Edge Bipartization Faster Than 2%+

Marcin Pilipczuk!, Michal Pilipczuk?, and Marcin Wrochna?®

1 Institute of Informatics, University of Warsaw, Poland
malcin@mimuw.edu.pl

2 Institute of Informatics, University of Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

3 Institute of Informatics, University of Warsaw, Poland
m.wrochna@mimuw.edu.pl

—— Abstract

In the EDGE BIPARTIZATION problem one is given an undirected graph G and an integer k, and
the question is whether k£ edges can be deleted from G so that it becomes bipartite. In 2006, Guo
et al. [6] proposed an algorithm solving this problem in time O(2* - m?); today, this algorithm is
a textbook example of an application of the iterative compression technique. Despite extensive
progress in the understanding of the parameterized complexity of graph separation problems in
the recent years, no significant improvement upon this result has been yet reported.

We present an algorithm for EDGE BIPARTIZATION that works in time (’)(1.977’“ -nm), which
is the first algorithm with the running time dependence on the parameter better than 2¢. To
this end, we combine the general iterative compression strategy of Guo et al. [6], the technique
proposed by Wahlstrom [18] of using a polynomial-time solvable relaxation in the form of a
Valued Constraint Satisfaction Problem to guide a bounded-depth branching algorithm, together
with an involved Measure&Conquer analysis of the recursion tree.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases edge bipartization, FPT algorithm

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.26

1 Introduction

The EDGE BIPARTIZATION problem asks, for a given graph G and integer k, whether one
can turn G into a bipartite graph using at most k edge deletions. Together with its close
relative ODD CYCLE TRANSVERSAL (OCT), where one deletes vertices instead of edges,
EDGE BIPARTIZATION was one of the first problems shown to admit a fixed-parameter (FPT)
algorithm using the technique of iterative compression. In a breakthrough paper [17] that
introduces this methodology, Reed et al. showed how to solve OCT in time O(3% - kmn)!.
In fact, this was the first FPT algorithm for OCT. Following this, Guo et al. [6] applied
iterative compression to show fixed-parameter tractability of several closely related problems,

Mi. Pilipczuk and M. Wrochna have been supported by the Polish National Science Centre grant
DEC-2013/11/D/ST6/03073. Mi. Pilipczuk has been supported by Foundation for Polish Science via
the START stipend program. During the work on these results, Mi. Pilipczuk has been holding a
post-doc position of Warsaw Centre of Mathematics and Computer Science. Ma. Pilipczuk has been
supported by the Centre for Discrete Mathematics and its Applications (DIMAP) at the University of
Warwick and by Warwick-QMUL Alliance in Advances in Discrete Mathematics and its Applications.
Even though Reed et al. [17] state their running time as O4* . kmn), it is not hard to adjust the
analysis to show that the algorithm in fact works in time O(3* - kmn); see e.g. 7, 15].

© Marcin Pilipczuk, Michal Pilipczuk, and Marcin Wrochna;

37 licensed under Creative Commons License CC-BY
11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 26; pp.26:1-26:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2

Edge Bipartization Faster Than 2

including an algorithm for EDGE BIPARTIZATION with running time O(2% - m?). Today, both
results are textbook examples of the iterative compression technique.

Iterative compression is in fact a simple idea that boils down to an algorithmic usage
of induction. In case of EDGE BIPARTIZATION, we introduce edges of G one by one, and
during this process we would like to maintain a solution F' to the problem, i.e., F C E(G) is
such that |F| < k and G — F is bipartite. When the next edge e is introduced to the graph,
we observe that F'U {e} is a solution of size at most k + 1, that is, at most one too large.
Then the task reduces to solving EDGE BIPARTIZATION COMPRESSION: given a solution that
exceeds the budget by at most one, we are asked to find a solution that fits into the budget.

Surprisingly, this simple idea leads to great algorithmic gains, as it reduces the matter to a
cut problem. Guo et al. [6] showed that a simple manipulation of the instance reduces EDGE
BIPARTIZATION COMPRESSION to the following problem that we call TERMINAL SEPARATION:
We are given an undirected graph G with a set 7 of k£ + 1 disjoint pairs of terminals, where
each terminal is of degree 1 in G. The question is whether one can color one terminal of
every pair white and the second black in such a way that the minimum edge cut between
white and black terminals is at most k. Thus, the algorithm of Guo et al. [6] boils down
to trying all the 21 colorings of terminals and solving a minimum edge cut problem. For
OCT, we similarly have a too large solution X C V(G) of size k + 1, and we are looking for
a partition of X into (L, R, Z), where the size of the minimum vertex cut between L and R
in G — Z is at most k — |Z|. Thus it suffices to solve 3*T! instances of a flow problem.

The search for FPT algorithms for cut problems has been one of the leading directions in
parameterized complexity in the recent years. Among these, ODD CYCLE TRANSVERSAL
and EDGE BIPARTIZATION play a central role; see for instance [6, 12, 14, 17] and references
therein. Of particular importance is the work of Kratsch and Wahlstrom [12], who gave the
first (randomized) polynomial kernelization algorithms for both problems. The main idea is
to encode the cut problems that arise when applying iterative compression into a matroid
with a representation that takes small space. The result sparked a line of further work on
applying matroids in parameterized complexity.

Another thriving area in parameterized complexity is the optimality program, probably
best defined by Marx in [16]. The goal of it is to systematically investigate the optimum
complexity of algorithms for parameterized problem by proving possibly tight lower and
upper bounds. For the lower bounds methodology, the standard complexity assumptions used
are the Exponential Time Hypothesis (ETH) and the Strong Exponential Time Hypothesis
(SETH). In the recent years, the optimality program has achieved a number of successes.
For instance, under the assumption of SETH, we now know the precise bases of exponents
for many classical problems parameterized by treewidth [13]. To explain the complexity of
fundamental parameterized problems for which natural algorithms are based on dynamic
programming on subsets, Cygan et al. [1] introduced a new hypothesis resembling SETH,
called the Set Cover Conjecture (SeCoCo). See [13, 16] for more examples.

