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Abstract
Development of a contraction-free BI sequent calculus, be the contraction-freeness implicit or
explicit, has not been successful in the literature. We address this problem by presenting such
a sequent system. Our calculus involves no structural rules. It should be an insight into non-
formula contraction absorption in other non-classical logics. Contraction absorption in sequent
calculus is associated to simpler cut elimination and to efficient proof searches.
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1 Introduction

Propositional BI [22] is a combined logic formed from propositional intuitionistic logic IL
and propositional multiplicative fragment of intuitionistic linear logic MILL. Recall that
IL, and respectively MILL, have the following logical connectives: {>0,⊥0,∧2,∨2,⊃2} (Cf.
any standard text on the mathematical logic for intuitionistic logic; [16] for instance), and
respectively, {10,⊗2,−◦2} (Cf. [11] for linear logic).1 A rough intuition about BI is that a BI
expression is any expression that is constructable from (P, {>0,⊥0,∧2,∨2,⊃2,10,⊗2,−◦2}).
P denotes some set of propositional letters. Following the popular convention in BI, we use
the symbol ∗ in place of ⊗, and −∗ in place of −◦. In place of 1, we use ∗>, emphasising
some link of its to >, as to be shortly stated. It holds true that what IL or MILL considers
a theorem, BI also does [22]. To this extent BI is a conservative extension of the two
propositional logics.

Now, one may contemplate the converse. Is it the case that what BI considers a theorem,
IL or MILL also does, i.e. is it the case that every BI formula is reducible either into an IL
formula or into a MILL formula? It is stated in [22] that that is not so.

Analysis of the way logics combine is itself an interest. When one combines two logics, it
is possible - depending on how the chosen methodology combines the logics - that some logical
connective in one of them collapses onto some logical connective in the other. A notable
example is the case of classical logic and intuitionistic logic [6, 5]. There, intuitionistic implic-
ation can become classical implication. If another approach is chosen, classical implication
can also become intuitionistic implication. In order to prevent these from occurring, one must
prepare the combined logic domain in such a way that, within the domain, the classical logic
domain is sufficiently independent of the intuitionistic logic domain. The reason pertains to
the difference in their viewpoint of what an infinity is. Similarly in the combination of IL

1 The subscripts denote the arity.
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8:2 Structural Interactions and Absorption of Structural Rules in BI Sequent Calculus

with MILL, some sort of the merging of logical connectives could occur. In BI, one that is
intentionally avoided is the conflict between the two implications. The following example in
the BI proof theory is taken from [22].

Γ;F ` G
⊃ RΓ ` F⊃G

Γ, F ` G
−∗RΓ ` F−∗G

F and G are assumed to be some arbitrary BI formula. The semi-colon and the comma are
the two structural connectives acting as the structural counterparts of ∧ and respectively
∗, which can nest over one another. Γ denotes some arbitrary BI structure.2 BI achieves
separation of the two implications by the two structural connectives.3 Here the basic axioms
of IL and MILL can be recalled: that if (F ∧ G) ⊃ H for some formulas F,G and H is a
theorem in IL, then so is F ⊃ (G ⊃ H) (which structurally translates into ⊃ R above); and
that if (F ∗G)−∗H is a theorem in MILL, then so is F−∗(G−∗H) (which structurally translates
into −∗R above). On the other hand, there is certain glueing between > and ∗>: in BI, F is
a true expression iff F ∗ ∗> is iff F ∧ > is. This connection is chosen not to be eliminated,
although it could be eliminated if one so desires.

Under the particular combination that forms BI, there is no free distribution of “;” over
“,” or of “,” over “;”. This implies that a BI structure is, as we just stated, a nesting of
structures in the form of Γ1; Γ2, called additive structures, and those in the form of Γ1,Γ2,
called multiplicative structures. There is a proof theoretical asymmetry among them by
the availability of structural inference rules. Consider for example the following familiar
structural rules (in sequent calculi) that come from IL:

Γ(Γ1; Γ1) ` F
ContractionΓ(Γ1) ` F

Γ(Γ1) ` F
Weakening

Γ(Γ1; Γ2) ` F

Here Γ(· · · ) abstracts any other structures surrounding the focused ones in the sequents.
These are available in BI sequent calculus LBI [24]. On the other hand, neither of the
inferences below is - as a rule - permitted.

Γ(Γ1,Γ1) ` F
Γ(Γ1) ` F

Γ(Γ1) ` F
Γ(Γ1,Γ2) ` F

‘As a rule’ because there are some exceptions to the guideline.

Γ(Γ1,
∗>) ` F

Γ(Γ1) ` F
Γ(Γ1) ` F

Γ(Γ1,
∗>) ` F

1.1 Research problems and contributions
In Γ1; Γ1 on the premise of Contraction, or in Γ1; Γ2 on the conclusion of Weakening, neither
Γ1 nor Γ2 must be additive. Consider then the following inferences, each of which is an
instance of Contraction:

Γ((F ;F ), G) ` H
Ctr1Γ(F,G) ` H

Γ(F, (G;G)) ` H
Ctr2Γ(F,G) ` H

Γ((Γa,Γb); (Γa,Γb)) ` H
Ctr3Γ(Γa,Γb) ` H

2 These and other orthodox proof-theoretical terms are assumed to be familiar to the readers. They are
found for example in [25, 16]. The formal definitions that we will need for our technical discussions will
be found in the next section.

3 The need for more than one structural connectives in proof systems was recognised in display calculus
[3] as well as in other studies, e.g. in the multi-modal categorial type logics [20] and in relevant logics
[18, 19], which were developed prior to the appearance of BI.
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Observe it is a formula that duplicates upwards in the first two inferences. These are simply
adaptations of the usual structural contraction available in G1i [25], the standard IL sequent
calculus. It is a well-known fact that, as far as G1i is concerned, elimination of the structural
weakening requires hardly any effort, and that the structural contraction goes admissible once
the left implication rule is modified in the weakening-free IL sequent calculus; Cf. [25, 16] for
the results but also [13] for the idea of eliminating the structural contraction rule. Given that
the same elimination technique has been shown to be applicable to many other extensions
of IL, it is expected on a reasonable ground that handling these formula contractions (and
weakenings) is straightforward also in LBI. As can be seen in Ctr3, however, the scope
of Contraction is not restricted to the formula contractions. The degree of the nesting of
additive/multiplicative structures in Γ1 in Contraction can be arbitrarily large.

