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Abstract
Mean-payoff games on timed automata are played on the infinite weighted graph of configurations
of priced timed automata between two players – Player Min and Player Max – by moving a token
along the states of the graph to form an infinite run. The goal of Player Min is to minimize
the limit average weight of the run, while the goal of the Player Max is the opposite. Brenguier,
Cassez, and Raskin recently studied a variation of these games and showed that mean-payoff
games are undecidable for timed automata with five or more clocks. We refine this result by
proving the undecidability of mean-payoff games with three clocks. On a positive side, we show
the decidability of mean-payoff games on one-clock timed automata with binary price-rates. A
key contribution of this paper is the application of dynamic programming based proof techniques
applied in the context of average reward optimization on an uncountable state and action space.
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1 Introduction

The classical mean-payoff games [24, 13, 16, 4] are two-player zero-sum games that are played
on weighted finite graphs, where two players – Max and Min – take turn to move a token
along the edges of the graph to jointly construct an infinite play. The objectives of the
players Max and Min are to respectively maximize and minimize the limit average reward
associated with the play. Mean-payoff games are well-studied in the context of optimal
controller synthesis in the framework of Ramadge-Wonham [22], where the goal of the game
is to find a control strategy that maximises the average reward earned during the evolution
of the system. Mean-payoff games enjoy a special status in verification, since µ-calculus
model checking and parity games can be reduced in polynomial-time to solving mean-payoff
games. Mean-payoff objectives can also be considered as quantitative extensions [17] of
classical Büchi objectives, where we are interested in the limit-average share of occurrences of
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44:2 Mean-Payoff Games on Timed Automata

accepting states rather than merely in whether or not infinitely many accepting states occur.
For a broader discussion on quantitative verification, in general, and the transition from
the classical qualitative to the modern quantitative interpretation of deterministic Büchi
automata, we refer the reader to Henzinger’s excellent survey [17].

We study mean-payoff games played on an infinite configuration graph of timed automata.
Asarin and Maler [3] were the first to study games on timed automata and they gave an
algorithm to solve timed games with reachability time objective. Their work was later
generalized and improved upon by Alur et al. [1] and Bouyer et al. [8]. Bouyer et al. [7, 5]
also studied the more difficult average payoffs, but only in the context of scheduling, which in
game-theoretic terminology corresponds to 1-player games. However, they left the problem
of proving decidability of 2-player average reward games on priced timed automata open.
Jurdziński and Trivedi [20] proved the decidability of the special case of average time games
where all locations have unit costs. More recently, mean-payoff games on timed automata
have been studied by Brenguier, Cassez and Raskin [10] where they consider average payoff
per time-unit. Using the undecidability of energy games [9], they showed undecidability
of mean-payoff games on weighted timed games with five or more clocks. They also gave
a semi-algorithm to solve cycle-forming games on timed automata and characterized the
conditions under which a solution of these games gives a solution for mean-payoff games.

On the positive side, we characterize general conditions under which dynamic programming
based techniques can be used to solve the mean-payoff games on timed automata. As a
proof-of-concept, we consider one-clock binary-priced timed games, and prove the decidability
of mean-payoff games for this subclass. Our decidability result can be considered as the
average-payoff analog of the decidability result by Brihaye et al. [11] for reachability-price
games on timed automata. We strengthen the known undecidability results for mean-payoff
games on timed automata in three ways: (i) we show that the mean-payoff games over
priced timed games is undecidable for timed games with only three clocks; (ii) secondly,
we show that undecidability can be achieved with binary price-rates; and finally, (iii) our
undecidability results are applicable for problems where the average payoff is considered per
move as well as for problems when it is defined per time-unit.