For our techniques, the most important is the line of work of Guillemot [5], Cygan et
al. [3], Lokshtanov et al. [14], and Wahlstrom [18] that developed a technique for designing
parameterized algorithm for cut problems called LP-guided branching. The idea is to use
the optimum solution to the linear programming (LP) relaxation of the considered problem
in order to measure progress. Namely, during the construction of a candidate solution by
means of a backtracking process, the algorithm achieves progress not only when the budget
for the size of the solution decreases (as is usual in branching algorithms), but also when
the LP lower bound on the optimum solution increases. Using this concept, Cygan et al. [3]
showed a 2Fn®M_time algorithm for NopE MurTiway CUT. Lokshtanov et al. [14] further

M. Pilipczuk, M. Pilipczuk, and M. Wrochna

refined this technique and applied it to improve the running times of algorithms for several
important cut problems. In particular, they obtained a 2.315%n°()-time algorithm for OpD
CyCLE TRANSVERSAL, which was the first improvement upon the classic O(3* - kmn)-time
algorithm of Reed et al. [17]. From the point of view of the optimality program, this showed
that the base 3 of the exponent was not the final answer for ODD CYCLE TRANSVERSAL.
In [3, 14] it was essential that the considered LP relaxation is half-integral, which restricts
the applicability of the technique. Recently, Wahlstrom [18] proposed to use stronger relax-
ations in the form of certain polynomial-time solvable Valued Constraint Satisfaction Problems
(VCSPs). Using this idea, he showed efficient FPT algorithms for node and edge deletion
variants of UNIQUE LABEL COVER, for which natural LP relaxations are not half-integral.
Despite substantial progress on the node deletion variant, for EDGE BIPARTIZATION there
has been no improvement since the classic algorithm of Guo et al. [6] that runs in time
O(2F - m?). The main technical contribution of Lokshtanov et al. [14] is a 2.315*n°(M-time
algorithm for VERTEX COVER parameterized by the excess above the value of the LP
relaxation (VC-above-LP); the algorithm for OCT then follows from folklore reductions
from OCT to VC-above-LP via the ALMOST 2-SAT problem. Thus the algorithm for OCT
in fact relies on the LP relaxation for VERTEX COVER, which has very strong combinatorial
properties; in particular, it is half-integral. No such strong and simple relaxation is available
for EDGE BIPARTIZATION. The natural question stemming from the optimality program,
whether the 2% term for EDGE BIPARTIZATION can be improved, was asked repeatedly in the
parameterized complexity community, e.g. by Daniel Lokshtanov at WorKer’13 [2].

Our results and techniques. In this paper we answer this question in affirmative:
» Theorem 1.1. EDGE BIPARTIZATION can be solved in time O(1.977% - nm).

To prove this, we begin with the approach of Guo et al. [6], using iterative compression
to reduce solving EDGE BIPARTIZATION to solving TERMINAL SEPARATION (see Section 2
for a formal definition of the latter). This problem has two natural parameters: |7, the
number of terminal pairs, and p, the bound on the size of the cut between white and black
terminals. The approach of Guo et al. is to use a simple (9(2|T‘ - pm) algorithm that tries all
colorings of terminal pairs and computes the size of a minimum cut between the colors.

The observation that is crucial to our approach is that one can express TERMINAL
SEPARATION as a very restricted instance of the EDGE UNIQUE LABEL COVER problem.
More precisely, in this setting the task is to assign each vertex of G a label from {A,B}. Pairs
of T present hard (of infinite cost) inequality constraints between the labels of terminals
involved, while edges of G present soft (of unit cost) equality constraints between the
endpoints. The goal is to minimize the cost of the labeling, i.e., the number of soft constraints
broken. An application of the results of Wahlstrom [18] (with further improvements of Iwata,
Wahlstrom, and Yoshida [8] regarding linear dependency on the input size) immediately gives
an O(4? - m) algorithm for TERMINAL SEPARATION.

Thus, we have in hand two substantially different algorithms for TERMINAL SEPARATION.
If we plug in |[T| = k41 and p = k, as is the case in the instance that we obtain from EDGE
BIPARTIZATION COMPRESSION, then we obtain running times O(2% - km) and O(4% - m),
respectively. The idea now is that these two algorithms present two complementary approaches
to the problem, and we would like to combine them to solve the problem more efficiently. To
this end, we need to explain more about the approach of Wahlstrém [18].

The algorithm of Wahlstrom [18] is based on measuring the progress by means of the
optimum solution to the relaxation of the problem (in the form of a Valued CSP instance).

26:3

IPEC 2016

26:4

Edge Bipartization Faster Than 2

In our case, this relaxation of TERMINAL SEPARATION has the following form: We assign
each vertex a label from {1, A, B}, where L is an additional marker that should be thought
of as not yet decided. The hard constraints have zero cost only for labelings (A, B), (B, A)
and (L, 1), and infinite cost otherwise. The soft constraints have cost 0 for equal labels on
the endpoints, 1 for unequal from {A, B}, and % when exactly one endpoint is assigned 1.
Based on previous results of Kolmogorov, Thapper, and Zivny [11], Wahlstrom observed
that this relaxation is polynomial-time solvable, and moreover it is persistent: whenever the
relaxation assigns A or B to some vertex, then it is safe to perform the same assignment in
the integral problem (i.e., not relaxed, only with the “integral” labels A, B). The algorithm
constructs an integral labeling with a backtracking process that fixes labels of consecutive
vertices of the graph. During this process, it maintains an optimum solution to the relaxation
that is moreover mazimal, in the sense that one cannot extend the current labeling by fixing
integral labels on some undecided vertices without increasing the cost. This can be done by
dint of persistence and polynomial-time solvability: we can check in polynomial time whether
a non-trivial extension exists, and then it is safe to fix the labels of vertices that get decided.
Thus, when the algorithm considers the next vertex u and branches into two cases, fixing
label A or B on it, the optimum cost of the relaxation increases by at least % in each branch.
Hence the recursion tree can be pruned at depth 2p, and we obtain a 4Pn°(M-time algorithm.

