Bounded Depth Circuits with Weighted
Symmetric Gates: Satisfiability, Lower Bounds
and Compression*/

Takayuki Sakai!, Kazuhisa Seto?, Suguru Tamaki3, and Junichi
Teruyama?

1  Oki Electric Industry Co., Ltd.

2  Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino-shi, Tokyo 180-8633,
Japan
seto@st.seikei.ac. jp

3 Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
tamak@kuis.kyoto-u.ac. jp

4  National Institute of Informatics, and JST, ERATO, Kawarabayashi Large
Graph Project, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
teruyama@nii.ac. jp

—— Abstract

A Boolean function f : {0,1}" — {0, 1} is weighted symmetric if there exist a function g : Z —
{0,1} and integers wo, w1, ..., w, such that f(xy,...,2,) = g(wo + ZZL:I wjx;) holds.

In this paper, we present algorithms for the circuit satisfiability problem of bounded depth
circuits with AND, OR, NOT gates and a limited number of weighted symmetric gates. Our
algorithms run in time super-polynomially faster than 2™ even when the number of gates is
super-polynomial and the maximum weight of symmetric gates is nearly exponential. With an
additional trick, we give an algorithm for the maximum satisfiability problem that runs in time
poly(n') Y9 for instances with n variables, O(nt) clauses and arbitrary weights. To the
best of our knowledge, this is the first moderately exponential time algorithm even for Max 2SAT
instances with arbitrary weights.

Through the analysis of our algorithms, we obtain average-case lower bounds and compression
algorithms for such circuits and worst-case lower bounds for majority votes of such circuits, where
all the lower bounds are against the generalized Andreev function. Our average-case lower bounds
might be of independent interest in the sense that previous ones for similar circuits with arbitrary
symmetric gates rely on communication complexity lower bounds while ours are based on the

. gn—n

restriction method.
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Bounded Depth Circuits with Weighted Symmetric Gates

1 Introduction

We are concerned with bounded depth circuits with AND, OR, NOT and (weighted) symmetric
gates. Let Z be the set of integers and x1, 5. . . ., x,, be Boolean variables. A Boolean function
f 40,1} — {0,1} is weighted symmetric if there exist a function g : Z — {0, 1} and integers
Wo, W1, - . ., Wy such that f(z1,...,2,) = glwo+ iy wix;) holds. fwy =wy =+ =w, =1
holds, then f is symmetric.

For example, if we set g(z) = sgn(z), where sgn(z) = 1 if and only if z > 0, we
obtain majority functions as symmetric functions and linear threshold functions as weighted
symmetric functions. If we define g(z) = 1 if and only if 2 = 0 mod m for an integer m > 2,
then we obtain modulo m functions as symmetric functions.

A (weighted) symmetric gate is a logic gate that computes a (weighted) symmetric
function. We denote by SYM,, the set of weighted symmetric gates such that max; |w;| < w
holds. When we consider satisfiability and compression algorithms, we assume that g(z) can
be evaluated in time polynomial in log, |z|, where |z| denotes the absolute value of z. When
we consider circuit lower bounds, we assume that g is computable, i.e., there exists a Turing
machine that computes g.

1.1 OQur contribution

Satisfiability Algorithms: In the circuit satisfiability problem (Circuit SAT), our task is,
given a Boolean circuit C, to decide whether there exists a 0/1 assignment to the input
variables such that C' evaluates 1. If input instances are restricted to a class of Boolean
circuits C, the problem is called C-SAT. A naive algorithm can solve Circuit SAT in time
O(poly(|C])-2™), where we denote by |C| the size of C' and by n the number of input variables
of C' respectively. We say an algorithm for C-SAT is moderately exponential time if it checks
the satisfiability of every C' € C in time poly(|C|) - 27~«(°8™) ‘i e.. super-polynomially faster
than 2". We are interested in for which class C moderately exponential time satisfiability
algorithms exist.

Let SYM,,0cAND(n,m) be the set of n-variate depth 2 circuits with a weighted symmetric
gate in SYM,, at the top and at most m AND gates at the bottom. Let SYM,, 0 ACY(n, m)
be the set of n-variate unbounded fan-in depth d 4 1 layered circuits with AND, OR, NOT
gates and a weighted symmetric gate in SYM,, such that the top gate is the weighted
symmetric gate and each layer contains at most m gates. Let ACY[SYM,](n,m,t) be the
set of n-variate unbounded fan-in depth d layered circuits with AND, OR, NOT gates and at
most ¢t weighted symmetric gates in SYM,, such that each layer contains at most m gates.