Howard [18, 21] introduced gain and bias optimality equations to characterize optimal
average on one-player finite game arenas. Gain and bias optimality equations based charac-
terization has been extended to two-player game arenas [14] as well as many subclasses of
uncountable state and action spaces [12, 6]. The work of Bouyer et al. [6] is perhaps the
closest to our approach – they extended optimality equations approach to solve games on
hybrid automata with certain strong reset assumption that requires all continuous variables
to be reset at each transition, which in the case of timed automata is akin to requiring all
clocks to be reset at each transition. To the best of our knowledge, the exact decidability for
timed games does not immediately follow from any previously known results.

Howard’s Optimality equations requires two variable per state: the gain of the state and
the bias of the state. Informally speaking, the gain of a state corresponds to the optimal
mean-payoff for games starting from that state, while the bias corresponds to the limit of
transient sum of step-wise deviations from the optimal average. Hence, intuitively at a
given point in a game, both players would prefer to first optimize the gain, and then choose
to optimize bias among choices with equal gains. We give general conditions under which
a solution of gain-bias equations for a finitary abstraction of timed games can provide a
solution of gain-bias equations for the original timed game. For this purpose, we exploit a
region-graph like abstraction of timed automata [19] called the boundary region abstraction
(BRA). Our key contribution is the theorem that states that every solution of gain-bias
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optimality equations for boundary region abstraction carries over to the original timed game,
as long as for every region, the gain values are constant and the bias values are affine.

The paper is organized in the following manner. In Section 2 we describe mean-payoff
games and introduce the notions of gain and bias optimality equations. This section also
introduces mean-payoff games over timed automata and states the key results of the paper.
Section 3 introduces the boundary region abstraction for timed automata and characterizes the
conditions under which the solution of a game played over the boundary region abstraction
can be lifted to a solution of mean payoff game over priced timed automata. In Section 4 we
present the strategy improvement algorithm to solve optimality equations for mean-payoff
games played over boundary region abstraction and connect them to solution of optimality
equations over corresponding timed automata. Finally, Section 5 sketches the undecidability
of mean-payoff games for binary-priced timed automata with three clocks.

2 Mean-Payoff Games on Timed Automata

We begin this section by introducing mean-payoff games on graphs with uncountably infinite
vertices and edges, and show how, and under what conditions, gain-bias optimality equations
characterize the value of mean-payoff games. We then set-up mean-payoff games for timed
automata and state our key contributions.

2.1 Mean-Payoff Games
I Definition 1 (Turn-Based Game Arena). A game arena Γ is a tuple (S, SMin, SMax, A, T, π)
where S is a (potentially uncountable) set of states partitioned between sets SMin and
SMax of states controlled by Player Min and Player Max, respectively; A is a (potentially
uncountable) set of actions; T : S×A→ S is a partial function called the transition function;
and π : S ×A→ R is a partial function called the price function.

We say that a game arena is finite if both S and A are finite. For any state s ∈ S, we
let A(s) denote the set of actions available in s, i.e., the actions a ∈ A for which T (s, a)
and π(s, a) are defined. A transition of a game arena is a tuple (s, a, s′) ∈ S×A×S such
that s′ = T (s, a) and we write s a−→ s′. A finite play starting at a state s0 is a sequence
of transitions 〈s0, a1, s1, a2, . . . , sn〉 ∈ S×(A×S)∗ such that for all 0 6 i < n we have that
si

ai+1−−−→ si+1 is a transition. For a finite play ρ = 〈s0, a1, . . . , sn〉 we write Last(ρ) for the
final state of ρ, here Last(ρ) = sn. The concept of an infinite play 〈s0, a1, s1, . . .〉 is defined
in an analogous way. We write Runs(s) and Runsfin(s) for the set of plays and the set of
finite plays starting at s ∈ S respectively.