Our algorithm for TERMINAL SEPARATION applies a similar branching strategy, where
at each point we maintain some labeling of the vertices with A, B, and L (undecided).
Every terminal pair is either already resolved (assigned (A,B) or (B, A)), or unresolved
(assigned (L,.Ll)). Using the insight of Wahlstrom we can assume that this labeling is
maximal. Intuitively, we look at unresolved pairs from T and try to identify a pair (s,t) for
which branching into labelings (A, B) and (B, A) leads to substantial progress. Here, we
measure progress in terms of a potential p that is a linear combination of three components:

t, the number of unresolved terminal pairs;

k, the current budget for the cost of the sought integral solution;

v, the difference between k and the cost of the current solution to the relaxation.
These ingredients are taken with weights a; = 0.59950, o, = 0.29774, and o, = 1 —y — @, =
0.10276. Thus, the largest weight is put on the progress measured in terms of the number of
resolved terminal pairs: We want to argue that if we can identify a possibility of recursing
into two instances, where in each of them at least one new terminal pair gets resolved, but in
one of them we resolve two terminal pairs, then we can pursue this branching step.

Therefore, we are left with the following situation: when branching on any terminal pair,
only this terminal pair gets resolved in both branches. Then the idea is to find a branching
step where the decrease of the auxiliary components of the potential, namely v and k, is
significant enough to ensure the promised running time of the algorithm. Here we apply an
extensive combinatorial analysis of the instance to show that finding such a branching step
is always possible. In particular, our analysis can end up with a branching not on a terminal
pair, but on the label of some other vertex; however, we make sure that in both branches
some terminal pair gets eventually resolved. Also, in some cases we localize a part of the
input that can be simplified (a reduction step), and then the analysis is restarted.

To sum up, we would like to highlight two aspects of our contribution. First, we answer
a natural question stemming from the optimality program, showing that 2* is not the final
dependency on the parameter for EDGE BIPARTIZATION. Second, our algorithm can be seen
as a “proof of concept” that the LP-guided branching technique, even in the more abstract
variant of Wahlstrom [18], can be combined with involved Measure&Conquer analysis of the
branching tree. Note that in the past Measure&Conquer and related techniques led to rapid
progress in the area of moderately-exponential algorithms [4].

M. Pilipczuk, M. Pilipczuk, and M. Wrochna

We remark that the goal of the current paper is clearly improving the 2¥ term, and not
optimizing the dependence of the running time on the input size. However, we do estimate it.
Using the tools prepared by Iwata, Wahlstrom, and Yoishida [8], we are able to implement
the algorithm so that it runs in time O(1.977% -nm). Naively, this seems like an improvement
over the algorithm of Guo et al. [6] that had quadratic dependence on m, however this is not
the case. We namely use the recent approximation algorithm for EDGE BIPARTIZATION of
Kolay et al. [9] that in time O(k®() .m) either returns a solution F*P¥ of size at most O(k?),
or correctly concludes that there is no solution of size k. Then we start iterative compression
from G — F?P* and introduce edges of F*P* one by one, so we need to solve the TERMINAL
SEPARATION problem only O(k?) times. In our case each iteration takes time O(1.977% -nm),
but for the approach of Guo et al. it would take time O(2* - km). Thus, by using the same
idea based on [9], the algorithm of Guo et al. can be adjusted to run in time O(2% - k3m).

2 Overview of the algorithm

As announced in the introduction, the application of iterative compression and the reduction
to a TERMINAL SEPARATION instance closely follows the approach of [6]; in this extended
abstract, we give only an overview of the branching algorithm for TERMINAL SEPARATION.

Let us start with some notation. Consider a graph G with a family T of disjoint pairs of
vertices in G; we call those vertices terminals. A terminal separation is a pair (A, B) with
A, B C V(G) such that AN B =) and, for every terminal pair P, either one of the terminals
in P belongs to A and the second to B, or P C V(G)\ (AU B). A terminal separation (4, B)
is integral if AU B = V(G).2 A terminal separation (A, B') extends (A, B) if A C A’ and
B C B’. The cost of a terminal separation (A, B) is defined as ¢(4, B) = (d(4) + d(B))/2,
where d(X) is the number of edges between X and V(G) \ X, for X C V(G). Note that if
(A, B) is integral, then we have ¢(4, B) = d(A) = d(B). We say that a terminal separation
(A, B) is maximal if every other separation extending it has strictly larger cost.

TERMINAL SEPARATION

Input: A graph G with a set of disjoint terminal pairs 7 such that every terminal is of
degree at most one in G; a terminal separation (A°, B°); and an integer k.

Goal: Find an integral terminal separation (A, B) extending (A°, B°) of cost at most k,
or report that no such separation exists.

We borrow the basic toolbox from [18, 8], in the form of the following two statements.