In this paper, we show moderately exponential time algorithms for the counting version
of C-SAT, where C € {SYM,, o AND(n,m), SYM,, o ACY(n,m), ACY[SYM,](n,m,t)},
as follows.

» Theorem 1 (depth 2, weighted symmetric gate at the top, AND gates at the bottom). We can
count the number of satisfying assignments for C € SYM,, o AND(n,m) deterministically
in time

ol (. m, Tog ) - 2720 ogtmu) /450
and exponential space.

The running time is super-polynomially faster than 2" when, e.g., m = nelogn/loglogn) 4y q
w = 2"""". Note that SYM,. contains all Boolean functions (if we ignore the assumption
that g(z) can be evaluated in time polynomial in log, |z|). The heart of our algorithms is



T. Sakai, K. Seto, S. Tamaki, and J. Teruyama 82:3

a (seemingly new) bottom fan-in reduction technique inspired by recent developments on
the analysis of “greedy restriction” by “concentrated shrinkage” [51, 54, 17, 49]. With an
additional trick, we give an algorithm for the maximum satisfiability problem that runs in
time poly(n') - =" for instances with n variables, O(n?) clauses and arbitrary weights.
To the best of our knowledge, this is the first moderately exponential time algorithm even
for Max 2SAT instances with arbitrary weights.

We extend the above algorithm with the help of the depth reduction algorithm due to
Beame, Impagliazzo and Srinivasan [7].

» Theorem 2 (depth d, weighted symmetric gate only at the top). We can count the number
of satisfying assignments for C € SYM,, o ACg(n, m) deterministically in time

n—0Q (n/22d(logm)4/5 lo (mw))log n/Q]ogm>
poly(n, m,logw) - 2 ( &

and exponential space.

The running time is super-polynomially faster than 2" when, e.g., m = 208 n/ad)®’* 14
w = 27L0.49.
We further extend the above algorithm relying on the circuit transformation techniques

due to Beigel, Reingold and Spielman [9] and Beigel [8].

» Theorem 3 (depth d, t(n) weighted symmetric gates). We can count the number of satisfying
assignments for C € ACY[SYM,,](n,m,t) deterministically in time

log n
n+0(tlog mw)—Q ((n/z‘*d“og ™Y ¢ log(mw)) TSTog m )
poly(n,m,d, t,logw) - 2

and exponential space.

1
The running time is super-polynomially faster than 2" when, e.g., m = n¢, w = 2"**° and
logl/4 n
2(4d)5/4°
Although our algorithms run in time super-polynomially faster than 2" instead of expo-

nentially faster than 2" (21=)" for a universal constant £ > 0), this seems unavoidable due
to the Strong Exponential Time Hypothesis (SETH) [12, 32, 34]: The hypothesis states that

for all k, there exists €; > 0 such that the satisfiability problem of k-CNF formulas cannot
(1—sk)n.

1
t = noc, where ¢ <

be solved in time 2 SETH has been used in proving conditional time lower bounds

for several exponential time and polynomial time algorithms, see, e.g., [21, 37, 40].

Circuit Lower Bounds: Through the analysis of our satisfiability algorithms, we obtain the
following average-case lower bounds.

» Theorem 4 (depth 2, weighted symmetric gate at the top, AND gates at the bottom). There
exists a constant a > 0 such that for every m,w and sufficiently large n, there exists a
polynomial time computable function fy, m . such that for every C € SYM,, o AND(n,m),
it holds that

Pr [f(2) = C(a)] < & + 2~/ togtmwy1osn/ s
z€{0,1}n 2
We also obtain similar average-case lower bounds for SYM,, o ACY(n,m) and
ACY[SYM,,|(n,m,t), see Theorems 12 and 13 in Section 5.
Our average-case lower bounds might be interesting in the sense that (1) previous ones
for similar circuits with arbitrary symmetric gates rely on communication complexity lower
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bounds while ours are based on the restriction method and (2) we are not aware of (even
worst-case) lower bounds for SYM,, o AND with w = n*(°gn),

Let C be a set of Boolean circuits and MAJ o C be the set of Boolean circuits, where
C € MAJ o C is a majority vote of C circuits, i.e., C(z) = sgn(Cy(z) + -+ + Cs(x) + wp)
holds for some C,...,Cs € C and an integer wy.

Combining the above average-case lower bounds and the discriminator lemma due to
Hajnal, Maass, Pudlak, Szegedy and Turdn [27], we obtain the following worst-case lower
bounds.