One pertinent question to ask is if it is possible at all to eliminate the non-formula
contractions from LBI, eliminating Contraction as the result. Actually, it is not very difficult
to postpone answering this question, if replacement of Contraction with a set of alternative
new structural rules is permitted. The Contraction can be then emulated in the new structural
rules. Such replacement strategies work particularly well if one retains the cut rule in the
sequent system. Knowing, however, that they rather relocate the issue that was expressed
in the original question into the new structural rules, we may just as well strengthen the
question and ask, instead, if a BI sequent calculus without structural rules is derivable at all,
this way precluding any miscommunication.

In setting for the investigation, it seems there are two major sources of difficulty one
must face. The first difficulty comes from the equivalences Γ,∗> = Γ = Γ;>, structural
counterparts of the above-mentioned equivalences, which imply bidirectional inference rules.

Γ(Γ1) ` F
Γ(Γ1;>) ` F

Γ(Γ1;>) ` F
Γ(Γ1) ` F

Γ(Γ1) ` F
Γ(Γ1,

∗>) ` F
Γ(Γ1,

∗>) ` F
Γ(Γ1) ` F

As well as being obvious sources of non-termination, they obscure the core mechanism of
the interactions between additive and multiplicative structures, since they imply a free
transformation of an additive structure into a multiplicative one and vice versa. The second
difficulty is the difficulty of isolating the effect of the structural contraction from that of
the structural weakening. Donnelly et al [7] succeeded in eliminating structural weakening;
however, they had to absorb contraction into the structural weakening as well as into logical
rules. Absorption of one structural rule into another structural rule is a little problematic,
since - as we have already mentioned - the former still occurs indirectly through the latter
which is a structural rule. It is also not so straightforward to know whether either weakening
or contraction is immune to the effect of the structural equivalences.

Despite the technical obstacles, we show the answer to the above-posed question to be
in the affirmative by presenting a structural-rule-free BI sequent calculus. What it is to
LBI is what G3i is to G1i. As far as can be gathered from the literature, the elimination
of contraction from BI sequent calculus has not been previously successful, be the sense of
contraction-freeness according to the sense in G3i or the sense in G4i [8]. The following are
some motivations for presenting such a sequent calculus.
1. The current status of the knowledge of structural interactions within BI proof systems is

not very satisfactory. From the perspective of theorem proving for example, the presence
of the bidirectional rules and contraction as explicit structural rules in LBI means that
it is difficult to actually prove that an invalid BI formula is underivable within the
calculus. This is because LBI by itself does not provide termination conditions save when
a (backward) derivation actually terminates: the only case in which no more backward
derivation on a LBI sequent is possible is when the sequent is empty; the only case in

FSCD 2016



8:4 Structural Interactions and Absorption of Structural Rules in BI Sequent Calculus

which it is empty is when it is the premise of an axiom. The contraction-free BI sequent
calculus is a step forward in this respect.

2. There are other sequent calculi that necessarily require a non-formula structural contrac-
tion rule (or else alternative structural rules that emulate the effect). Sequent systems
of the relevant logics closely related to BI [10] are good examples. Sequent systems of
some constructive modal logics [23] also require non-formula contractions; Cf. [1]. It
tends to be almost always the case that the presence of a structural contraction rule
increases the technical complexity of a cut elimination proof (see the induction measure
in [1]). The techniques to eliminate non-formula structural contraction rules are useful for
simplifying the proof of cut admissibility in the sequent calculi of the existing or emerging
non-classical logics.

This work has only a marginal technical dependency on earlier works: it suffices to have the
knowledge of LBI [24]; and to understand [24], it suffices to have the basic knowledge of the
structural proof theory [16, 25].

1.2 Structure of the remaining sections
In Section 2 we present technical preliminaries of BI proof theory. In Section 3 we introduce
our BI calculus LBIZ with no structural rules. In Section 4 we show its main properties
including admissibility of structural rules and its equivalence to LBI. We also show Cut
admissibility in LBIZ. Section 5 concludes.

2 BI Proof Theory - Preliminaries

We assume availability of the following meta-logical notations. “If and only if” is abbreviated
by “iff”.

I Definition 1 (Meta-connectives). We denote logical conjunction (“and”) by ∧†, logical
disjunction (“or”) by ∨†, material implication (“implies”) by →†, and equivalence by ↔†.
These follow the semantics of standard classical logic’s.

We denote the set of propositional variables by P and refer to an element of P by p or q

with or without a subscript.
A BI formula F (, G,H) with or without a subscript is constructed from the following

grammar: F := p | > | ⊥ | ∗> | F ∧F | F ∨F | F⊃F | F ∗F | F−∗F . The set of BI formulas
is denoted by F.

I Definition 2 (BI structures). BI structure Γ(, Re) with or without a subscript/superscript,
commonly referred to as a bunch [22], is defined by: Γ := F | Γ; Γ | Γ,Γ. We denote by S

the set of BI structures.

We define the binding order to be [∧,∨, ∗] � [⊃,−∗] � [; , ] � [∧†,∨†] � [→†,↔†] in
a strictly decreasing precedence. Connectives in the same group have the same binding
precedence.

Both of the structural connectives “;” and “,” are defined to be associative and com-
mutative. On the other hand, we do not assume distributivity of “;” over ‘,’ or vice versa.
A context “ Γ(−)” (with a hole “ −") takes the form of a tree because of the nesting of
additive/multiplicative structures.

I Definition 3 (Context). A context Γ(−) is finitely constructed from the following grammar:
Γ(−) := − | Γ(−); Γ | Γ; Γ(−) | Γ(−),Γ | Γ,Γ(−).
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id
F ` F

Γ1 ` G Γ(G) ` H
CutΓ(Γ1) ` H

⊥LΓ(⊥) ` H

>RΓ ` >
∗>R∗> ` ∗>

Γ(F ; G) ` H
∧LΓ(F ∧G) ` H

Γ(F ) ` H Γ(G) ` H
∨LΓ(F ∨G) ` H

Γ1 ` F Γ(Γ1; G) ` H
⊃ LΓ(Γ1; F ⊃ G) ` H

Γ(F, G) ` H
∗LΓ(F ∗G) ` H

Γ1 ` F Γ(G) ` H
−∗L

Γ(Γ1, F−∗G) ` H

Γ ` F Γ ` G ∧RΓ ` F ∧G

Γ ` Fi ∨RΓ ` F1 ∨ F2

Γ; F ` G
⊃ RΓ ` F ⊃ G

Γ1 ` F Γ2 ` G
∗RΓ1, Γ2 ` F ∗G

Γ, F ` G
−∗RΓ ` F−∗G

Γ(Γ1) ` H
Wk LΓ(Γ1; Γ2) ` H

Γ(Γ1; Γ1) ` H
Ctr LΓ(Γ1) ` H

Γ(Γ1;>) ` H
. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . EqAnt1

Γ(Γ1) ` H

Γ(Γ1,∗>) ` H
. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . EqAnt2

Γ(Γ1) ` H

Figure 1 LBI: a BI sequent calculus. Inference rules with a double-dotted line are bidirectional.
i ∈ {1, 2}. Structural connectives are fully associative and commutative.