» Theorem 2.1 (persistence [18]). Let (G,T,(A°, B°),k) be a TERMINAL SEPARATION
instance, and let (A, B) be a terminal separation in G of minimum cost among separations
that extend (A°, B°). Then there exists an integral separation (A*, B*) that has minimum

cost among all integral separations extending (A°, B°), with the additional property that
(A*, B*) extends (A, B).

» Theorem 2.2 (polynomial-time solvability, [18, 8]). Given ¢ TERMINAL SEPARATION in-
stance (G, T, (A°, B°), k) with c(A°, B°) < k, one can in O(k°Mm) time find a mazimal ter-
minal separation (A, B) in G that has minimum cost among all separations extending (A°, B°).

2 The word integral stems from the fact that an integral separation corresponds to a solution to the
relaxed TERMINAL SEPARATION problem that actually does not use the relaxed value L. In fact, it also
corresponds to an integral solution of an LP formulation underlying the algorithmic results of [11].

26:5

IPEC 2016

26:6

Edge Bipartization Faster Than 2

From Theorems 2.1 and 2.2 it follows that, while working on a TERMINAL SEPARATION
instance (G, T, (A°, B°), k), we can always assume that (A°, B°) is a maximal separation: If
that is not the case, we can obtain an extending separation (A, B) via Theorem 2.2, and set
(A°, B°) := (A, B); the safeness of the last step is guaranteed by Theorem 2.1.

2.1 The potential to measure progress of the algorithm

Let T = (G,T,(A°, B°),k) be a TERMINAL SEPARATION instance, where (Ag, By) is a
maximal terminal separation; we henceforth call such an instance mazimal. We are interested
in keeping track of the following partial measures:

t7 is the number of unresolved terminal pairs;

vr =k — ¢(A°, B®);

kr =k.
The O(2Fkm)-time algorithm used in [6] can be interpreted in our framework as an O(2!Zkzm)-
time algorithm for TERMINAL SEPARATION, while the generic LP-branching algorithm for
EDGE UNIQUE LABEL COVER of [18, 8] can be interpreted as an O(4"Zm)-time algorithm.
Our main goal is to blend the two, by analyzing the cases where both perform badly.

An important insight is that all these inefficient cases happen when A° and B° increase
their common boundary. If this is the case, a simple reduction rule is applicable that also
reduces the allowed budget k.

» Reduction 2.3 (Boundary Reduction). If there exists an edge ab with a € A°, b € B°, then
delete the edge ab and decrease k by one. If there exist two edges va,vb with a € A°, b € B®,
and v ¢ A° U B°, then delete both edges va and vb, and decrease k by one.

In some sense, with this reduction rule the budget k represents the yet undetermined
part of the boundary between A* and B* in the final integral solution (A*, B*). For this
reason, we also include the budget k£ in the potential.

Formally, we fix three constants a; = 0.59950, «, = 0.29774, and a; =1 — oy — ,, =
0.10276 and define a potential of an instance Z as

pur =itz + o, vz +ag - kr
Our main technical result is the following.

» Theorem 2.4. A TERMINAL SEPARATION instance I can be solved in time O(c*Znm) for
some ¢ < 1.977.

We remark that instances of TERMINAL SEPARATION we encounter while solving an EDGE
BIPARTIZATION instance (G, k) satisfy tz = k+ 1, vz = k, and ai = k, hence puzr < k + 1.
Consequently, Theorem 1.1 follows from Theorem 2.4 by using it in the general iterative
compression approach proposed by Guo et al. [6].

The algorithm of Theorem 2.4 follows a typical outline of a recursive branching algorithm.
At every step, the current instance is analyzed, and either it is reduced, or some two-way
branching step is performed. The potential uz is used to measure the progress of the
algorithm and to limit the size of the branching tree.

Observe that the Boundary Reduction reduces already determined parts of the boundary
between A* and B* for the minimum-cost solution (A*, B*), and hence the integer kz, present
in the potential uz, represents the yet unknown part of this boundary. It is easy to see
that every application of the Boundary Reduction decreases the potential by exactly ay;
in multiple branches we show that a sufficient number of Boundary Reductions follow the
branching step to ensure the promised running time bound.

M. Pilipczuk, M. Pilipczuk, and M. Wrochna

2.2 Structure of a branching step

In every branching step, we identify two terminal separations (A, B1) and (As, Bs) extending
(A°, B°), and branch into two subcases; in subcase i we replace (A°, B®) with (4;, B;).
We always argue the correctness of a branch by showing that there exists an integral
solution (A*, B*) extending (A°, B®) of minimum cost, with the additional property that
(A*, B*) extends (A;, B;) for some ¢ = 1,2. In subcase i, we apply the algorithm of
Theorem 2.2 to (G, T, (A, B;), k) to obtain a maximal separation (A{, BY), and pass the
instance Z; = (G, T, (A3, BY), k) to a recursive call.

To show the running time bound for a branching step, we analyze how the measure puz
decreases in the subcases, taking into account the reductions performed in the subsequent
recursive calls. More formally, we say that a branching case fulfills a branching vector
[t1,v1, k1; ta, v, ko] if, in subcase i = 1,2, at least ¢; terminal pairs become resolved or
reduced with one of the reductions, the cost of the separation (A$, Bf) grows by at least v;/2,
and the Boundary Reduction gets applied at least k; times in the instance (G, T, (43, BY), k).

A branching vector [t1, 11, k1;ta, Ve, ko] is good if

1.97770“‘1‘/17&”’/1/270"“1“1 + 1.977*att27ayvz/2fockk2 <1

Standard arguments for branching algorithms show that, if in every case we perform a
branching step that fulfills some good branching vector, the branching tree originated from
an instance Z has O(c#7) leaves for some ¢ < 1.977. To simplify further exposition, we gather
in the next lemma good branching vectors used in the analysis; the fact that they are good
can be checked by direct calculations.

