P) representing distances in the subgraph of G* induced by
the dual of edges that are not in P. Some external distances may not be finite since the
complement of P is not necessarily connected; we can represent DDG(P) instead as a union
of dense distance graphs, one corresponding to each component of the complement of P. The
set of all external dense dual-distance graphs, {DDG(P) : P € P}, can be computed in
O(n log® n) time using minor modifications to an algorithm by Facki, Nussbaum, Sankowski
and Wulff-Nilsen [19]; see the full version for details.

4.3 Region subpieces

As in the cycle-based algorithm, our flow-based algorithm processes pieces of the recursive
decomposition in a leaf-to-root order. Processing a piece P involves separating every pair
of unseparated vertices in P. We maintain a region tree as described in the preliminaries.
For a pair of vertices s and t in P that are not yet separated, there is a corresponding
region R in the region tree that contains s and t. We focus our attention on a region
subpiece which is Rp = P N R. Borradaile, Sankowski and Wulff-Nilsen [4] argue that for a
leaf-most unprocessed piece P with child pieces P; and P, a region subpiece contains at
most one pair of unseparated vertices, the number of region subpieces corresponding to P
is O(|0P, U dP,]|), and that all the region subpieces corresponding to P can be computed
in time O((|P| + |6P, U 0 Py|?)log® n), have total size O(|P|) and inherit a total of O(|0P|)
boundary vertices from P.

Given these bounds, in the sequel, we focus on a single region subpiece Rp with unsepar-
ated vertices s and t. The boundary vertices 6 Rp of Rp are inherited from P.

4.4 Separating s and t

Separating s and t is done by first computing a maximum st-flow in G which is explicitly
represented on E(Rp) and implicitly represented on E(G) \ E(Rp). Given DDG(Rp), the
running time of the algorithm is O((|Rp| + [0Rp|?) log® n) which by the properties of the
recursive decomposition and the bounds on the region subpieces is O(n log3 n) over all pieces
of the recursive decomposition. The algorithm is nearly identical to a part of the single-source,
all-sinks maximum flows algorithm due to Lacki et al. (Section III C [19]) wherein they
compute the flow between two cycles rather than two vertices; since s and ¢ can be regarded
as degenerate cycles, we can use the same algorithm. The main difference is that, in order
to update the region tree, we must identify the cut edges corresponding to the maximum
st-flow which is represented largely implicitly.

In order to explain how we determine the cut edges, it suffices to explain how flows
are represented implicitly by Lacki et al., rather than explain their entire algorithm which
we use as a black box. The flow is given by an explicit flow fp on each edge of P and a
circulation fo defined in the entire graph. The latter is given by a potential function ¢ on
the set of faces of G that is updated during the algorithm. The circulation fo is defined by
fo(uv) = ¢(f2) — ¢(f1), where f1 fo is the (directed) dual edge corresponding to wv. It turns
out that it suffices to maintain ¢(f) for faces f incident to d Rp; this compact representation
has been used in the recursive planar flow algorithms by FLacki et al. [19] and Borradaile et
al. [2]. To see why, consider an edge fg of DDG(Rp); recall that f and g are faces incident
to 0Rp not in Rp. Edge fg corresponds to a shortest path Q sy in G*[E(G) \ E(P)]. The
total flow crossing Q4 is given by the sum of the flow ¢(u) — ¢(v) on each edge uv of Qyg;
the sum is telescoping and the total flow crossing Q4 is ¢(g) — ¢(f). Qg is saturated by

G. Borradaile, D. Eppstein, A. Nayyeri, and C. Wulff-Nilsen

the flow if ¢(g) — #(f) is equal to the weight of fg in DDG(Rp). Since ¢ and DDG(Rp)
are maintained, we can find all such saturated edges of DDG(Rp) in time O(|0Rp|?). Let
DDGg(Rp) be the subgraph of DDG(Rp) of saturated edges.

Consider a hole of P with boundary C; take the hole not to be the infinite face and order
the vertices of C cyclically in a clockwise order. For two vertices a and b of V(Rp) N C,
there is a residual a-to-b path in G\ Rp only if there is no edge of DDGy(Rp) from a face f
incident to a part of C' from a to b to a face g incident to a part of C from b to a; the path
in G* corresponding to fg consists of edges that are saturated from the a side on the hole to
the b side of the hole.