» Theorem 5 (majority vote of depth 2, weighted symmetric gate at the top, AND gates
at the bottom). There exists a constant o > 0 such that for every m,w and sufficiently
large m, there exists a polynomial time computable function fn m. such that any C €
MAJ o SYM,, o AND(n,m) cannot compute fn m . if the majority gate at the top of C
has fan-in at most 90o((n/ log(mw))*1oen/1ostmm))

We also obtain similar worst-case lower bounds for MAJ o SYM,, o ACY(n, m), MAJ o
ACY[SYM,|(n,m,t) (and ACYSYM,](n,m,t) with different parameters), see Theor-
ems 24, 25 and 26 in Section 6.

Compression Algorithms: In the circuit compression problem (Circuit CMP), our task is,
given the truth table of an s-sized Boolean circuit C and an integer s’ > s, to construct a
Boolean circuit C’ that is at most s’-sized and computes the same function as C. If input
instances are restricted to a class of Boolean circuits C, the problem is called C-CMP. In
C-CMP, we do not have to construct C’ as a circuit in C. Since every n-variate Boolean
(H'Oglil))ﬂﬂized circuit [39]!, the problem is interesting if
s’ <« 2" /n and in particular we consider the case s’ = 27—« (logn),

function can be represented as a

A compression algorithm is efficient if it runs in time 2°(") given the truth table of an
n-variate Boolean function. Note that input length is 2" and an efficient algorithm runs in poly-
nomial time. The running time analyses of our satisfiability algorithms imply efficient compres-
sion algorithms. Let C € {SYM,,0AND(n,m), SYM,,0ACY(n,m), ACY[SYM,,](n,m,t)}.
We obtain deterministic efficient algorithms for C-CMP if parameters n, m,w, d,t are such
that the corresponding algorithms for C-SAT run in time 2"~«(ogn),

1.2 Background

Bounded Depth Circuits with (Weighted) Symmetric Gates: Let AC° be the set of
bounded depth circuits with AND, OR and NOT gates, ACO[m] be the set of ACY circuits
with modulo m gates, AC°[MAJ] be the set of AC" circuits with majority gates (also
known as TC"), AC°[THR] be the set of AC” circuits with linear threshold gates and
AC°[SYM,] be the set of AC" circuits with gates in SYM,,. Note that for every linear
threshold gate, there exists a polynomial size depth 2 majority circuit that computes it [24].

In their seminal work, Razborov [46] and Smolensky [55] showed exponential lower
bounds on the size of ACO[m] circuits computing majority or mod ¢ functions when m, ¢
are prime powers and relatively prime. Since then, people have been trying to obtain
super-polynomial size lower bounds against stronger circuit classes such as ACO[m] with
arbitrary m or ACO[MAJ]. Despite much effort of researchers, super-polynomial size
lower bounds have been only shown for such circuit classes with some restriction, see,

1 Such a representation can be obtained in time 20(n)
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e.g., [4, 9, 14, 22, 23, 26, 27, 28] (here we consider circuits computing “explicit” Boolean
functions, i.e., functions in NP).
One of the best studied restriction is limiting the number of (weighted) symmetric gates.
The following lower bounds are known:
(Worst-case lower bounds) Exponential lower bounds for AC*[MAJ] circuits with n°()
majority gates [6, 8] and AC°[THR] circuits with o(logn) linear threshold gates [44].
(Average-case lower bounds) super-polynomial lower bounds for AC°[SYM,] circuits with
o(log? n) symmetric gates [58]; arbitrary large polynomial lower bounds for AC°[SYM, |
circuits with n'=°(1) symmetric gates and AC°[THR] circuits with n'/2=°(1) linear
threshold gates [38].
The above average-case lower bounds are based on the results of Hastad and Goldmann [29]
and Razborov and Wigderson [48] that show average-case lower bounds for SYM; o AND
circuits from the communication complexity lower bounds due to Babai, Nisan and Szegedy [5]
and also show worst-case lower bounds for MAJ o SYM; o AND circuits using the discrim-
inator lemma.

Circuit Satisfiability: Studying moderately exponential time algorithms for Circuit SAT is
motivated by not only the importance in practice, e.g., logic circuit design and constraint
satisfaction but also the viewpoint of Boolean circuit complexity. As pointed out by several
papers such as [60, 65], there are strong connections between proving circuit lower bounds
for C and designing moderately exponential time algorithms for C-SAT; see also excellent
surveys [52, 43, 62]. Typical such connections are:

(1) Some proof techniques such as deterministic/random restriction (shrinkage analys-
is/switching lemma) simultaneously prove circuit lower bounds for C and provides C-SAT
algorithms [51, 31, 7, 54, 17, 16, 15, 20, 25].