» Lemma 2.5. The following branching vectors are good:

[1,1,0;2,1,0] [1,1,1;1,2,3] [1,2,0;1,3,1] [1,1,0;1,4,3] [1,1,2:1,2,2]
[1,1,1;1,3,2] [1,3,0;1,3,0] [1,1,0;1,5,2] [1,2,1;1,2,2] [1,1,1;1,4,1]

Let us stop here to comment that the vectors in Lemma 2.5 explain our choice of constants
ay, oy, ap. The constant oy is sufficiently large to make the vector [1,1,0;2,1,0] good;
intuitively speaking, we are always done when in one branch we manage to resolve or reduce
at least two terminal pairs. The choice of «,, and «ay represents a very delicate tradeoff that
makes both [1,1,1;1,2,3] and [1,2,0;1, 3, 1] good; note that setting o, =1 — oy and ag, =0
makes the first vector not good, while setting a,, = 0 and a = 1 — o makes the second
vector not good. Arguably, the possibility of a tradeoff that makes both the second and the

third vector of Lemma 2.5 good at the same time is one of the critical insights in our work.

2.3 Low-excess sets

A set A CV(Q) is an A°-extension if A° C A CV(G)\ B°. Tt is terminal-free if A\ A° does
not contain any terminal. We denote by A(A) := d(A) — d(A°) the excess of an A°-extension
A. An A°-extension A is compact if A\ A° is connected and E(A\ A°, A°) # (.

One of the main technical tools for analysis is the study of extensions of small excess.

We show that their structure can be reduced to have a relatively simple picture. While in
this section we focus on supersets of the set A°, by symmetry the same conclusion holds if
we swap the roles of A° and B°.

First, since (A°, B°) is maximal, we have that A° is the only terminal-free A°-extension
of nonpositive excess. As for excess 1, one can show the following.

26:7

IPEC 2016

26:8

Edge Bipartization Faster Than 2

C1 C2

AO

Figure 1 Examples of sets of excess 2 after reductions (dotted lines are non-edges). On the right
a strict (non-null) extension As of A°U{s} with excess 1 is shown. For any such extension, A; \ {s}
is a set of excess 2 in which the vertex d, obtained from contracting the set D of the decomposition,
is the only neighbor of the terminal s.

» Lemma 2.6. If A is a terminal-free A°-extension of excess 1, then there exists a minimum
cost integral terminal separation (A*, B*) extending (A°, B®), such that (A\ A°) is either
completely contained in A* or completely contained in B*.

Hence, one can collapse into a single vertex the set A\ A° for every terminal-free A°-
extension A of excess 1. For extensions of excess 2, one can describe them similarly, and
collapse into a single vertex any set D as in the following lemma.

» Lemma 2.7. Assume that every terminal-free A°-extension of excess 1 has been collapsed to
a single vertex, and that G contains no nonterminal degree-1 vertices. If A is a terminal-free
A°-extension of excess 2, then there exists a partition A\ A° =DWCLWCoW...”C, for
some r > 0 (W meaning union of disjoint sets), such that:
1. there exists a minimum cost integral terminal separation (A*, B*) extending (A°, B°),
such that one of the following holds:
(A\ A°) N A* = (;
(A\ A°)N A* = C; for some 1 <i<r; or
A C A*.
2. for everyl <i <r, the sets C; and E(C;, A°) are nonempty, and A°UC; is a terminal-free
A°-extension of excess 1;
3. if D # 0, then for every 1 < i <r the set E(C;, D) is nonempty and A\ A° is connected;
.if D=0, thenr =2;
5. for every 1 <i < j <, there are no edges between C; and Cj.

IS

2.4 Basic branching step

Let 77 :=T \ (A° U B°) be the set of unresolved terminal pairs. In the basic branching step
of our algorithm we take a pair {s,t} € 7' and try to assign s and ¢ to the different sides
of the separation. That is, we apply the algorithm of Theorem 2.2 twice: once for terminal
separation (A°U{s}, B°U{t}), and the second time for terminal separation (A°U{t}, B°U{s}).
In this manner we obtain two maximal terminal separations (A, By) and (A, Bs) that extend
(A°U{s}, B°U{t}) and (A°U{t}, B°U{s}) respectively. Of course, the number of unresolved
pairs decreases by at least one in both (Ag, By) and (A, Bs), due to resolving {s, t}.

If the number of unresolved pairs either in (Ag, B;) or in (A¢, Bs) decreases by more than
one, then performing a branching step (A1, B1) = (As, By) and (A, Ba) = (Ay, Bs) leads to
the branching vector [1,1,0;2, 1,0] or a better one, which is good; the corresponding decrease
in the measure vz follows from the assumption that (A°, B°) is maximal. We can test in

M. Pilipczuk, M. Pilipczuk, and M. Wrochna

O(k°M®m) time whether this holds for any pair {s,t} € 77, and if so then we pursue the
branching step.

If this is not the case, we are left with the extensive analysis of the sets A,, By, Ay,
and B;. As we could always pick A; = A° U {s}, and similarly for the other sets, we have
that the excess of any of these four sets is at most one. Furthermore, the maximality of
(A°, B°) implies that also neither of these excesses is negative: if, say, A(A;) < 0, then since
A(B;) <1, we have ¢(As, By) < ¢(A°, B°), contradicting the maximality of (A°, B°). Thus,
we are left with excesses 0 and 1, giving different cases for analysis.