For a vertex a of V(Rp)NC, we argue that we can determine the subset S, of V(Rp)NC
of vertices that are reachable by a residual path in G\ Rp in O(|0Rp|logn) time. Represent
the out-neighbors of a face f of DDGg(R,) in clockwise order around C. By binary search,
we can determine the last out-neighbor g of f in this order that is on C' between f and a
or determine that no such edge of DDG(Rp) exists. This restricts the vertices reachable
from a by residual paths in G\ Rp to those vertices on C' between g and a. By considering
each of the faces in order around C starting with the face immediately clockwise of a on
C, we can, in this way, determine S, in time O(|6Rp|logn). Repeating for every vertex of
V(Rp)NC and for every hole of P, we can build an external reachability graph representing
reachability via residual paths in G'\ Rp among vertices of SRp in O(|6Rp|?logn) time.

The s-side of the cut is given by those vertices reachable by paths that are residual with
respect to the flow. We can find the subset of these vertices in Rp by searching alternately
inside Rp via a straightforward search along residual edges (since the flow on edges of Rp
are represented explicitly) and search along edges of the external reachability graph in time
O(|Rp| + |5Rp|?). The total time to compute the flow using the algorithm of Lacki et al.,
build the external reachability graph and determine the vertices of Rp on the s-side of the
cut is dominated by the Lacki et al. algorithm, which is O((|Rp| + |0Rp|?) log® n).

4.5 Updating the region tree

We will describe how to update the region tree with this cut in terms of the corresponding
separating cycle C. While performing this update we can, from the s-side of the cut within
Rp, represent the minimum separating cycle by a subset of edges (non-residual edges at the
boundary of the search) of Rp and a subset of the edges of DDGg(Rp); the total size of

this representation is |C| = O(|Rp| + |0Rp|) and can be determined as part of the search.

The algorithm we describe is a modified version of that described by Borradaile, Sankowski
and Wulff-Nilsen [4] that achieves a logarithmic speed-up. We say that an edge e € E' is a

boundary edge of a region R if e is contained in the bounding cycle of R; Borradaile et al.

showed that by maintaining the region tree as a top tree, we can determine in O(logn) time
whether a given edge is a boundary edge of a given region. We use this fact in our analysis
below.

We show how to update the region tree with C'. C' partitions the children of region R
in the region tree. Let Cr be the child regions of R in the region tree and let Ci be the
subset contained in the inside of C. To correctly update the region tree, we need to remove
Cl as children of R, add them as children of C, and add C as a new child of R. If we can
identify C,, this update can be done in O(|C|logn) time since there are O(|C%|) topological
changes and each change requires O(logn) update time in a top-tree representation of the
region tree. If instead we have identified Cr — Cf then updating the region tree can be done
in O(|Cr — Cy|logn) time. We shall run two algorithms in parallel, one identifying C}, the
other identifying Cp — Cy, and terminate both algorithms when the smaller set has been

22:13

SoCG 2016

22:14

All-Pairs Minimum Cuts in Near-Linear Time for Surface-Embedded Graphs

identified in time O(min{|C%|,|Cr — Cy|}logn). For simplicity, we assume that C} is the
smaller set (the other case is symmetric) and show how to find Cf,.

Let m/, be the total number of edges (with multiplicity) that bound cycles of regions in Cf,
excluding edges of C'. We will show how to identify Cl; in time O(m/, log® n + log® n + |C]).

Over the course of all region tree updates, the second term sums up to O(nlog3 n)
since only a linear number of cycles are added to the region tree. Likewise, since |C| =
O(|Rp| + |0Rp|) and Y pep (|Rp| + |[6Rp]) = O(X pep |Pl) = O(nlogn), the third term
adds up to O(nlogn). For the first term, consider distributing this cost among the cycles.
Then note that a cycle pays for its edges no more than O(logn) times. To see this, note
that each time a cycle pays, it gets a parent in the region tree with at most ¢/2 + 1 children
where ¢ denotes the number of children of the previous parent. This is a constant-factor
decrease for ¢ > 2. We cannot have ¢ < 2 and if ¢ = 2 the problem is trivial since the two
cycles of C}; must be faces (of constant complexity) of G* since C separates at least one
pair of unseparated faces. Hence, we get a total running time for all region tree updates of
O(nlog®n).