A strategy of Player Min is a function µ : Runsfin → A such that µ(ρ) ∈ A(Last(ρ)) for all
finite plays ρ ∈ Runsfin, i.e. for any finite play, a strategy of Min returns an action available
to Min in the last state of the play. A strategy χ of Max is defined analogously and we
let ΣMin and ΣMax denote the sets of strategies of Min and Max, respectively. A strategy
σ is positional if Last(ρ)=Last(ρ′) implies σ(ρ)=σ(ρ′) for all ρ, ρ′ ∈ Runsfin. This allows
us to represent a positional strategy as a function in [S → A]. Let ΠMin and ΠMax denote
the set of positional strategies of Min and Max, respectively. For any state s and strategy
pair (µ, χ) ∈ ΣMin×ΣMax, let Run(s, µ, χ) denote the unique infinite play 〈s0, a1, s1, . . .〉 in
which Min and Max play according to µ and χ, respectively, i.e. for all i > 0 we have that
si ∈ SMin implies ai+1 = µ(〈s0, a1, . . . , si〉) and si ∈ SMax implies ai+1 = χ(〈s0, a1, . . . , si〉).

In a mean-payoff game on a game arena, players Min and Max move a token along the
transitions indefinitely thus forming an infinite play ρ = 〈s0, a1, s1, . . .〉 in the game graph.
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The goal of player Min is to minimize AMin(ρ) = lim supn→∞ 1
n ·

∑n−1
i=0 π(si, ai+1) and the

goal of player Max is to maximize AMax(ρ) = lim infn→∞ 1
n ·

∑n−1
i=0 π(si, ai+1). The upper

value Val∗(s) and the lower value Val∗(s) of a state s ∈ S are defined as:

Val∗(s) = inf
µ∈ΣMin

sup
χ∈ΣMax

AMin(Run(s, µ, χ)) and Val∗(s) = sup
χ∈ΣMax

inf
µ∈ΣMin

AMax(Run(s, µ, χ))

respectively. It is always the case that Val∗(s) 6 Val∗(s). A mean-payoff game is called
determined if for every state s ∈ S we have that Val∗(s) = Val∗(s). Then, we write Val(s) for
this number and we call it the value of the mean-payoff game at state s. We say that a game
is positionally-determined if for every ε > 0 we have strategies µε ∈ ΠMin and χε ∈ ΠMax
such that for every initial state s ∈ S, we have that

Val∗(s)−ε 6 inf
µ′∈ΣMin

AMax(Run(s, µ′, χε)) and Val∗(s)+ε > sup
χ′∈ΣMax

AMin(Run(s, µε, χ′)).

For a given ε we call each such strategy an ε-optimal strategy for the respective player.
Given two functions G : S → R (gain) and B : S → R (bias), we say that (G,B) is a

solution to the optimality equations for mean-payoff game on Γ = (S, SMin, SMax, A, T, π),
denoted (G,B) |= Opt(Γ) if

G(s) =
{

supa∈A(s){G(s′) : s a−→ s′} if s ∈ SMax

infa∈A(s){G(s′) : s a−→ s′} if s ∈ SMin.

B(s) =
{

supa∈A(s){π(s, a)−G(s) +B(s′) : s a−→ s′ and G(s) = G(s′)} if s ∈ SMax

infa∈A(s){π(s, a)−G(s) +B(s′) : s a−→ s′ and G(s) = G(s′)} if s ∈ SMin.

We prove the following theorem connecting a solution of the optimality equations with
mean-payoff games. We exploit this theorem to solve mean-payoff games on timed automata.

I Theorem 2. If there exists a function G : S → R with finite image and a function
B : S → R with bounded image such that (G,B) |= Opt(Γ) then for every state s ∈ S, we
have that G(s) = Val(s) and for every ε > 0 both players have positional ε-optimal strategies.

Proof. Assume that we are given the functions G : S → R with finite image and B : S → R
with bounded image such that (G,B) |= Opt(Γ). In order to prove the result we show, for
every ε > 0, the existence of positional strategies µε and χε such that

G(s)− ε 6 inf
µ′∈ΣMin

AMax(Run(s, µ′, χε)) and G(s) + ε > sup
χ′∈ΣMax

AMin(Run(s, µε, χ′)).