Let us first consider the case when A; = A° U {s}, Ay = A° U {t}, Bs = B° U {s},
and A; = B° U {t}, that is, the situation when both branching steps colored only the
terminals. If s or ¢ is an isolated vertex in G, it is easy to reduce the pair {s,t} without
branching. Otherwise, let s’ be the unique neighbor of s and ¢’ be the unique neighbor
of t. Since both s and t are of degree one in G, it is easy to argue that there exists a
minimum-cost solution (A*, B*) that does not cut the edge ss’. Consequently, we can
strengthen the basic branch by forcing s’ to be in the same side of the separation as s. More
precisely, we consider branches (Ass'— 4, Bss'—a) and (Ass¢— 5, Bss'—p) that are minimum-
cost terminal separations extending (A° U {s,s'}, B° U {t}) and (A° U {t}, B° U {s,s'}),
computed using Theorem 2.2. It is easy to see that, unless some simple reduction is applicable
or another terminal pair gets resolved, we have A(Ase—4) > 2 and A(Bss—p) > 2 while
still A(Bss—a), A(Ass—p) > 1. This gives a good branching vector [1,3,0;1, 3,0].

In the analysis of remaining cases we rely on our understanding of low-excess extensions
in the following way. Assume that, say, A, is a strict superset of A° U {s}. Then A
contains s’ and A := A, \ {s} is a terminal free A°-extension of excess A(4;) +1 € {1,2}.
Thus, Lemma 2.6 or 2.7 applies, giving us a good insight into the set A\ A°, capturing
the neighborhood of s. Observe that the structure of an excess-1 or excess-2 extension in
particular guarantees that A lies “closely” to the set A°, giving grounds for possibly multiple
Boundary Reductions in a subcase in a branching step when some vertices of A are assigned
to the B-side of the separation.

An extensive case analysis, provided in the full version of the paper, shows that in all
cases, if the basic branching resolves only one terminal pair, then one can gather a sufficient
number of Boundary Reductions stemming from the understanding of low-excess extensions
and sufficient increase in the cost of the separation (A°, B°) to obtain a good branching
vector. This proves Theorem 2.4. In the remainder of this section, we illustrate how the
low-excess extensions work by sketching one particular subcase of the case A(Ag) =1 and
A(Bs) = 0. This illustration is quite representative for the kind of reasoning we need to
perform in other cases as well.

2.5 Example subcase of the case A(A;) =1, A(B;) =0

We define R = V(G) \ (4, UB,), A = A, \ B, and B = B, \ A; note that A and B are
terminal-free extensions of A° and B°, respectively. By posimodularity of the cuts we infer:

d(A,) + d(Bs) = d(A) + d(B) + 2|E(A, N By, R)| > d(A°) 4 d(B°) + 2|E(A, N B, R)|.

We infer that in our case |E(As N By), R)| = 0 and A(A) + A(B) = 1. In this overview we
consider the subcase A(A) =1 and A(B) = 0.

By maximality of (A°, B°) we have B = B°; by Lemma 2.6 we can assume A = A° U {a}
for some vertex a; in particular A; 2 A° U {s}. Let s’ be the unique neighbor of s; we have
s’ € Ag, as otherwise A; \ {s} is a nontrivial A°-extension of excess 0, a contradiction. As
A(A;) =1, the set A;\{s} is a terminal-free A°-extension of excess 2: we can apply Lemma 2.7

26:9

IPEC 2016

26:10

Edge Bipartization Faster Than 2

Figure 2 Subcase (A(As), A(Bs)) = (A(A), A(B)) = (1,0). Extensions A, By are highlighted.

to obtain a decomposition A, \ {s} = A° W {d,c1,ca,...,¢.} or Ag\ {s} = A° W {c1,ca}
(vertices d and ¢; are sets D and C; from Lemma 2.7 collapsed into single vertices due
to reduction rules). From the fact that s’ € A; and (As, Bt) is a separation extending
(A° U {s}, B® U{t}) of minimum-cost, we infer that s’ is actually the vertex d: if s’ = ¢; for
some 4, then (A° U{s,¢;}, B:) would have strictly smaller cost. In particular, we are dealing
with the decomposition of the form A, \ {s} = A°W{d,c1,ca,...,¢}.

Since A(B;) =0 but A(B° U {s}) =1, we infer that B; 2 B° U {s}, which implies that
s’ € Bs. Furthermore, we can assume that A; N Bs; = {s,s’'}: if there were more vertices in
A N By, it is easy to see that we can safely reduce the graph by collapsing (As N B;) \ {s}
into a single vertex. Consequently, as A = A° U {a} and B = B°, we have B, = B° U {s,s'}
and A, = A°U{a, s, s} (e, r=1and ¢; = a).

From Lemma 2.7 we have p := |E(a, s')| > 1 and |E(a, A°)| > 1, thus E(a, B°) = () since
Boundary Reduction does not apply to a. By using the assumptions on excesses of sets, we
have that a is incident on: p edges to s’, 41 edges to V(G)\ (AsUB®), p+x edges to A° and
no other edges, for some z > 0. Since B; = B° U {s’, s} is an excess-0 set and E(s’, R) = 0,
we have that |E(s’, B®)| = p + |E(s’, A°)|. In particular |E(s’, B°)| > 0, so since Boundary
Reductions do not apply to s’, we have E(s’, A°) =) and hence |E(s’, B°)| = p. See Fig. 2.