We assume that a BI structure Γ2 replaces − in a context Γ1(−) as Γ1(Γ2) which, we again
assume, is a BI structure.

I Definition 4 (Sequents). The set of BI sequents D is defined by:
D := {Γ ` F | Γ ∈ S ∧† F ∈ F}.

We call the left hand side of ` antecedent, and the right hand side of ` consequent.

A variant of the first BI sequent calculus LBI [24] is found in Figure 1. Notice that we do not
use the nullary structural connectives used in the reference. All the additive inference rules,
by which we mean all the inference rules that originate in IL, share contexts. Consider ∨L
for example. In the inference rule the same context in the conclusion propagates onto both
premises. Multiplicative inference rules, by which we mean the inference rules that originate
in MILL, are context-free [25] or resource sensitive. A good example to illustrate this is ∗R:
both Γ1 and Γ2 in the conclusion sequent are viewed as resources for the inference rule,
and are split into the premises of the rule. Note again our assumption of commutativity of
“,” here. Cut is admissible in [LBI- Cut].

I Lemma 5 (Cut admissibility in LBI - Cut). There is a direct cut elimination procedure which
proves admissibility of Cut in [LBI- Cut] (sketched in [24]; corrected in [2]).

The following derivation highlights a simple additive/multiplicative interaction in BI.

id
F ` F id

F ` F ∧R
F ` F ∧ F −∗L` F−∗F ∧ F

This shows that F−∗F ∧ F is provable in LBI. Further, given that semantics is given to LBI
[24], it is a valid BI formula. Any others that are provable in LBI are valid. We assume that
readers are familiar with provability or derivability (found in standard proof theory texts),
and with validity or satisfiability (found in Wikipedia).

FSCD 2016



8:6 Structural Interactions and Absorption of Structural Rules in BI Sequent Calculus

3 LBIZ: A Structural-Rule-Free BI Sequent Calculus

In this section we present a new BI sequent calculus LBIZ (Figure 2) in which no structural
rules appear. We first introduce notations necessary for reading inference rules in the calculus.
From this point on, whenever we write Γ̃ for any BI structure, it shall be agreed that it
may be empty. The emptiness is in the following sense: Γ̃1; Γ2 = Γ2 if Γ1 is empty; and
Γ̃1,Γ2 = Γ2 if Γ1 is empty. Apart from this, we use two other notations.

3.1 Essence of antecedent structures
Co-existence of IL and MILL in BI calls for new contraction-absorption techniques. We need
to consider possible interferences to one structural rule from the others. To illustrate the
technical difficulty, EqAnt2 LBI for instance interacts directly with WkLLBI. When WkLLBI

is absorbed into the rest, the effect propagates to one direction of EqAnt2 LBI, resulting in;

Γ(Γ1) ` H
EA2

Γ(Γ1, (∗>; Γ̃2)) ` H

Hence absorption of WkLLBI must involve analysis of EqAnt2 LBI as well. To solve this
particular problem we define a new notation: ‘essence’ of BI structures.

I Definition 6 (Essence of BI structures). Let Γ1 be a BI structure. Then we have a set of
its essences as defined in the following inductive rules.

Γ2 is an essence of Γ1 if Γ1 = Γ2.4
Γ(Γ′, (∗>; Γ̃2))5 is an essence of Γ1 if Γ(Γ′) is an essence of Γ1.

By E(Γ1) we denote an essence of Γ1.

The essence takes care of an arbitrary number of EA2 applications, while nicely retaining
a compact representation of a sequent (see the calculus). In each of ⊃ L and −∗L, the
essence in the premise(s) and that in the conclusion are the same and identical BI structure.
Specifically, the use of E(Γ) in multiple sequents in a derivation tree signifies the same BI
structure.

I Example 7. A LBIZ-derivation:
id

F1; ((∗>; Γ1), F1⊃F2) ` F1
id

F2;F1; ((∗>; Γ1), F1⊃F2) ` F2 ⊃ L
F1; ((∗>; Γ1), F1⊃F2) ` F2

can be alternatively written down as:
idE(F1;F1 ⊃ F2) ` F1

id
F2;E(F1;F1 ⊃ F2) ` F2 ⊃ LE(F1;F1 ⊃ F2) ` F2

if E(F1;F1 ⊃ F2) = F1; ((∗>; Γ1), F1 ⊃ F2).

E′(Γ) (or E1(Γ) or any essence that differs from E by the presence of a subscript, a
superscript or both) in the same derivation tree does not have to be coincident with the BI
structure that the E(Γ) denotes. However, we do - for prevention of inundation of many
superscripts and subscripts - make an exception. In the cases where no ambiguity is likely to
arise such as in the following:

4 For some Γ2. The equality is of course up to associativity and commutativity.
5 For some Γ̃2; similarly in the rest.
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id
E(Γ̃; p) ` p

⊥LΓ(⊥) ` F
>RΓ ` >

∗>R
E(Γ̃;∗>) ` ∗>

Γ(F ; G) ` H
∧LΓ(F ∧G) ` H

Γ ` F Γ ` G ∧RΓ ` F ∧G

Γ(F ) ` H Γ(G) ` H
∨LΓ(F ∨G) ` H

Γ ` Fi ∨RΓ ` F1 ∨ F2

E(Γ̃1; F⊃G) ` F Γ(G;E(Γ̃1; F⊃G)) ` H
⊃ L

Γ(E(Γ̃1; F⊃G)) ` H

Γ; F ` G
⊃ RΓ ` F⊃G

Γ(F, G) ` H
∗LΓ(F ∗G) ` H

Rei ` F1 Rej ` F2
∗R

Γ′ ` F1 ∗ F2

Rei ` F Γ((R̃ej , G); (Γ̃′,E(Γ̃1; F−∗G))) ` H
−∗L

Γ(Γ̃′,E(Γ̃1; F−∗G)) ` H

Γ, F ` G
−∗RΓ ` F−∗G

Figure 2 LBIZ: a BI sequent calculus with zero occurrence of explicit structural rules. i, j ∈ {1, 2}.
i 6= j. Structural connectives are fully associative and commutative. In ∗R and −∗L, if Γ′ is
not empty, (Re1, Re2) ∈ Candidate(Γ′); otherwise, Rei = ∗> and Rej is empty. Both E and
Candidate are as defined in the main text.