The proof is in two parts.
Given ε > 0 we compute the positional strategy µε ∈ ΠMin satisfying the following
conditions: µε(s) = a if

G(s) = G(s′) (1)
B(s) > π(s, a)−G(s) +B(s′)− ε, (2)

where s a−→ s′. Notice that it is always possible to find such strategy since (G,B) satisfies
optimality equations and G is finite image.
Now consider an arbitrary strategy χ ∈ ΣMax and consider the run Run(s, µε, χ) =
〈s0, a1, s1, . . . , sn, . . .〉. Notice that for every i > 0 we have that G(si) > G(si+1) if
si ∈ SMax and G(si) = G(si+1) if si ∈ SMin. Hence G(s0), G(s1), . . . is a non-increasing
sequence. Since G is finite image, the sequence eventually becomes constant. Assume
that for i > N we have that G(si) = g. Now notice that for all i > N we have that
B(si) > π(si, ai+1)− g +B(si+1) if si ∈ SMax and B(si) > π(si, ai+1)− g +B(si+1)− ε
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if si ∈ SMin. Summing these equations sidewise from i = N to N + k we have that
B(sN ) >

∑N+k
i=N π(si, ai+1)− (k + 1) · g +B(sN+k+1)− (k + 1) · ε. Rearranging, we get

g >
1

k + 1

N+k∑
i=N

π(si, ai+1) + 1
k + 1(B(sN+k+1)−B(sN ))− ε.

Hence

g > lim sup
k→∞

1
k + 1

N+k∑
i=N

π(si, ai+1) + lim sup
k→∞

1
k + 1(B(sN+k+1)−B(sN ))− ε

= lim sup
k→∞

1
k

k∑
i=0

π(si, ai+1)− ε .

Hence G(s) + ε > AMin(Run(s, µε, χ)). Since χ is an arbitrary strategy in ΣMax, we have
G(s) + ε > supχ′∈ΣMax

AMin(Run(s, µε, χ′)).
This part is analogous to the first part of the proof and is omitted.

The proof is now complete. J

2.2 Timed Automata
Priced Timed Game Arenas (PTGAs) extend classical timed automata [2] with a partition of
the actions between two players Min and Max. Before we present the syntax and semantics
of PTGAs, we need to introduce the concept of clock variables and related notions.

Clocks. Let X be a finite set of clocks. A clock valuation on X is a function ν : X→R>0 and
we write V (X ) (or just V when X is clear from the context) for the set of clock valuations.
Abusing notation, we also treat a valuation ν as a point in (R>0)|X |. Let 0 denote the clock
valuation that assigns 0 to all clocks. If ν ∈ V and t ∈ R>0 then we write ν+t for the clock
valuation defined by (ν+t)(c) = ν(c)+t for all c ∈ X . For C ⊆ X , we write ν[C := 0] for the
valuation where ν[C := 0](c) equals 0 if c ∈ C and ν(c) otherwise. For X ⊆ V (X ), we write
X for the smallest closed set in V containing X. Although clocks are usually allowed to take
arbitrary non-negative values, for notational convenience we assume that there is a K ∈ N
such that for every c ∈ X we have ν(c) 6 K.

Clock Constraints. A clock constraint over X with upper bound K ∈ N is a conjunction
of simple constraints of the form c ./ i or c−c′ ./ i, where c, c′ ∈ X , i ∈ N, i6K, and
./ ∈ {<,>,=,6,>}. For ν ∈ V (X ) and K ∈ N, let CC(ν,K) be the set of clock constraints
with upper bound K which hold in ν, i.e. those constraints that resolve to true after
substituting each occurrence of a clock x with ν(x).