(2) Williams [60, 64] showed that if we obtain a moderately exponential time algorithm
for C-SAT and C satisfies some closure property, then we also have a separation of complexity
classes such as ENP ¢ C or NE ¢ C, where ENP is the set of languages decidable by
exponential time Turing machines with NP oracles and NE is the set of languages decidable
by non-deterministic exponential time Turing machines; see also [59, 61, 63, 10, 35] for the
improvement of such connections. Since then, people have developed moderately exponential
time satisfiability algorithms for various circuit classes [33, 18, 30, 1, 3, 2, 42, 19, 57]. In
particular, one of the current best lower bounds, NE ¢ ACC’ o THR (also NE ¢ AcCC’o
SYM, ), was obtained through satisfiability algorithms [63], where ACC" := |J, AC°[m)].

Circuit Compression: Circuit CMP is a relaxed version of the circuit minimization problem.
Chen, Kabanets, Kolokolova, Shaltiel and Zuckerman [17] established a connection between
compression algorithms and circuit lower bounds as follows: If there exists a deterministic
efficient algorithm for C-CMP, then NEXP ¢ C. They also gave efficient compression
algorithms for ACP circuits, Boolean formulas and branching programs of certain size range.
Srinivasan [56] showed an efficient compression algorithm for AC°[m] with a prime power m.
Carmosino, Impagliazzo, Kabanets and Kolokolova [13] established interesting connections
between the tasks of compression/learning and “natural properties” in the sense of Razborov
and Rudich [47].

2 Preliminaries

We use random access machines as our computation model. For a set S, we denote by |S]|
the cardinality of S.

82:5
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A literal is either a Boolean variable or its negation. A term is a conjunction of literals.
A Boolean circuit is a directed acyclic graph whose source nodes are labeled by literals or
constants and internal and sink nodes are labeled by logic gates such as AND, OR, NOT, or
weighted symmetric gates. A Boolean circuit with a single sink node computes a Boolean
function in a natural way. We call source nodes and a sink node input nodes and output
node respectively. The depth of a node is defined as the length of the longest path from it to
the output node. The depth of a Boolean circuit is the maximum value of the depth over all
nodes. A Boolean circuit is layered if for every edge (u,v), u and v have depth d and d + 1
for some d.

A Boolean circuit C': {0,1}™ — {0,1} is satisfiable if there exists a satisfying assignment
for C, i.e., an assignment a € {0, 1}"™ such that C(a) = 1 holds. For two Boolean functions (or
circuits) f, g in the same variables, we write f = g if f(a) = g(a) holds for all @ € {0,1}". A
Boolean function f : {0,1}" — {0, 1} is k-junta if it depends on at most k variables, i.e., there
exist g : {0,1}* — {0,1} and 1 < iy < --- < i < n such that f(z1,...,2,) = g(@i,, ..., i)
holds.

Let V ={x1,...,x,}. A restriction is a mapping p : V — {0, 1, *}. The meaning of p is
that if p(x;) € {0,1}, then we assign the value p(z;) to z;, and if p(z;) = *, then we leave x;
as it is. Thus, when we apply a restriction p to a Boolean function f, we obtain the Boolean
function f|, defined over the variables p~!(x). We also apply a restriction p to a Boolean
circuit C' and obtain a Boolean circuit C|,. When we apply a restriction p to a Boolean
circuit C, we simplify a Boolean circuit C' using the identities 0A f =0, 1 A f = f repeatedly
(each appearance of L.H.S. is replaced by R.H.S.).

A restriction decision tree T over x1,..., T, is an ordinary decision tree except that leaves
are not necessarily labeled by 0 or 1. The height of T is defined as the number of nodes on
the longest path from the root to a leaf and the size of T is defined as the number of nodes
in T. We identify a path from the root to a leaf with a restriction. A random root-to-leaf
path is sampled by repeatedly selecting a child of the current node uniformly at random from
the root. Note that a path of length ¢ is chosen with probability 2.

3 A Dynamic Programming Algorithm for SYM,, o AND,

We denote by g o ANDy(n, m,w) the set of n-variate Boolean circuits of the form g(wy +
i witi), where g : Z — {0,1}, s < m, wo,w1,...,ws € Z,maxo<;<s |w;| < w, and
t1,...,ts are terms that contain at most k-literals such that ¢; # ¢; holds for ¢ # j. We define

SYM, o ANDy(n,m):= | ] goANDy(n,m,w).
g:Z—{0,1}

We specify an element C' in SYM,, o ANDy(n,m) as C = {g, wo, (t1,w1), ..., (ts, ws)} and
call s and maxg<;<s |w;| the size and the mazimum weight of C respectively.