Γ(E(Γ1;F ;G)) ` H
∧LΓ(E(Γ1;F ∧G)) ` H

we assume that the essence in the conclusion is the same antecedent structure as the essence
in the premise(s) except what the inference rule modifies.

3.2 Correspondence between Rei/Rej and Γ′

I Definition 8 (Relation �). We define a binary relation �: S×S as follows.
Γ1 � Γ2 if Γ1 = Γ2.
Γ(Γ1) � Γ(Γ1; Γ′).
[Γ1 � Γ2] ∧† [Γ2 � Γ3]→† [Γ1 � Γ3].

Intuitively if Γ1 � Γ2, then there exists a LBI-derivation:

Γ(Γ1) ` H
WkL

Γ(Γ2) ` H

for any Γ(Γ1) and any H. Here and elsewhere a double line indicates zero or more derivation
steps.

I Definition 9 (Candidates). Let Γ be a BI structure, then any of the following pairs is a
candidate of Γ.

(Γx,
∗>) if Γx � Γ.

(Γx,Γy) if Γx,Γy � Γ.
We denote the set of candidates of Γ by Candidate(Γ).

Now we see the connection between Rei/Rej and Γ′ in the two rules ∗R/−∗L.

I Definition 10 (Rei/Rej in ∗R/−∗L). In ∗R and −∗L, if Γ′ is empty (this case applies to
−∗L only), Rei = ∗> and Rej is empty. If it is not empty, then (Re1, Re2) ∈ Candidate(Γ′).

FSCD 2016



8:8 Structural Interactions and Absorption of Structural Rules in BI Sequent Calculus

Candidate allows for absorption of an arbitrary number of Wk L applications in the two
inference rules. The sequent: D : p1; ((p2; p3), (p4; p5)) ` p2 ∗ p5, illustrates why it is used. It
is clearly LBI-derivable:

id
p2 ` p2

id
p5 ` p5 ∗R

p2, p5 ` p2 ∗ p5 Wk L
p2, (p4; p5) ` p2 ∗ p5 Wk L(p2; p3), (p4; p5) ` p2 ∗ p5 Wk L

D : p1; ((p2; p3), (p4; p5)) ` p2 ∗ p5

However, ∗R in LBI does not apply immediately to D. Hence ∗R in LBIZ must absorb Wk L.
With the two notations we have introduced, what the inference rules in LBIZ are doing

should be clear. There are no structural rules. Implicit contraction occurs only in ⊃ L and
−∗L.6 In both of the inference rules, a structure rather than a formula duplicates upwards.
This is necessary, for we have the following observation.

I Observation 11 (Non-formula contractions are not admissible). There exist sequents Γ ` F
which are derivable in LBI - Cut but not derivable in LBI - Cut without structural contraction.

Proof. For −∗L use a sequent >−∗p1,>−∗(p1⊃p2) ` p2 and assume that every propositional
variable is distinct. Then without contraction, there are several derivations. Two sensible
ones are shown below (the rest similar). Here and elsewhere we may label a sequent by D

with or without a subscript/superscript just so that we may refer to it by the name.

1.
>R>−∗(p1⊃p2) ` > p1 ` p2 −∗L

D : >−∗p1,>−∗(p1⊃p2) ` p2

2. >R>−∗p1 ` >

> ` p1
id

p2 ` p2 ⊃ L>; p1⊃p2 ` p2
EqAnt1L

p1⊃p2 ` p2 −∗L
D : >−∗p1,>−∗(p1⊃p2) ` p2

In both of the derivation trees above, one branch is open. Moreover, such holds true when
only formula-level contraction is permitted in LBI. The sequent D cannot be derived under
the given restriction. If non-formula contractions are available, there is another construction
leading to a closed derivation tree:

Π(D1) Π(D2)
−∗L(>−∗p1,>−∗(p1 ⊃ p2)); (>−∗p1,>−∗(p1 ⊃ p2)) ` p2
CtrL

D : >−∗p1,>−∗(p1 ⊃ p2) ` p2

where Π(D1) and Π(D2) are:

Π(D1):

>R>−∗(p1 ⊃ p2) ` >

Π(D2):

6 Implicit weakening and others occur also in other inference rules; but they are not very relevant in
backward theorem proving.
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>R>−∗p1 ` >

id
p1 ` p1

id
p2 ` p2

WkL
p1; p2 ` p2 ⊃ L

p1; p1 ⊃ p2 ` p2 −∗L
p1; (>−∗p1,>−∗(p1 ⊃ p2)) ` p2

All the derivation tree branches are closed.
For ⊃ L, use (∗>; p1), (∗>; p1⊃p2) ` p2. Without non-formula contractions we have (only

two sensible ones are shown; the rest similar):
1.

∗> ` p1

id
p2 ` p2

WkL∗>; p2 ` p2
EA2(∗>; p1), (∗>; p2) ` p2 ⊃ L

D : (∗>; p1), (∗>; p1⊃p2) ` p2
2.

p1 ` p2
WkL∗>; p1 ` p2

EA2
D : (∗>; p1), (∗>; p1⊃p2) ` p2

In the presence of structural contraction, there is a closed derivation.
id

p1 ` p1
WkL∗>; p1;∗> ` p1

id
p2 ` p2

WkL∗>; p1;∗>; p2 ` p2 ⊃ L∗>; p1;∗>; p1⊃p2 ` p2
EA2((∗>; p1), (∗>; p1⊃p2)); ((∗>; p1), (∗>; p1⊃p2)) ` p2
CtrL

D : (∗>; p1), (∗>; p1⊃p2) ` p2

J

We list LBIZ derivations of the two examples in the observation for easy comparisons. We
assume that Γ = (>−∗p1,>−∗(p1 ⊃ p2)). Also, by Π(D) we denote a derivation tree of a
sequent D. We assume that Π(D) is always closed: every derivation branch of the tree has
an empty sequent as the leaf node (the premise of an axiom).