Regions and Zones. Every clock region is an equivalence class of the indistinguishability-
by-clock-constraints relation. For a given set of clocks X and upper bound K ∈ N on clock
constraints, a clock region is a maximal set ζ⊆V (X ) such that CC(ν,K)=CC(ν′,K) for all
ν, ν′ ∈ ζ. For the set of clocks X and upper bound K we write R(X ,K) for the corresponding
finite set of clock regions. We write [ν] for the clock region of ν. A clock zone is a convex set
of clock valuations that satisfies constraints of the form γ ::= c1 ./ k | c1 − c2 ./ k | γ ∧ γ,
k ∈ N, c1, c2 ∈ X and ./ ∈ {≤, <,=, >,≥}. We write Z(X ,K) for the set of clock zones
over the set of clocks X and upper bound K. When X and K are clear from the context we
write R and Z for the set of regions and zones. In this paper we fix a positive integer K,
and work with K-bounded clocks and clock constraints.
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2.3 Priced Timed Game Arena: Syntax and Semantics
I Definition 3. A priced timed game arena is a tuple T=(LMin, LMax,Act,X , Inv, E, ρ, δ, p)
where LMin and LMax are sets of locations controlled by Player Min and Player Max and we
write L = LMin ∪ LMax; Act is a finite set of actions; X is a finite set of clocks; Inv : L→ Z
is an invariant condition; E : L×Act → Z is an action enabledness function; ρ : Act → 2C is
a clock reset function; δ : L×Act → L is a transition function; and p : L ∪ L×Act → R is a
price information function. A PTGA is binary-priced when p(`) ∈ {0, 1} for all ` ∈ L.

When we consider a PTGA as an input of an algorithm, its size is understood as the sum of
the sizes of encodings of L, X , Inv, Act, E, ρ, δ and p. We draw the states of Min players as
circles, while states of Max player as boxes.

Let T = (LMin, LMax,Act,X , Inv, E, ρ, δ, p) be a PTGA. A configuration of a PTGA is
a pair (`, ν), where ` is a location and ν a clock valuation such that ν ∈ Inv(`). For any
t ∈ R>0, we let (`, ν)+t equal the configuration (`, ν+t). In a configuration (`, ν), a timed
action (time-action pair) (t, a) is available if and only if the invariant condition Inv(`) is
continuously satisfied while t time units elapse, and a is enabled (i.e. the enabling condition
E(`, a) is satisfied) after t time units have elapsed. Furthermore, if the timed action (t, a) is
performed, then the next configuration is determined by the transition relation δ and the
reset function ρ, i.e. the clocks in ρ(a) are reset and we move to the location δ(`, a).

A game on a PTGA starts in an initial configuration (`, ν) ∈ L × V and players Min
and Max construct an infinite play by taking turns to choose available timed actions (t, a)
whenever the current location is controlled by them and the price p(`) · t+ p(`, a) is paid to
the Max by player Min. Formally, PTGA semantics is given as a game arena.

I Definition 4 (PTGA Semantics). Let T = (LMin, LMax,Act,X , Inv, E, ρ, δ, p) be a PTGA.
The semantics of T is given by game arena [[T]]=(S, SMin, SMax, A, T, π) where

S ⊆ L×V is the set of states such that (`, ν) ∈ S if and only if ν ∈ Inv(`);
(`, ν) ∈ SMin (or (`, ν) ∈ SMax) if (`, ν) ∈ S and ` ∈ LMin (or ` ∈ LMax, respectively).
A = R>0×Act is the set of timed actions;
T : S ×A→ S is the transition function such that for (`, ν) ∈ S and (t, a) ∈ A, we have
T ((`, ν), (t, a)) = (`′, ν′) if and only if
ν+t′ ∈ Inv(`) for all t′ ∈ [0, t]; ν+t ∈ E(`, a); (`′, ν′) ∈ S, δ(`, a) = `′, (ν + t)[ρ(a) :=
0] = ν′.

π : S×A→R is the reward function where π((`, ν), (t, a))=p(`) · t+ p(`, a).

We are interested in the mean-payoff decision problem for timed automata T that asks to
decide whether the value of the mean-payoff game for a given state is below a given budget.
For a PTGA T and budget r ∈ R, we write MPG(T, r) for the r-mean payoff decision problem
that asks whether the value of the game at the state (`,0) is smaller than r. The following
theorem summarizes the key contribution of this paper.