For a restriction p, we simplify C|, = {g, wo, (t1]p,w1), ..., (ts]p, ws)} repeatedly if there
exists a pair (4,7), 1 <i < j < s such that ;|, = t;], holds. That is, we delete (¢;],,w;) and
replace (t;],, w;) by (ti],, w; + w;). If there are multiple such pairs, we may handle them in
arbitrary order.

Our first satisfiability algorithm for SYM,, o ANDy(n, m) is described in Fig. 1. The
algorithm involves two parameters n’,m’ that are specified in the proof of Theorem 6.

The basic idea is as follows:

Step 1: We construct a table T that contains pairs of the form (C, #sat(C)) for every circuit

C in go ANDy(n',m’,w"), where #sat(C) denotes the number of satisfying assignments
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Algorithm1(C = {g, wo, (t1,w1),..., (ts,ws)}: instance, n, m, k, w: integer)
01: if C ¢ SYM,, o ANDy(n,m), return L.

02: T <+ ). /« table for dynamic programming */

03: for each C € go ANDy(n/,m/, (s + 1) - w), /* lexicographical order */

04: T+ TU{(C,#sat(C))}. /* brute force search */

05: N «+ 0.

06: for each p:V — {0,1,*} such that p=1(*) = {x1,...,2p },

07: N < N + #sat(C|,). /* binary search in T */

08: return N.

Figure 1 A Dynamic Programming Algorithm for SYM,, o ANDy.

for C' and n’,m’,w’ are appropriately chosen parameters. Furthermore, pairs are sorted
in the lexicographical order with respect to the first coordinate C so that we can use
binary search. To do so, we check the number of satisfying assignments for every circuit
in go ANDy(n',m’,w") one by one in the lexicographical order using brute force search.

Step 2: Let C be an input instance in go ANDy(n, m, w). For each restriction p that assigns
* to the first n’ variables of C, we check the number of satisfying assignments for C|,
using binary search in T" and output the sum of them.

We will show the following theorem.

» Theorem 6. We can count the number of satisfying assignments for C € SYM,, o
ANDy(n,m) deterministically in time

poly(n, m, log w) . 27L—Q((’IL/ lOg(m“)))l/k))
and exponential space.

Proof. We denote by |go ANDy(n, m,w)| the cardinality of go ANDy(n, m,w). To evaluate
the running time of (Step 1), we upper bound the size of the table T using the following fact.

» Fact 7. For all m, we have
k

|g OAND]C(’I’L,’ITL,WN < (2w+ 1)21:0 21'(7;) < 2(k+1)(2n)’“10g(2w+1)'

Proof. Note that Zf:o 2¢(") is the number of different terms that consist of at most k-literals

(including a constant function 1). Each term has a weight in {—w, —w+1,...,w—1,w}. Thus,
we have the first inequality. The second inequality follows from an elementary calculation. <

Thus, we can bound the running time of Lines 03-04 from above by

/
n

2(k+1)(2n')k log(2(m+1)w+1) « poly(m’,log(mw)) o

where we set m’ = Y2 2 ("1/) < (k+1)(2n")k.
Next we evaluate the running time of (Step 2). Note that the following guarantees that
every C|, in Line 06 belongs to g o ANDy(n/,m/,(m +1) - w).

» Fact 8. Let C = {g,wo, (t1,w1),..., (tm,wm)}. If C € go ANDy(n,m,w) holds, then
for all restriction p with |p~'(x)| = n’, we have C|, € go ANDy(n/,m/, (m + 1) - w).

MFCS 2016
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Proof. By the definition of SYM,, o AND(n,m), we have Y., |w;| < (m + 1)w. This
implies the maximum weight of C|, is at most (m + 1)w. <

For each C|,, binary search in Line 07 takes time at most
log, |g o ANDy(n/,m’, (m + 1) - w)| x poly(m’,log(mw)) = poly(m’,log(mw)).
Thus, we can bound the running time of Lines 06-07 above by

poly(m, m’, log(mw)) - 27"

1/k
If we set n’ = ((kH)QHlIOQQ(mH)wH)) = O((n/log(mw))'/*), the total running

time of Algorithm1 is bounded from above by poly(n, m,logw) - on=SU(n/log(mw))'*) g
completes the proof. <

» Remark. In the case when g(z) = sgn(z), we can reduce the weight of the top gate of C|,
from (m 4+ 1)w to 27" efficiently by Theorem 16 in [41]. With this trick, we can handle
Max SAT instances with arbitrary weights.