>R>−∗p1 ` >

>R>−∗(p1 ⊃ p2) ` > Π((∗>, p1); (∗>, p1 ⊃ p2); Γ ` p2)
−∗L(∗>, p1); Γ ` p2 −∗LΓ ` p2

Π((∗>, p1); (∗>, p1 ⊃ p2); Γ ` p2) is as follows.
id(∗>, p1); (∗>, p1 ⊃ p2); Γ ` p1

id
p2; (∗>, p1); (∗>, p1 ⊃ p2); Γ ` p2 ⊃ L(∗>, p1); (∗>, p1 ⊃ p2); Γ ` p2

For the other sequent, we have:
id(∗>; p1), (∗>; p1 ⊃ p2) ` p1

id
p2; (∗>; p1), (∗>; p1 ⊃ p2) ` p2 ⊃ L(∗>; p1), (∗>; p1 ⊃ p2) ` p2

4 Main Properties of LBIZ

In this section we show the main properties of LBIZ such as admissibility of weakening, that
of EA2, that of both EqAnt1 LBI and EqAnt2 LBI, that of contraction, and its equivalence
to LBI. Cut is also admissible. We will refer to the notion of derivation depth very often.

I Definition 12 (Derivation depth). Let Π(D) be a derivation tree. Then the derivation
depth of D′, a node in Π(D), is:
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1 if D′ is the conclusion node of an axiom inference rule.
1 + (derivation depth of D1) if Π(D′) looks like:

Π(D1)
D′

1 + (the larger of the derivation depths of D1 and D2) if Π(D′) looks like:
Π(D1) Π(D2)

D′

4.1 Admissibility of weakening and EA2

Admissibilities of both weakening and EA2 are proved depth-preserving. This means in
case of weakening that if a sequent Γ(Γ1) ` H is derivable with derivation depth of k, then
Γ(Γ1; Γ2) ` H is derivable with derivation depth of l such that l ≤ k.

I Proposition 13 (LBIZ weakening admissibility). If a sequent D : Γ(Γ1) ` F is LBIZ-
derivable, then so is D′ : Γ(Γ1; Γ2) ` F depth-preserving.

Proof. By induction on derivation depth of D. J

I Proposition 14 (Admissibility of EA2). If a sequent D : Γ(Γ1) ` F is LBIZ-derivable, then
so is D′ : Γ(E(Γ1)) ` F depth-preserving.

Proof. By induction on derivation depth of D. J

4.2 Inversion lemma
The inversion lemma below is important in simplification of the subsequent discussion.

I Lemma 15 (Inversion lemma for LBIZ). For the following sequent pairs, if the sequent
on the left is LBIZ-derivable at most with the derivation depth of k, then so is (are) the
sequent(s) on the right.

Γ(F ∧G) ` H, Γ(F ;G) ` H
Γ(F1 ∨ F2) ` H, both Γ(F1) ` H and Γ(F2) ` H

Γ(F ∗G) ` H, Γ(F,G) ` H
Γ(Γ1;>) ` H, Γ(Γ1) ` H
Γ(Γ1,

∗>) ` H, Γ(Γ1) ` H
Γ ` F ∧G, both Γ ` F and Γ ` G
Γ ` F⊃G, Γ;F ` G
Γ ` F−∗G, Γ, F ` G

Proof. By induction on derivation depth. J

4.3 Admissibility of EqAnt1,2

I Proposition 16 (Admissibility of EqAnt1,2). EqAnt1 LBI and EqAnt2 LBI are depth-preserving
admissible in LBIZ.

Proof. Follows from inversion lemma,7 Proposition 13 and Proposition 14. J

7 Inversion lemma proves one direction.
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4.4 Preparation for contraction admissibility in ∗R/−∗L cases
We dedicate one subsection here to prepare for the main proof of contraction admissibility.
Based on Proposition 13, we make an observation about the set of candidates. The discovery,
which is to be stated in Proposition 18, led to the solution to the problem of the elimination
of LBI structural contraction.

I Definition 17 (Representing candidates). Let �̂ : S×S be a binary relation satisfying:
Γ1�̂Γ2 if Γ1 = Γ2.
Γ1�̂ Γ1; Γ3.
[Γ1�̂Γ2] ∧† [Γ2�̂Γ3]→† [Γ1�̂Γ3].
Γ1,Γ2 �̂ Γ1, (Γ2; Γ3).

Now let Γ be a BI structure. Then any of the following pairs is a representing candidate of
Γ.

(Γx,
∗>) if Γx�̂Γ.

(Γx,Γy) if Γx,Γy�̂Γ.
We denote the set of representing candidates of Γ by RepCandidate(Γ).

We trivially have that RepCandidate(Γ) ⊆ Candidate(Γ) for any Γ. More can be said.

I Proposition 18 (Sufficiency of RepCandidate). LBIZ with RepCandidate instead of
Candidate for (Re1, Re2) is as expressive as LBIZ (with Candidate).

Proof. The only inference rules in LBIZ that use Candidate are ∗R and −∗L. So it suffices
to consider only those.

For ∗R, suppose by way of showing contradiction that LBIZ with RepCandidate is not
as expressive as LBIZ, then there exists some LBIZ derivation tree Π(D):

...
D1 : Rei ` F1

...
D2 : Rej ` F2

∗R
D : Γ′ ` F1 ∗ F2

such that (Re1, Re2) must be in Candidate(Γ′)\RepCandidate(Γ′). Now, without loss
of generality assume (i, j) = (1, 2). Then D′1 : Re′i ` F1 and D′2 : Re′j ` F2 for
(Re′i, Re′j) ∈ RepCandidate(Γ′) are also LBIZ derivable (by Proposition 13). But this means
that we can choose the (Re′i, Re′j) for (Re1, Re2), a direct contradiction to the supposition.
Similarly for −∗L. J

I Theorem 19 (Contraction admissibility in LBIZ). If D : Γ(Γa; Γa) ` F is LBIZ-derivable,
then so is D′ : Γ(Γa) ` F . The derivation depth is preserved.