Consider first case x = 0. Then a has a unique edge aa’ with a’ € R. If a’ is a terminal,
it is easy to either reduce the case without branching (if a’ = t) or provide a branching step
that resolves two terminal pairs (if @’ belongs to other terminal pair), so assume otherwise.
We claim that it is a safe reduction to contract the edge aa’; to prove this claim, it suffices
to show that there exists an optimum integral terminal separation extending (A°, B°) where
a and a' belong to the same side. Take any such integral terminal separation (A*, B*), and
assume that a and a’ are on opposite sides. Clearly it cannot happen that a € B* and
a’ € A*, because then moving a from B* to A* would decrease the cost of the separation.
Hence a € A* and o’ € B*. If s’ € B*, then moving a from A* to B* would decrease the
cost of the separation, so also s’ € A*. Construct a new integral separation (A}, B},) from
(A*, B*) by moving {a, s’} from A* to B*. Then the cost of (A}, B,) is not larger than
that of (A*, B*) (we could have broken the edge s’s instead of aa’), while both endpoints of
aa’ belong to A%, . This resolves the case z = 0.

In the case x > 0, we claim that branching on the membership of a leads to a good
branch. That is, we recurse into two branches (A, 4, Ba—a) and (A, B, Bo—) that are
minimum-cost maximal terminal separations extending (A° U {a}, B°) and (4°, B° U {a}),
respectively. For X € {A, B}, let t,— x,Va—s x, ka—sx be the changes of the components of
the potential in respective branches, as we denote them in branching vectors.

Consider first the branch (A, 4, Ba—4). Then p Boundary Reductions are triggered on
vertex s’ (regardless of whether it is added or not to one of the sets A, 4, By). Hence
ko4 > p. Moreover, the terminal pair {s,t} either is already resolved by (Ag—a, Ba—a)

M. Pilipczuk, M. Pilipczuk, and M. Wrochna

or is easily reducible after applying the Boundary Reductions. Hence t,_,4 > 1. Finally,
since (A°, B°) was maximal, we have that v,,4 > 1. So the part of the branching vector
corresponding to the branch (A, 4, Ba—4) is [1,1,p], or better.

Consider now the second branch (A, p,Bas—p). Then at least |E(a,A°)] = p + x
Boundary Reductions are triggered, hence k,_.p > p+ x. Since p > 1 and t is of degree 1,
s’ € By p and w.l.o.g. we can assume s € B, ,g and t € A,_,g. Hence t,_.p > 1. If
actually t,,4 > 2 or t,,p > 2, then we arrive at a good branching vector [1,1,p; 2,1, p] or
better, so assume that ¢,,4 = t,—,p = 1, that is, only the pair {s,t} gets resolved.

We now claim that A(A,—p) > 1 and A(B,—p) > 1. For the latter claim, note that
if A(Basp) <0, then B,_,p \ {s} is a terminal-free B°-extension of excess at most one,
while a,s’" € B,_,p; a contradiction to the assumption that every terminal-free extension
of excess one has been collapsed into a single vertex. For the former claim, suppose for
the sake of contradiction that d(A,—p) = d(A°) (case d(A,—p) < d(A°) can easily be
excluded by the maximality of (A°, B°)). Recall that also d(B;) = d(B°), which means that
d(As—B) + d(Bs) = ¢(A°, B°). From the posimodularity of cuts it now follows that one of
the terminal separations (A,— 5 \ Bs, Bs) and (A, 5, Bs \ Aqs— p) has cost not larger than
(A°, B°), while both of them resolve the terminal pair {s,¢}. This is a contradiction with
the maximality of (A°, B°). Hence A(A,—p5) > 1 and A(B,—p) > 1, and so v, 5 > 2.

Thus, branching into separations (A, Ba—a) and (A.— g, Ba— 5) leads to a branching
vector [1,1,p; 1,2, p+ 2] or better. Recalling that p, z > 0, observe that this branching vector
can be not good only if p =z =1 and A(B,—p) = 1. Let us now analyze this case.

Since A(B,—p) = 1, we have that B,,p \ {s} is a terminal-free set of excess 2, and
hence we can apply Lemma 2.7 to it: assuming excess-2 sets have been reduced, we have that
B, 5 \ {s} has a decomposition of the form B° W {ci,ca} or B°W{d,¢y,...,c.}. Note that
B° U {s'} is an excess-1 set, so it is not hard to argue that s’ = ¢; for some i. As a € B, s,
a is adjacent to s’, and ¢;-s are pairwise non-adjacent, we must have that a = d and we are
dealing with a decomposition of the form B° W {d,c1,...,c,}. Observe that B° U {a, s’} is a
Be-extension of excess at least 1 4+ (x + 1) = 3 (counting edge ss’ and edges between a and
A°); hence B,_,p 2 B°U/{a, s, s}, and in particular r > 1. Hence there exists some vertex
¢; # ¢; = ¢'. By Lemma 2.7 we have that ¢; is adjacent both to B° and to a. Hence, in the
branch (A,— 4, Bs—4) at least one Boundary Reduction is applied to ¢;, regardless whether
¢; is assigned to A, 4, or B, 4, or neither of these sets. We did not include this Boundary
Reduction in the previous calculations; this shows that we in fact pursue a branch with a
branching vector [1,1,2;1,2,2] or better, which is a good branching vector.