I Theorem 5. The decision problem MPG(T, r) for binary-priced timed automata T is
undecidable for automata with three clocks, and decidable for automata with one clock.

3 Boundary Region Graph Abstraction

In this section we introduce an abstraction of priced timed games called the boundary
region abstraction (that generalizes classical corner-point abstraction [7]), and characterize
conditions under which a solution of optimality equations for the boundary region abstraction
can be lifted to a solution of optimality equations for timed automata. Observe that in order
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to keep our result as general as possible, we present the abstraction and corresponding results
for timed automata with an arbitrary number of clocks. In the following section, we show
that the required conditions hold for the case of one-clock binary-priced timed automata.

Timed Successor Regions. Recall that R is the set of clock regions. For ζ, ζ ′ ∈ R, we say
that ζ ′ is in the future of ζ, denoted ζ ∗−→ ζ ′, if there exist ν ∈ ζ, ν′ ∈ ζ ′ and t ∈ R>0 such
that ν′ = ν+t and say ζ ′ is the time successor of ζ if ν+t′ ∈ ζ ∪ ζ ′ for all t′ 6 t and write
ζ → ζ ′, or equivalently ζ ′ ← ζ, to denote this fact. For regions ζ, ζ ′ ∈ R such that ζ ∗−→ ζ ′

we write [ζ, ζ ′] for the zone
⋃
{ζ ′′ | ζ ∗−→ ζ ′′ ∧ ζ ′′ ∗−→ ζ ′}.

Thin and Thick Regions. We say that a region ζ is thin if [ν]6=[ν+ε] for every ν ∈ ζ and
ε>0 and thick otherwise. We write RThin and RThick for the sets of thin and thick regions,
respectively. Observe that if ζ ∈ RThick then, for any ν ∈ ζ, there exists ε>0, such that
[ν]=[ν+ε] and the time successor of a thin region is thick, and vice versa.

Intuition for the Boundary Region Graph (BRG). Recall that K is an upper bound on
clock values and let JKKN = {0, 1, . . . ,K}. For any ν ∈ V , b ∈ JKKN and c ∈ X , we define
time(ν, (b, c))def=b−ν(c) if ν(c)6b, and time(ν, (b, c))def=0 if ν(c)>b. Intuitively, time(ν, (b, c))
returns the amount of time that must elapse in ν before the clock c reaches the integer value
b. Observe that, for any ζ ′ ∈ RThin, there exists b ∈ JKKN and c ∈ X , such that ν ∈ ζ
implies (ν+(b−ν(c)) ∈ ζ ′ for all ζ ∈ R in the past of ζ ′ and write ζ →b,c ζ

′. The boundary
region abstraction is motivated by the following. Consider a ∈ Act, (`, ν) and ζ ∗−→ ζ ′ such
that ν ∈ ζ, [ζ, ζ ′] ⊆ Inv(`) and ν′ ∈ E(`, a). (For illustration, see Figure 2 in the appendix
in [15]).

If ζ ′ ∈ RThick, then there are infinitely many t ∈ R>0 such that ν+t ∈ ζ ′. However,
amongst all such t’s, for one of the boundaries of ζ ′, the closer ν+t is to this boundary,
the ‘better’ the timed action (t, a) becomes for a player’s objective. However, since ζ ′ is a
thick region, the set {t ∈ R>0 | ν+t ∈ ζ ′} is an open interval, and hence does not contain
its boundary values. Let the closest boundary of ζ ′ from ν be defined by the hyperplane
c = binf and the farthest boundary of ζ ′ from ν be defined by the hyperplane c = bsup.
binf, bsup ∈ N are such that binf − ν(c) (bsup−ν(c)) is the infimum (supremum) of the time
spent to reach the lower (upper) boundary of region ζ ′. Let the zones that correspond
to these boundaries be denoted by ζ ′inf and ζ ′sup respectively. Then ζ →binf,c ζ