Proof. By induction on derivation depth. The base cases are when it is 1, i.e. when D is
the conclusion sequent of an axiom. Consider which axiom has applied. If it is >R, then
it is trivial to show that if Γ(Γa; Γa) ` >, then so is Γ(Γa) ` >. Also for ⊥L, a single
occurrence of ⊥ on the antecedent part of D suffices for the ⊥L application, and the
current theorem is trivially provable in this case, too. For both id and ∗>R, Π(D) looks
like:

E(Γ̃1;α) ` α

where α is p ∈ P for id, ∗> for ∗>R and Γ(Γa; Γa) = E(Γ̃1;α). If α is not a sub-structure
of either of the occurrences of Γa, then D′ is trivially derivable. Otherwise, assume that
the focused α in E(Γ̃1;α) is a sub-structure of one of the occurrences of Γa in Γ(Γa; Γa).
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Then there exists some Γ2 and Γ̃3 such that E(Γ̃1;α) = E(Γ2; Γ̃3;α) = E1(Γ2);E2(Γ̃3;α)
and that Γa is an essence of Γ̃3;α. But then D′ : Γ(Γa) is still an axiom.

For inductive cases, suppose that the current theorem holds true for any derivation depth
of up to k. We must demonstrate that it still holds for the derivation depth of k+1. Consider
what the LBIZ inference rule applied last is, and, in case of a left inference rule, consider
where the active structure Γb of the inference rule is in Γ(Γa; Γa).
1. ∧L, and Γb is F1∧F2: if Γb does not appear in Γa, induction hypothesis on the premise

sequent concludes. Otherwise, Π(D) looks like:
...

D1 : Γ(Γ′a(F1;F2); Γ′a(F1 ∧ F2)) ` H
∧L

D : Γ(Γ′a(F1 ∧ F2); Γ′a(F1 ∧ F2)) ` H
D′1 : Γ(Γ′a(F1;F2); Γ′a(F1;F2)) ` H is LBIZ-derivable (inversion lemma);
D′′1 : Γ(Γ′a(F1;F2)) ` H is also LBIZ-derivable (induction hypothesis); then ∧L on D′′1
concludes.

2. ⊃ L, and Γb is E(Γ̃′;F ⊃ G): if Γb does not appear in Γa, then the induction hypothesis
on both of the premises concludes. If it is entirely in Γa, then Π(D) looks either like:

...
D1 : E(Γ̃′;F ⊃ G) ` F

...
D2 ⊃ L

D : Γ(Γ′a(E(Γ̃′;F ⊃ G)); Γ̃′a(E(Γ̃′;F ⊃ G))) ` H
where D2 : Γ(Γ′a(G;E(Γ̃′;F⊃G)); Γ′a(E(Γ̃′;F⊃G))) ` H, or, in case Γa is Γ′a;F⊃G,
like:

...
D1 : Γ′a;F⊃G; Γ′a;F⊃G ` F

...
D2 ⊃ L

D : Γ(Γ′a;F⊃G; Γ′a;F⊃G) ` H
where D2 : Γ(G; Γ′a;F⊃G; Γ′a;F⊃G) ` H.
In the former case,
D′2 : Γ(Γ′a(G;E(Γ̃′;F⊃G)); Γ′a(G;E(Γ̃′;F⊃G))) ` H (weakening admissibility);
D′′2 : Γ(Γ′a(G;E(Γ̃′;F⊃G))) ` H (induction hypothesis);
then ⊃ L on D1 and D′′2 concludes. In the latter, induction hypothesis on D1 and on
D2; then via ⊃ L for a conclusion. Finally, if only a substructure of Γb is in Γa with
the rest spilling out of Γa, then if the principal formula F ⊃ G does not occur in Γa,
then straightforward; otherwise similar to the latter case.

3. ∗R: Π(D) looks like:
...

D1 : Rei ` F1

...
D2 : Rej ` F2

∗R
D : Γ(Γa; Γa) ` F1 ∗ F2

By Proposition 18, assume that (Re1, Re2) ∈ RepCandidate(Γ(Γa; Γa)) without loss
of generality. Then by the definition of �̂ it must be that either (1) Γa; Γa preserves
completely in Re1 or Re2, or (2) it remains neither in Re1 nor in Re2. If Γa; Γa is
preserved in Re1 (or Re2), then induction hypothesis on the premise that has Re1 (or
Re2) and then ∗R conclude; otherwise, it is trivial to see that only a single Γa needs to
be present in D.

4. −∗L, and Γb is Γ̃′,E(Γ̃1;F−∗G): if Γb is not in Γa, then induction hypothesis on the
right premise sequent concludes. If it is in Γa, Π(D) looks like:

...
D1 : Rei ` F

...
D2 −∗L1

D : Γ(Γ′a(Γ̃′,E(Γ̃1;F−∗G)); Γ′a(Γ̃′,E(Γ̃1;F−∗G))) ` H
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where D2 is:
Γ(Γ′a((R̃ej , G); (Γ̃′,E(Γ̃1;F−∗G))); Γ′a(Γ̃′,E(Γ̃1;F−∗G))) ` H

D′2 : Γ(Γ′a((R̃ej , G); (Γ̃′,E(Γ̃1;F−∗G))); Γ′a((R̃ej , G); (Γ̃′,E(Γ̃1;F−∗G)))) ` H via Proposi-
tion 13 is also LBIZ-derivable. D′′2 : Γ(Γ′a((R̃ej , G); (Γ̃′,E(Γ̃1;F−∗G)))) ` H via induction
hypothesis. Then −∗L on D1 and D′′2 concludes. If, on the other hand, Γa is in Γb,
then it is either in Γ1 or in Γ′. But if it is in Γ1, then it must be weakened away, and if
it is in Γ′, similar to the ∗R case.

5. Other cases are similar to one of the cases already examined. J

4.5 Equivalence of LBIZ to LBI

I Theorem 20 (Equivalence between LBIZ and LBI). D : Γ ` F is LBIZ-derivable if and only
if it is LBI-derivable.

Proof. Into the only if direction, assume that D is LBIZ-derivable, and then show that
there is a LBI-derivation for each LBIZ derivation. But this is obvious because each LBIZ
inference rule is derivable in LBI.8

Into the if direction, assume that D is LBI-derivable, and then show that there is a
corresponding LBIZ-derivation to each LBI derivation by induction on the derivation depth
of D.