4.5.1 Identifying C%

We identify C, in two steps. In the first step, we identify those edges that have exactly one
endpoint in C' and belong to cycles in C}. In the second step, we explore the interior of
C starting at these edges to identify the boundaries of all the cycles of Ci. We shall only
describe the first step as the second step is done exactly as by Borradaile et al. in O(m/, logn)
time [4]. Recall that C' is represented by edges of a region subpiece, which we refer to as
regular edges, together with super edges in the external dense dual distance graphs, each
representing a path in G*. In the following, we assume that C' consists only of super edges
as the regular edges are easy to handle using the top tree representation [4].

Each super edge fg represents a shortest path in G* and was found using a fast Dijkstra
implementation of Fakcharoenphol and Rao’s recursive shortest path algorithm [14] to
construct a dense dual distance graph. In this construction, the path in G* corresponding
to fg has a recursive representation in line with the recursive decomposition of G. That
is, fg decomposes into a path @y, of edges which themselves are super edges in (internal
and external) dense dual distance graphs. The super edges of this path can be recursively
decomposed until reaching edges of G*. The number of recursion levels is at most the depth
O(logn) of the recursive decomposition of G*. We shall assume that any super edge ab
(i) points to the endpoints in G* of the subpath Qg that ab decomposes into at the next
recursion level, (ii) points to the super edge of @, that contains the midpoint of Qg (as a
path in G*), and (iii) is annotated with its length in terms of number of edges of G* (as well
as its length in terms of weights of those edges). It is easy to maintain this information during
the construction of the dense dual distance graphs without an asymptotic time increase.

A minimum separating cycle in a planar graph is an isometric cycle: for any vertex r
on C, C consists of two shortest paths @)1 and Q2 from r to vertices a and b, respectively,
together with the single edge ab of G* [17]. Borradaile, Sankowski and Wulff-Nilsen show
how to find an a, b and r in time O(log3 n+|C|) along with a representation of @Q); consisting
of at most |C| super edges at the top level of the recursion and O(logn) paths of super edges
from dense dual distance graphs at deeper recursion levels for ¢ = 1,2 (Section 4.2 [4]). For
1 = 1,2, recall that we need to find all edges of G* with exactly one endpoint on @; that are
contained in boundary cycles of Cf,. By symmetry, we restrict our attention to Q;.

The algorithm is as follows. First, identify the first and last edge (of G*) on @;. Denote
them by e; and e, respectively. Then check if e; and e; are incident to the same cycle

G. Borradaile, D. Eppstein, A. Nayyeri, and C. Wulff-Nilsen

C’ of Cf. As noted above, each such check can be done in O(logn) time using a top tree
representation of the region tree.

If this check is positive then, since bounding cycles are isometric and shortest paths are
unique, all edges of Q1 are in C’ N C and we are done since none of these edges can be
interior to a cycle of C since these cycles have disjoint interiors. (A special case is when a
cycle of C}, is a face of G* which need not be isometric but, since faces have constant size,
this will not affect the analysis.)

If this check is negative, we find an edge e,, of G* belonging to @1 such that a constant
fraction of the (regular) edges of @y are before e,, and a constant fraction of them are
after e,,. We then recurse on the two subpaths of (); from e; to e, and from e,, to es,
respectively. If there are k cycles of C}; incident to @1 then the total number of regular
edges e,, considered is O(klogn). This is where our improvement differs from the original
region-tree-updating technique of Borradaile et al. [4]: we show how to identify each edge e,
in O(logn) time instead of O(log?n) time, which was the bottleneck of their method. Total
time to identify all O(klogn) edges is then O(klog®n) = O(m'y log® n).

First we need a lemma. For a path @, we denote by Q[z,y] the subpath from z to y and

we call a vertex x a split point of @Q if at most 1/8 of the vertices of Q are before resp. after x.