4 A Greedy Restriction Algorithm for SYM,, o AND,

For a term t, we denote by |¢| the width of ¢, i.e., the number of literals in ¢ and by var(t)

the set of variables that appear in ¢ (possibly negated). Let C' € SYM,, o ANDg(n,m) be

a circuit {g,wo, (t1,w1),..., (ts,ws)}. We define var,(C) := Uy, |>¢var(t;), freq,(C, x) :=

[{ti € C |z € var(ty), [ti| = €}], and Le(C) := 32, 4, 50 [til-

Our second satisfiability algorithm for SYM,, o ANDy(n,m) is described in Fig. 2. The
basic idea is as follows:

Step 1: Choose a positive integer ¢ according to the input. We seek for a variable, say =z,
that occurs most frequently in terms of width at least £. We recursively run the algorithm
for C|y—¢ and C|,=1. Here C|,—, denotes the circuit obtained from C' by applying a
restriction p such that p(z) = a € {0,1} and p(a’) = * for 2’ # x.

Step 2: If there is no term of width at least ¢, we call Algorithm1.
We will show the following theorem which implies Theorem 1 by setting k = n.

» Theorem 9. We can count the number of satisfying assignments for C € SYM,, o
ANDy(n,m) deterministically in time

log n/4log(km))

poly(n, m, log w) . 2”_Q((n/ log(mw))
and exponential space.

Proof. Let us define a sequence of random variables {C;} inductively as Cy := C and
Cit1 = Ci|g=a, Where x = arg max, cvar(c;) freq,(Ci, ) and a is a uniform random bit.

We can think of the computation of Algorithm2 as a rooted binary tree. That is, the
root node is labeled with Cp, the left and right children of the root are labeled with Cy|.—o
and Cp|,=1, and so on. Then, if we pick a node of depth n — n’ uniformly at random, the
distribution of its label is identical to that of the random variable C,,_,,/.

We would like to bound the running time of Algorithm2(C,,_,/,n',n’,¢). It is obviously
bounded from above by poly(n,m,logw) - 2. Furthermore, if Ly(Cp_n/) < % holds, the
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Algorithm2(C = {g, wo, (t1,w1),..., (ts,ws)}: instance, n,n’, {: integer)
01: if n > n/,

02: o = argmaxgevar(c) freq,(C, z).

03: Ny« Algorithm2(C|,—o,n — 1,7/, ).

04:  N; « Algorithm2(C|,=1,n — 1,7, ).

05: return Ny + N;.

06: else

07: N + 0.

08:  for each p:var(C) — {0,1,*} such that p=1({0,1}) = var,(C),
09: w’ < the maximum weight of C/,.

10: N < N+ Algorithm1(C|,,n — |var,(C)|,m/, £ — 1,w").

11: return N.

Figure 2 A Greedy Restriction Algorithm for SYM,, o ANDyg.

running time can be bounded by 2"/2x (the running time of Algorithm1(C’,n//2,m’,{ —
L,w")) for C' € SYM,, o AND,_;(n'/2,m') with m’ = £- (n')*"! and v’ = (m + 1)w. We
need the following lemma.

» Lemma 10 (Greedy bottom fan-in reduction). Let C' € SYM,, o ANDy(n,m). For all
n' >4, we have

Pr Lg(C’n_n,) > 2f . Lg(C) . (n) ] <27,

n

Since Ly(C) < km, if we set n’ = & (ﬁ>2/z -n in the above lemma, we have

42

/ P li
ol . ], (™ <
(C) <n> <5

that is, we have Ly(Cp_n/) < n’/2 with probability at least 1 — 2=, If we set £ =
then the total running time of Algorithm?2 is bounded from above by the sum of

4log(km)
logn

poly(n, m,logw) - gn—n’ . g=n’  gn’
and
poly(n, m, log w) . 2’”’_”/ . (1 — 2—TL,) . 2”’/2 . 2"’/2_9((nl/(10g(mlw/))1/5)

according to whether L;(C,_,/) > n’/2 holds or not. An elementary calculation completes
the proof. <

» Remark. The novelty of our algorithm and its analysis is a new way of reducing the
bottom fan-in of circuits in a greedy manner. Intuitively, given a SYM,, o ANDy circuit
with m gates, greedy restriction produces a collection of SYM,,» o ANDy. circuits with
k" = O(log(km)/logn) such that at least one of the circuits in the collection is satisfiable if
and only if so is the original circuit. Note that previous techniques such as Schuler’s width
reduction [53, 11] or the standard random restriction achieve k&’ = O(log(m/n)) and this
bound is not sufficient for our purpose.
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5 Average-Case Circuit Lower Bounds

Through the analysis of our satisfiability algorithms, we obtain the following average-case
lower bounds.