′
inf → ζ ′ and

ζ →bsup,c ζ
′
sup ← ζ ′. In the boundary region abstraction we include these ‘best’ timed

actions through (binf, c, a, ζ
′) and (bsup, c, a, ζ

′).
If ζ ′ ∈ RThin, then there exists a unique t ∈ R>0 such that ν+t ∈ ζ ′. Moreover since ζ ′
is a thin region, there exists a clock c ∈ C and a number b ∈ N such that ζ →b,c ζ

′ and
t = b−ν(c). In the boundary region abstraction we summarise this ‘best’ timed action
from region ζ via region ζ ′ through the action (b, c, a, ζ ′).

Based on this intuition above the boundary region abstraction (BRA) is defined as follows.

I Definition 6. For a priced timed game arena T = (LMin, LMax,Act,X , Inv, E, ρ, δ, p) the
boundary region abstraction of T is given by the game arena T̂ = (Ŝ, ŜMin, ŜMax, Â, T̂ , π̂)

Ŝ ⊆ L×V×R is the set of states such that (`, ν, ζ) ∈ Ŝ if and only if ζ ⊆ Inv(`) and
ν ∈ ζ (recall that ζ denotes the closure of ζ);
(`, ν, ζ) ∈ ŜMin (or (`, ν, ζ) ∈ ŜMax) if (`, ν, ζ) ∈ Ŝ and ` ∈ LMin (or ` ∈ LMax, resp.).
Â = (JKKN×X×Act×R) is the set of actions;
For ŝ=(`, ν, ζ)∈Ŝ and α=(bα, cα, aα, ζα)∈Â, function T̂ (ŝ, α) is defined if [ζ, ζα]⊆Inv(`)
and ζα ⊆ E(`, aα) and it equals (`′, ν′, ζ ′) ∈ Ŝ where δ(`, aα) = `′, να[C:=0] = ν′ and
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ζα[C:=0] = ζ ′ with να = ν+time(ν, (bα, cα)) and one of the following conditions holds:
ζ →bα,cα ζα; ζ →bα,cα ζinf → ζα for some ζinf ∈ R; ζ →bα,cα ζsup ← ζα for some ζsup ∈ R;
for (`, ν, ζ) ∈ Ŝ and (bα, cα, aα, ζα) ∈ Â the reward function π̂ is given by:
π̂((`, ν, ζ), (bα, cα, aα, ζα)) = p(`, aα) + p(`) · (bα−ν(cα))

Although the boundary region abstraction is not a finite game arena, every state has only
finitely many time successors (the boundaries of the regions) and for a fixed initial state we
can restrict attention to a finite game arena due to the following observation.

I Lemma 7 ([23]). Let T be a priced timed game arena and T̂ the corresponding BRA. For
any state of T̂, its reachable sub-graph is finite and can be constructed in time exponential in
the size of T when T has more than one clock. For one clock T, the reachable sub-graph of T̂
can be constructed in time polynomial in the size of T. Moreover, the reachable sub-graph
from the initial location and clock valuation is precisely the corner-point abstraction.

3.1 Reduction to Boundary Region Abstraction
In what follows, unless specified otherwise, we fix a PTGA T = (LMin, LMax,Act,X , Inv, E, ρ,
δ, p) with semantics [[T]]=(S, SMin, SMax, A, T, π) and BRA T̂ = (Ŝ, ŜMin, ŜMax, Â, T̂ , π̂). Let
G : Ŝ → R and B : Ŝ → R be such that (G,B) |= Opt(T̂), i.e. for every ŝ ∈ Ŝ we have that

G(ŝ) =

max
α∈Â(ŝ){G(ŝ′) : ŝ α−→ ŝ′} if ŝ ∈ ŜMax

min
α∈Â(ŝ){G(ŝ′) : ŝ α−→ ŝ′} if ŝ ∈ ŜMin.