» Lemma 11. Let Q = a ~> ¢~ e~ f ~> d ~ b be a directed path where possibly some
of the subpaths are empty. Let m (resp. m(c,d)) denote the midpoint of Q (resp. Q|c,d]),
splitting the path into two (almost) equal-size subpaths such that |Q|c,d]| > i|Q|, m € Qlc, d],
and m(c,d) € Qle, f]. We have:

If m € Q[e, €] then e is a split point of Q; if m € Q[f,d] then f is a split point of Q; if
m € Qle, f] and |Q[e, f]| < %|Q| then e is a split point of Q.

We use this lemma to find an edge e,, with the property described above. Recall that
we store the number of edges of G* represented by each super edge ab as well as a pointer
to the sub-super edge that contains the midpoint of Q.. As described above, path @ is
represented by O(|C|+1logn) subpaths and since we know the length of each of them, we can
in O(]C|+1logn) identify the subpath @} that contains the midpoint of Q1. @} plays the role

of Q[e, f] and Q1 plays the role of Q[c, d] and Q[a, b] in Lemma 11 (so that a = ¢ and b = d).

The assumptions in the lemma hold and we can check in constant time whether any of the
three cases apply. If so, we are done as we have found a split point and we can pick e,, as

an edge incident to this point. Otherwise, we have m € Qle, f] and |Q1| = |Q[e, f]| > 1Q|.

The path Q[e, f] belongs to a shortest path of a dense dual distance graph, so in constant
time, we can identify the super edge uv of this path that contains its midpoint. Now apply
the lemma again but with Qle, f] defined as uv, Qlc, d] defined as Q}, and Q[a, b] defined
as Q1. Then the assumptions in the lemma hold again. Applying it, we either find a split
point or we decompose uv into a shortest path of super edges, and recurse on the super
edge containing the midpoint of this path. Each step runs in O(1) time and since there are
O(logn) recursion levels, we obtain a split point and hence e, in O(logn) time.

We conclude from the above that the total time to add bounding cycles to the region
tree is O(nlog®n).

—— References

1 G. Borradaile, E. Chambers, K. Fox, and A. Nayyeri. Computing minimum homology basis
and minimum cycle basis in surface embedded graphs. In submission., 2015.

2 G. Borradaile, P.N. Klein, S. Mozes, Y. Nussbaum, and C. Wulff-Nilsen. Multiple-source
multiple-sink maximum flow in directed planar graphs in near-linear time. In Proc. 52nd

22:15

SoCG 2016

22:16

All-Pairs Minimum Cuts in Near-Linear Time for Surface-Embedded Graphs

10

11

12

13

14

15

16

17

18

19

20

21

Symp. Found. of Computer Science (FOCS 2011), pages 170-179, 2011. doi:10.1109/
F0CS.2011.73.

G. Borradaile, P. Sankowski, and C. Wulff-Nilsen. Min st-cut oracle for planar graphs
with near-linear preprocessing time. In Proc. 51st IEEE Symp. Foundations of Computer
Science (FOCS 2010), pages 601-610, 2010. doi:10.1109/F0CS.2010.63.

G. Borradaile, P. Sankowski, and C. Wulff-Nilsen. Min st-cut oracle for planar graphs with
near-linear preprocessing time. ACM Trans. Algorithms, 2014. To appear.

S. Cabello, E. Colin de Verdi¢re, and F. Lazarus. Finding shortest non-trivial cycles in
directed graphs on surfaces. In Proc. of the 26th Annual Symposium on Computational
Geometry, SoCG’10, pages 156-165, New York, NY, USA, 2010. ACM. doi:10.1145/
1810959.1810988.

E. Chambers, J. Erickson, and A. Nayyeri. Homology flows, cohomology cuts. In Proc.
41st ACM Symposium on Theory of Computing (STOC’09), pages 273-282, 2009. doi:
10.1145/1536414.1536453.

E. Chambers, J. Erickson, and A. Nayyeri. Minimum cuts and shortest homologous cycles.
In Proc. 25th Symp. Computational Geometry (SoCG’09), pages 377-385, 2009. doi:10.
1145/1542362.1542426.

Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. Homology flows, cohomology cuts.
SIAM J. Comput., 41:1605-1634, 2009. doi:10.1137/090766863.

E. Demaine, G. Landau, and O. Weimann. On Cartesian trees and range minimum queries.
Algorithmica, 68(3):610-625, 2014. doi:10.1007/s00453-012-9683-x.

J. Erickson. Shortest non-trivial cycles in directed surface graphs. In Proc. of the 27th
Annual Symp. on Computational Geometry, SoOCG’11, pages 236—243, New York, NY, USA,
2011. ACM. doi:10.1145/1998196.1998231.

J. Erickson, K. Fox, and A. Nayyeri. Global minimum cuts in surface embedded graphs.
In Proc. 23rd Annual ACM-SIAM Symp. on Discrete Algorithms, pages 1309-1318, 2012.

J. Erickson and A. Nayyeri. Minimum cuts and shortest non-separating cycles via homology
covers. In Proc. 22nd ACM-SIAM Symp. Discrete Algorithms (SODA 2011), pages 1166
1176, 2011.

J. Erickson and A. Sidiropoulos. A near-optimal approximation algorithm for asymmetric
tsp on embedded graphs. In Proc. 30th Annual Symposium on Computational Geometry,
SOCG’14, pages 130:130-130:135. ACM, 2014. doi:10.1145/2582112.2582136.

J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest paths, and
near linear time. J. Comput. Syst. Sci., 72(5):868-889, 2006. doi:10.1016/j.jcss.2005.
05.007.

R. Gomory and T. Hu. Multi-terminal network flows. Journal of SIAM, 9(4):551-570, 1961.
doi:10.1137/0109047.

D. Gusfield. Very simple methods for all pairs network flow analysis. SIAM J. Comput.,
19(1):143-155, 1990. doi:10.1137/0219009.

D. Hartvigsen and R. Mardon. The all-pairs min cut problem and the minimum cycle
basis problem on planar graphs. SIAM J. on Discrete Math., 7(3):403-418, 1994. doi:
10.1137/50895480190177042.

A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.

J. Lacki, Y. Nussbaum, P. Sankowski, and C. Wulff-Nilsen. Single source — all sinks max
flows in planar digraphs. In Proc. 53rd Symp. Found. of Computer Science (FOCS 2012),
pages 599-608, 2012. doi:10.1109/F0CS.2012.66.

G. Miller. Finding small simple cycle separators for 2-connected planar graphs. J. Comput.
Syst. Sci., 32(3):265-279, 1986. doi:10.1016/0022-0000(86)90030-9.

K. Mulmuley, V. Vazirani, and U. Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7(1):345-354, 1987.

http://dx.doi.org/10.1109/FOCS.2011.73
http://dx.doi.org/10.1109/FOCS.2011.73
http://dx.doi.org/10.1109/FOCS.2010.63
http://dx.doi.org/10.1145/1810959.1810988
http://dx.doi.org/10.1145/1810959.1810988
http://dx.doi.org/10.1145/1536414.1536453
http://dx.doi.org/10.1145/1536414.1536453
http://dx.doi.org/10.1145/1542362.1542426
http://dx.doi.org/10.1145/1542362.1542426
http://dx.doi.org/10.1137/090766863
http://dx.doi.org/10.1007/s00453-012-9683-x
http://dx.doi.org/10.1145/1998196.1998231
http://dx.doi.org/10.1145/2582112.2582136
http://dx.doi.org/10.1016/j.jcss.2005.05.007
http://dx.doi.org/10.1016/j.jcss.2005.05.007
http://dx.doi.org/10.1137/0109047
http://dx.doi.org/10.1137/0219009
http://dx.doi.org/10.1137/S0895480190177042
http://dx.doi.org/10.1137/S0895480190177042
http://dx.doi.org/10.1109/FOCS.2012.66
http://dx.doi.org/10.1016/0022-0000(86)90030-9

	Introduction
	Preliminaries
	Reduction from bounded genus to planar
	Reducing the genus
	A collection of planar problems
	The algorithm

	Speed-up for planar graphs
	Recursive Decomposition
	Dense dual-distance graphs
	Region subpieces
	Separating s and t
	Updating the region tree
	Identifying C'R