If it is 1, i.e. if D is the conclusion sequent of an axiom, we note that ⊥LLBI is identical
to ⊥LLBIZ; idLBI and ∗>RLBI via idLBIZ and resp. ∗>RLBIZ with Proposition 13 and
Proposition 14; and >RLBI is identical to >RLBIZ. For inductive cases, assume that the if
direction holds true up to the LBI-derivation depth of k, then it must be demonstrated that
it still holds true for the LBI-derivation depth of k + 1. Consider what the LBI rule applied
last is:
1. ⊃ LLBI: ΠLBI(D) looks like:

...
D1 : Γ1 ` F

...
D2 : Γ(Γ1;G) ` H

⊃ LLBI
D : Γ(Γ1;F⊃G) ` H

By induction hypothesis, both D1 and D2 are also LBIZ-derivable. Proposition 13 on D1
in LBIZ-space results in D′1 : Γ1;F⊃G ` F , and on D2 results in D′2 : Γ(Γ1;G;F⊃G) `
H. Then an application of ⊃ LLBIZ on D′1 and D2 concludes in LBIZ-space.

2. −∗LLBI: ΠLBI(D) looks like:
...

D1 : Γ1 ` F

...
D2 : Γ(G) ` H

−∗LLBI
D : Γ(Γ1, F−∗G) ` H

By induction hypothesis, D1 and D2 are also LBIZ-derivable.
a. If Γ(G) is G, i.e. if the antecedent part of D2 is a formula ( G), then Proposition 13

on D2 results in D′2 : G; (Γ1, F−∗G) ` H in LBIZ-space. Then −∗LLBIZ on D1 and
D′2 leads to D′ : Γ1, F−∗G ` H as required.

b. If Γ(G) is Γ′(Γ′′, G), then Proposition 13 on D2 leads to D′2 : Γ′((Γ′′, G);
(Γ′′,Γ1, F−∗G)) ` H. Then −∗LLBIZ on D1 and D′2 leads to D′ : Γ′(Γ′′,Γ1, F−∗G) ` H
as required.

8 Note that EA2 is LBI-derivable with W kLLBI and EqAnt2 LBI.
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c. Finally, if Γ(G) is Γ′(Γ′′;G) ` H, then Proposition 13 on D2 gives D′2 : Γ′(Γ′′;
G; (Γ1, F−∗G)) ` H. Then −∗LLBIZ on D1 and D′2 leads to D′ : Γ′(Γ′′; (Γ1, F−∗G)) `
H as required.

3. WkLLBI: Proposition 13.
4. CtrLLBI: Theorem 19.
5. EqAnt1 LBI: Proposition 16.
6. EqAnt2 LBI: Proposition 16.
7. The rest: straightforward. J

4.6 LBIZ Cut Elimination
Cut is admissible in LBIZ. As a reminder (although already stated under Figure 1) Cut is
the following rule:

Γ1 ` F Γ2(F ) ` G
CutΓ2(Γ1) ` G

Just as in the case of intuitionistic logic, cut admissibility proof for a contraction-free BI
sequent calculus is simpler than that for LBI [2]. Since we have already proved depth-
preserving weakening admissibility, the following context sharing cut, CutCS , is easily verified
derivable in LBIZ + Cut:

Γ̃3; Γ1 ` F Γ2(F ; Γ1) ` H
CutCS

Γ2(Γ̃3; Γ1) ` H

where Γ1 appears on both of the premises. F in the above cut rule appearing on both
premises is called the cut formula. The use of CutCS simplifies the cut elimination proof a
little.

We recall the standard notations of the cut rank and the cut level.

I Definition 21 (Cut level/rank). Given a cut instance in a closed derivation:

D1 : Γ1 ` F D2 : Γ2(F ) ` H
Cut

D3 : Γ2(Γ1) ` H

The level of the cut instance is: der_depth(D1) + der_depth(D2), where der_depth(D)
denotes derivation depth of D. The rank of the cut instance is the size of the cut formula
F , f_size(F ), which is defined as follows:

it is 1 if F is a nullary logical connective or a propositional variable.
it is f_size(F1) + f_size(F2) + 1 if F is in the form: F1 •F2 for • ∈ {∧,∨,⊃, ∗,−∗}.

I Theorem 22 (Cut admissibility in LBIZ). Cut is admissible in LBIZ.

Proof. By induction on the cut rank and a sub-induction on the cut level. We make use
of CutCS . In this proof (X,Y ) for some LBIZ inference rules X and Y means that one of
the premises has been just derived with X and the other with Y . Γ(Γ1)(Γ2) abbreviates
(Γ(Γ1))(Γ2). In pairs of derivations below, the first is the derivation tree to be permuted and
the second is the permuted derivation tree.
(id, id):

1.
id

E(Γ̃1; p) ` p
id

E′(Γ̃2; p) ` p
Cut

E′(Γ̃2;E(Γ̃1; p)) ` p
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⇒

id
E′(Γ̃2;E(Γ̃1; p)) ` p

Of course, for the above permutation to be correct, we must be able to demonstrate
the fact that the antecedent structure E′′(Γ̃2; Γ̃1; p) is such that [E′′(Γ̃2; Γ̃1; p)] =
[E′(Γ̃2;E(Γ̃1; p))]. But note that it only takes a finite number of (backward) EA2
applications (Cf. Proposition 14) on Γ̃2;E(Γ̃1; p) ` p to upward derive Γ̃2; Γ̃1; p ` p.
The implication is that, since Γ̃2;E(Γ̃1; p) ` p results upward from E′(Γ̃2;E(Γ̃1; p)) ` p
also in a finite number of backward EA2 applications, the antecedent structure must
be in the form: E′′(Γ̃2; Γ̃1; p).

2.

id
E(Γ̃1; p) ` p idE′(Γ2(p); q) ` q

Cut
E′(Γ2(E(Γ̃1; p)); q) ` q

This and the other patterns for which one of the premises is an axiom sequent are straight-
forward.