» Theorem 11 (depth 2, weighted symmetric gate at the top, AND gates at the bottom).
There ezists a constant o > 0 such that for every m,w and sufficiently large n, there exists a
polynomial time computable function fp m such that for every C € SYM,, o AND(n,m),
it holds that

1 X alog n/ log(nm)
P b -C < = 273'2((71/ log(mw)) )
P Unml(e) = @) < 5 +
» Theorem 12 (depth d, weighted symmetric gate only at the top). There exists a constant

a > 0 such that for every m,w,d and sufficiently large n, there exists a polynomial time
computable function fn m.w,q such that for every C'€ SYM,, o ACg(n,m), it holds that

1 —Q ((n/22d(logm)4/5 lo (mw))alogn/logm>
Pr [fomwa(®) = C(x)] < 5 +2 * .

z€{0,1}"
» Theorem 13 (depth d, t(n) weighted symmetric gates). There exists a constant o > 0
such that for every m,w and sufficiently large n, there exists a polynomial time computable
function fumw.de such that for every C € ACg[SYMw](n, m,t), it holds that

1 79((71/22{1(10;5 m/)4/5 log(m/w/))alogn/log m’)
Pr n,m,w =C <z 2 y
Pt Unmaele) = Ca)] < 5 +

where m' = m2* and w' = (mw)? .

In the rest of this section, we give a proof of Theorem 11. The proof of Theorem 12 is
similar and we omit proof. Theorem 13 immediately follows from Theorem 12 with the idea
of the proof of Theorem 5.1 in [8].

5.1 Generalized Andreev function

In this section, we review the construction of average-case hard Boolean functions due
to [17, 36]. We begin with some definitions.

» Definition 14 (Statistical distance). Two distributions X,Y over a set E are e-close if
|Pr[X € A] — Pr[Y € A]| < ¢ holds for every A C E.

» Definition 15. A set A C {0,1}" is a subcube of dimension k if there exist 1 <i; < --- <
ir <mnand a;,...,a; €{0,1} such that A = {z € {0,1}" | z;, = a4y, ..., T;, = ai, }.

» Definition 16 (Bit-fixing extractor). A function f : {0,1}" — {0,1}™ is an (n,k,m,¢€)-
bit-fizing extractor if f(X) and the uniform distribution over {0,1}"™ are e-close for every
distribution X that is uniform over a subcube of {0,1}" of dimension at least k.

We need the following explicit construction due to Rao.

» Lemma 17 (Efficient bit-fixing extractor [45]). There exist constants o, 8 > 0 such that
for every k > (logn)®, there exists a polynomial time computable Ext,, ; : {0,1}" — {0,1}™
that is an (n, k, m,e)-bit-fizing extractor with m = 0.9k and e < 9—k".
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We also need an efficient and explicit construction of list decodable codes.

» Definition 18 (List-Decodable Code). A function f : {0,1}* — {0,1}" is (p, L)-list-
decodable if [{y € {0,1}* | A(f(z), f(y)) < pn}| < L holds for every = € {0,1}*, where
A(a,b) denotes the Hamming distance between a and b.

» Lemma 19 (Efficient List-Decodable Code (Folklore), see Theorem 6.4 in [17]). There exists
a function Enc,, . : {0,1}*" — {0,1}?" that is (p, L)-list-decodable with p = 1/2 — O(27"/%)
and L = O(2"/?). Furthermore, there exists an algorithm that, given = € {0,1}*" and
2 €{0,1}*", computes (Enc,, .()). in polynomial time.

We are ready to define the average-case hard Boolean functions: The generalized Andreev
function A,k : {0,1}*" x {0,1}" — {0,1} is defined as Ap x(x,y) := (Encp 0.0k () Exto 4 (y)-
Let K(x) denote the Kolmogorov complexity of a string x € {0,1}*. The following lemma
plays an important role in the proofs of our average-case lower bounds.

» Lemma 20 (Theorem 6.5 in [17]). There exist constants o,y > 0 such that the following
holds. Let k > (logn)® and C be a k-variate circuit whose binary description length is at
most n in a some fived encoding scheme. Let p : {x1,...,x,} — {0,1, %} be a restriction with
lp~1(¥)| = k. Fiz a € {0,1}*" with K(a) > 3n and define f(y) :== Anx(a,y). Then, we have

1

+ -

C) = Tl < 5

r
y'€{0,1}*
The following fact can be shown by a counting argument.