3 Conclusions

In this work we have developed an algorithm for EDGE BIPARTIZATION with running time
O(1.977% -nm), which is the first one to achieve the dependence on the parameter better than
2% Thus, in the case of EDGE BIPARTIZATION the constant 2 in the base of the exponent is
not the ultimate answer, as is conjectured for CNF-SAT. Also, it improves some recent works
where the FPT algorithm for EDGE BIPARTIZATION is used as a black-box [10]. However,
our work leaves some open questions that we would like to highlight.
Reducing the dependence on the parameter from 2% to 1.977% can be only considered a
“proof of concept” that such an improvement is possible. We put forward the question of
designing a reasonably simple algorithm with significant improvement in the base of the
exponent, hopefully decreasing the polynomial dependence from O(nm) to (near-)linear.
Our approach can be summarized as follows: having observed that TERMINAL SEPARA-
TION admits a simple O*(2/71)-time algorithm and an O*(4*)-time algorithm using the

26:11

IPEC 2016

26:12 Edge Bipartization Faster Than 2

—— References

1

10

11

12

13

14

15

16

CSP-guided technique of Wahlstrém [18], we develop an algorithm for a joint parameteri-
zation ([T, k) that for |T| = k + 1 achieves running time O*(1.977%). Can TERMINAL
SEPARATION be solved in time O*(c/71) for some ¢ < 27

Marek Cygan, Holger Dell, Daniel Lokshtanov, Déaniel Marx, Jesper Nederlof, Yoshio
Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus Wahlstrém. On problems
as hard as CNF-SAT. ACM Trans. Algorithms, 12(3):41, 2016. doi:10.1145/2925416.
Marek Cygan, fukasz Kowalik, and Marcin Pilipczuk. Open problems from the update
meeting on graph separation problems, Workshop on Kernels, Warsaw, 2013. http://
worker2013.mimuw.edu.pl/slides/update-opl.pdf.

Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. On
Multiway Cut parameterized above lower bounds. TOCT, 5(1):3, 2013. doi:10.1145/
2462896 .2462899.

Fedor V. Fomin and Dieter Kratsch. Ezact Exponential Algorithms. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2010. doi:10.1007/978-3-642-16533-7.
Sylvain Guillemot. FPT algorithms for path-transversal and cycle-transversal problems.
Discrete Optimization, 8(1):61-71, 2011. doi:10.1016/j.disopt.2010.05.003.

Jiong Guo, Jens Gramm, Falk Hiiffner, Rolf Niedermeier, and Sebastian Wernicke.
Compression-based fixed-parameter algorithms for feedback vertex set and edge biparti-
zation. J. Comput. Syst. Sci., 72(8):1386-1396, 2006.

Falk Hiffner. Algorithm engineering for optimal Graph Bipartization. J. Graph Algorithms
Appl., 13(2):77-98, 20009.

Yoichi Iwata, Magnus Wahlstrém, and Yuichi Yoshida. Half-integrality, Ip-branching, and
FPT algorithms. STAM J. Comput., 45(4):1377-1411, 2016. doi:10.1137/140962838.
Sudeshna Kolay, Pranabendu Misra, M.S. Ramanujan, and Saket Saurabh. Parameter-
ized approximations via d-Skew-Symmetric Multicut. In Proc. MFCS’14, volume 8635
of Lecture Notes in Computer Science, pages 457-468. Springer, 2014. doi:10.1007/
978-3-662-44465-8_39.

Sudeshna Kolay, Fahad Panolan, Venkatesh Raman, and Saket Saurabh. Parameterized
algorithms on perfect graphs for deletion to (r, 1)-graphs. In Piotr Faliszewski, Anca
Muscholl, and Rolf Niedermeier, editors, Proc. MFCS’14, volume 58 of LIPIcs, pages 75:1—
75:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.
MFCS.2016.75.

Vladimir Kolmogorov, Johan Thapper, and Stanislav Zivny. The power of linear program-
ming for general-valued CSPs. SIAM J. Comput., 44(1):1-36, 2015.

Stefan Kratsch and Magnus Wahlstrém. Compression via matroids: A randomized polyno-
mial kernel for Odd Cycle Transversal. ACM Trans. Algorithms, 10(4):20:1-20:15, 2014.
Daniel Lokshtanov, Déniel Marx, and Saket Saurabh. Lower bounds based on the Expo-
nential Time Hypothesis. Bulletin of the EATCS, 105:41-72, 2011.

Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Trans. Algo-
rithms, 11(2):15:1-15:31, 2014. doi:10.1145/2566616.

Daniel Lokshtanov, Saket Saurabh, and Somnath Sikdar. Simpler parameterized algorithm
for OCT. In Jiri Fiala, Jan Kratochvil, and Mirka Miller, editors, Proc. IWOCA 2009,
Revised Selected Papers, volume 5874 of Lecture Notes in Computer Science, pages 380—
384. Springer, 2009. doi:10.1007/978-3-642-10217-2_37.

Déniel Marx. What’s next? Future directions in Parameterized Complexity. In The Mul-
tivariate Algorithmic Revolution and Beyond, volume 7370 of Lecture Notes in Computer
Science, pages 469-496. Springer, 2012.

http://dx.doi.org/10.1145/2925416
http://worker2013.mimuw.edu.pl/slides/update-opl.pdf
http://worker2013.mimuw.edu.pl/slides/update-opl.pdf
http://dx.doi.org/10.1145/2462896.2462899
http://dx.doi.org/10.1145/2462896.2462899
http://dx.doi.org/10.1007/978-3-642-16533-7
http://dx.doi.org/10.1016/j.disopt.2010.05.003
http://dx.doi.org/10.1137/140962838
http://dx.doi.org/10.1007/978-3-662-44465-8_39
http://dx.doi.org/10.1007/978-3-662-44465-8_39
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.75
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.75
http://dx.doi.org/10.1145/2566616
http://dx.doi.org/10.1007/978-3-642-10217-2_37

M. Pilipczuk, M. Pilipczuk, and M. Wrochna 26:13

17 Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper.
Res. Lett., 32(4):299-301, 2004.

18 Magnus Wahlstrom. Half-integrality, LP-branching and FPT algorithms. In Proc.
SODA 14, pages 1762-1781. SIAM, 2014.

IPEC 2016

	Introduction
	Overview of the algorithm
	The potential to measure progress of the algorithm
	Structure of a branching step
	Low-excess sets
	Basic branching step
	Example subcase of the case Delta(A_s)=1, Delta(B_s)=0

	Conclusions