For the remaining cases, if the cut formula is principal only for one of the premise sequents,
then we follow the routine [25] to permute up the other premise sequent for which it is the
principal. For example, in case we have the derivation pattern below:

D1 D2 ∨L
D5 : Γ1(H1 ∨H2) ` F1⊃F2

D3 : E(Γ̃3;F1⊃F2) ` F1 D4 : Γ2(F2;E(Γ̃3;F1⊃F2)) ` H
⊃ L

D6 : Γ2(E(Γ̃3;F1⊃F2)) ` H
Cut

Γ2(E(Γ̃3; Γ1(H1 ∨H2))) ` H

for D1 : Γ1(H1) ` F1⊃F2 and D2 : Γ1(H2) ` F1⊃F2, the cut formula F1⊃F2 is not the
principal on the left premise. In this case, we simply apply Cut on the pairs: (D1, D6) and
(D2, D6), to conclude:

D1 D6 Cut
Γ2(E(Γ̃3; Γ1(H1))) ` H

D2 D6 Cut
Γ2(E(Γ̃3; Γ1(H2))) ` H

∨L
Γ2(E(Γ̃3; Γ1(H1 ∨H2))) ` H

Of course, for this particular permutation to be correct, we must be able to demonstrate, in
the permuted derivation tree, that E(Γ̃3; Γ1(H1 ∨H2)) = E′(Γ̃3) ?Γ1(H1 ∨H2) with ? either
a semi-colon or a comma, that E(Γ̃3; Γ1(H1)) = E′(Γ̃3) ? Γ1(H1), and that E(Γ̃3; Γ1(H2)) =
E′(Γ̃3) ? Γ1(H2). But this is vacuous since the cut formula which is replaced by the structure
Γ1(H1) or Γ1(H2) is a formula.

The cases that remain are those for which both premises of the cut instance have the cut
formula as the principal. We go through each of them to conclude the proof.
(∧L,∧R):

D1 : Γ1 ` F1 D2 : Γ1 ` F2 ∧RΓ1 ` F1 ∧ F2

D3 : Γ2(F1;F2) ` H
∧LΓ2(F1 ∧ F2) ` H

CutΓ2(Γ1) ` H
⇒
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D2

D1 D3 CutΓ2(Γ1;F2) ` H
CutCSΓ2(Γ1) ` H

(∨L,∨R):

D1 : Γ1 ` Fi (i ∈ {1, 2})
∨RΓ1 ` F1 ∨ F2

D2 : Γ2(F1) ` H D3 : Γ2(F2) ` H
∨LΓ2(F1 ∨ F2) ` H

CutΓ2(Γ1) ` H
⇒

D1 D(2 or 3)
CutΓ2(Γ1) ` H

The value of i decides which of D2 or D3 is the right premise sequent.
(⊃ L,⊃ R):

D1 : Γ3;F1 ` F2 ⊃ R
D4 : Γ3 ` F1⊃F2

D2 : E(Γ̃1;F1⊃F2) ` F1 D3 : Γ2(F2;E(Γ̃1;F1⊃F2)) ` H
⊃ L

Γ2(E(Γ̃1;F1⊃F2)) ` H
Cut

Γ2(E(Γ̃1; Γ3)) ` H
⇒

D4 D2 Cut
E(Γ̃1; Γ3) ` F1 D1

Cut
Γ3;E(Γ̃1; Γ3) ` F2

D4 D3 Cut
Γ2(F2;E(Γ̃1; Γ3)) ` H

CutCS
Γ2(Γ3;E(Γ̃1; Γ3)) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition 13

Γ2(Γ̃1; Γ3;E(Γ̃1; Γ3)) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition 14
Γ2(E(Γ̃1; Γ3);E(Γ̃1; Γ3)) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Theorem 19

Γ2(E(Γ̃1; Γ3)) ` H

The derivation steps with a dotted line are depth-preserving.
(∗L, ∗R):

D1 : Rei ` F1 D2 : Rej ` F2
∗RΓ1 ` F1 ∗ F2

D3 : Γ2(F1, F2) ` H
∗LΓ2(F1 ∗ F2) ` H

CutΓ2(Γ1) ` H
⇒

D2

D1 D3 CutΓ2(Rei, F2) ` H
CutΓ2(Rei, Rej) ` H. . . . . . . . . . . . . . . . . . . . Proposition 13

Γ2(Γ1) ` H
(−∗L,−∗R):

D1 : Γ1, F1 ` F2 −∗R
D4 : Γ1 ` F1−∗F2

D2 : Rei ` F1 D3 : Γ2((R̃ej , F2); (Γ̃′,E(Γ̃3;F1−∗F2))) ` H
−∗L1

Γ2(Γ̃′,E(Γ̃3;F1−∗F2)) ` H
Cut

Γ2(Γ̃′,E(Γ̃3; Γ1)) ` H
⇒
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D2

D1

D4 D3 Cut
Γ2((R̃ej , F2); (Γ̃′,E(Γ̃3; Γ1))) ` H

Cut
Γ2((R̃ej ,Γ1, F1); (Γ′,E(Γ̃3; Γ1))) ` H

Cut
Γ2((R̃ej ,Γ1, Rei); (Γ̃′,E(Γ̃3; Γ1))) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition 13
Γ2((Γ̃′, (Γ̃3; Γ1)); (Γ̃′,E(Γ̃3; Γ1))) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition 14

Γ2((Γ̃′,E(Γ̃3; Γ1)); (Γ̃′,E(Γ̃3; Γ1))) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Theorem 19
Γ2(Γ̃′,E(Γ̃3; Γ1)) ` H

J

5 Conclusion

We addressed the problem of structural rule absorption in BI sequent calculus. This problem
was around for a while. As far back as we can see, the first proximate attempt was made in
[21]. References to the problem were subsequently made [9, 21, 4] in a discussion. The work
that came closest to ours is one by Donnelly et al. [7]. They consider weakening absorption
in the context of forward theorem proving (where weakening rather than contraction is a
source of non-termination). One inconvenience in their approach, however, is that the effect
of weakening is not totally isolated from that of contraction: it is absorbed into contraction
as well as into logical rules. But then structural weakening is still possible through the new
structural contraction. Also, the coupling of the two structural rules amplifies the difficulty
of analysis on the behaviour of contraction. Further, their work is on a subset of BI without
units. In comparison, our solution covers the whole BI. Techniques we used in this work
should be useful in the derivation of contraction-free sequent calculi of other non-classical
logics that come with a non-formula structural contraction rule. For instance, nested sequent
calculi [15, 12, 17] of some constructive modal logics (those only with k1 and k2 axioms)
[23], when they are extended with additional modal axioms including 5 axiom, are known
to truly require non-formula contractions, in the presence of which cut-elimination proof
becomes demanding. As is always the case, there are fewer cases to cover in cut-elimination
proof when there are no structural contraction. There are also more recent BI extensions in
sequent calculus such as [14], to which this work has relevance. Seeing the complexity of
LBIZ, one may also consider development of another formalism that may represent BI and
other similar non-classical logics more informatively.
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