» Fact 21. For every 0 <p < 1, Prycqo13» [K(2) < (1 —p)n] < 277+,

5.2 Proof of Theorem 11

Fix n,m,w and let n’ = (n/log(mw))leen/41ee(nm) " GQelect any a € {0,1}*" with K(a) > 3n
and let f(y) := A, (a,y). We show the following lemma.

» Lemma 22. For every C € SYM,, o AND(n,m), it holds that

1 /
Pr [C(y) = < 2427007
ye{o};}n[ (y) = f(y)] < :

[\

where v > 0 is a universal constant from Lemma 20.

Assuming this, the proof of Theorem 11 is complete since by Fact 21, we have
Pr[A, v (z,y) = C(z,y)] < Pr[K(z) <3n]+ Pr[K(z) > 3n]
T,y T

x

x Pridnq(2,y) = C(z,y) | K(z) = 3n]

< 279(71) Pr[A, ./ =C

< A [ An e (2,y) = Clz,y)]
< 9om L o-0mm)

= 2

Proof of Lemma 22. We can see that from the proofs of Theorems 6 and 9, C' can be
computed by a restriction decision tree T' of height n —n’ such that (1) each leaf is labeled by
a circuit in SYM,,» o ANDy/(n',m’) for some m/, k', w" and (2) except for a 27" fraction
of leaves, such a circuit can be described by using at most n bits (due to Fact 7). Let o(C)
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denote the description length of a circuit C in a fixed encoding scheme. Let p be a random
restriction sampled by selecting a leaf of T" uniformly at random and y, be a uniform random
element of {0,1}*" (). Then, we have

Pr(C(y) = f(5)] < Prlo(Cl,) > ]+ Prlr(Cl,) <

Q(1)

_n 1 —Q(n
X /?yr [C|p(yp) = f|p(yp) ‘ U(C‘p) <n| <2 + 3 + 27 )a

where the last inequality is by Item (2) above and Lemma 20. This completes the proof. <

6 Worst-Case Lower Bounds

From the average-case lower bounds in Section 5, we obtain the following worst-case lower
bounds.

» Theorem 23 (majority vote of depth 2, weighted symmetric gate at the top, AND gates at
the bottom). There exists a constant a > 0 such that for every m,w and sufficiently large n,
there exists a polynomial time computable function f, m ., such that C € MAJ o SYM,, o

AND(n,m) cannot compute fnmw if the majority gate at the top of C has fan-in at most
20((n/ log(mw))alogn/log(nm)).

» Theorem 24 (majority vote of depth d, weighted symmetric gate only at the top). There
exists a constant o > 0 such that for every m,w,d and sufficiently large n, there ex-
ists a polynomial time computable function fp m w.a such that any C € MAJ o SYM,, o
ACg(n,m) cannot compute fpn m w.a if the majority gate at the top of C' has fan-in at most

o (n/22008 m)4/5 log(maw))® 1087/ logm

» Theorem 25 (majority vote of depth d, t(n) weighted symmetric gates). There exists a
constant a > 0 such that for every m,w,d,t and sufficiently large n, there exists a polynomial
time computable function fn maw,d,¢ such that any C € MAJ o ACS[SYMw}(n, m,t) cannot

compute fnmwdt if the majority gate at the top of C' has fan-in at most

y4/5 alogn/logm’

0((n/22d(logm log(m/w/))

t+1
, where m' = m2tt and w' = (mw)? .

» Theorem 26 (depth d, t(n) weighted symmetric gates). There exists a constant o > 0 such
that for every m,w,d,t and sufficiently large n, there exists a polynomial time computable
function frmw.dt such that any C € AC?Z[SYMw](TLJn,t) cannot compute fr mw.dt i

t=o0 ((71/22d(10g7n')4/5 log(m/w/))alogn/ logm')

holds, where m' = m(t + 1) and w' = miw'*!.

We need a corollary of the discriminator lemma.

» Lemma 27 (Discriminator Lemma [27]). If a circuit C € MAJ o C is a majority vote of k
circuits C1,...,Cy € C, then for some 1 < i <k, we have

[Pr{Ci(a) = 1| C(x) = 1] - Pr[Ci(a) = 1| C(a) = 0]] >

For f,9:{0,1}" — {0,1}, let Corr(f,g) := | Prs[f(z) = g(x)] — Pre[f(z) # g(2)]|.
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» Corollary 28. Fore > 0, if C in Lemma 27 also satisfies that

[PrO(x) = 0] - Pr{C(x) = 1]| = 2,

then we have Corr(f,g) > % — 2¢.

Theorems 23, 24 and 25 immediately follow from Theorems 11, 12 and 13 with Corollary 28.

Theorem 26 can be shown by combining the relation of circuit classes, Theorem 12 and
Corollary 28.
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