B(ŝ) =

max
α∈Â(ŝ){π(ŝ, α)−G(ŝ) +B(ŝ′) : ŝ α−→ ŝ′ and G(ŝ) = G(ŝ′)} if ŝ ∈ ŜMax

min
α∈Â(ŝ){π(ŝ, α)−G(ŝ) +B(ŝ′) : ŝ α−→ ŝ′ and G(ŝ) = G(ŝ′)} if ŝ ∈ ŜMin.

For a function F : Ŝ → R we define a function F� : S → R as (`, ν) 7→ F (`, ν, [ν]). In this
section we show under what conditions we can lift a solution (G,B) of optimality equations
of BRA to (G�, B�) for priced timed game arena. Given a set of valuations X⊆V , a function
f : X → R>0 is affine if for any valuations νx, νy ∈ X we have that for all λ ∈ [0, 1],
f(λνx+(1−λ)νy) = λf(νx)+(1−λ)f(νy). We say that a function f : Ŝ → R>0 is regionally
affine if f(`, ·, ζ) is affine over a region for all ` ∈ L and ζ ∈ R, and f is regionally constant if
f(`, ·, ζ) is constant over a region for all ` ∈ L and ζ ∈ R. Some properties of affine functions
that are useful in the proof of the key lemma are given in Lemma 8.

I Lemma 8. Let X ⊆ V and Y ⊆ R>0 be convex sets. Let f : X → R and w : X × Y → R
be affine functions. Then for C ⊆ X we have that φC(ν, t) = w(ν, t) + f((ν + t)[C:=0]) is
also an affine function, and inft1<t<t2 φC(ν, t) = min{φC(ν, t1), φC(ν, t2)} and
supt1<t<t2 φC(ν, t) = max{φC(ν, t1), φC(ν, t2)}, φ is the unique continuous closure of φ.

I Theorem 9. Let G : Ŝ → R and B : Ŝ → R are such that (G,B) |= Opt(T̂) and G is
regionally constant and B is regionally affine, then (G�, B�) |= Opt(T).

Proof. We need to show that (G�, B�) |= Opt(T), i.e. for every

G�(s) =


sup

(t,a)∈A(s)
{G�(s′) : s (t,a)−−−→ s′} if s ∈ SMax

inf
(t,a)∈A(s)

{G�(s′) : s (t,a)−−−→ s′} if s ∈ SMin.

B�(s) =


sup

(t,a)∈A(s)
{π(s, (t, a))−G�(s)+B�(s′) : s (t,a)−−−→ s′ and G�(s) = G�(s′)} if s ∈ SMax

inf
(t,a)∈A(s)

{π(s, (t, a))−G�(s)+B�(s′) : s (t,a)−−−→ s′ and G�(s) = G�(s′)} if s ∈ SMin.
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Consider the case when s = (`, ν) ∈ SMin and consider the right side of the gain equations.

inf
(t,a)∈A(s)

{G�(s′) : s (t,a)−−−→ s′}

= min
ζ′′:[ν]→∗ζ′′

[ζ,ζ′′]∈Inv(`)

min
a∈Act

inf
t :

ν+t∈ζ′′
{G(δ(`, a), (ν+t)[ρ(a):=0], [(ν+t)][ρ(a):=0])}

= min
α∈Â(`,ν,[ν])

{G(`′, ν′, ζ ′) : (`, ν, ζ) α−→ (`′, ν′, ζ ′)} = G(`, ν, [ν]) = G�(`, ν).

The first equality holds since (G,B) |= Opt(T̂). The second equality follows since G is
regionally constant and hence it suffices to consider the delay time(ν, (b, c)) that corresponds
to either left or right boundary of the region ζ ′′, i.e. for fixed ν, ζ ′′ and a ∈ Act we have that
inf t :

ν+t∈ζ′′
{G(`′, (ν + t)[ρ(a):=0], ζ ′)} = G(`′, να[C:=0], ζ ′) where να = ν+time(ν, (bα, cα)),

ζ ′′[C:=0] = ζ ′ with ζ →bα,cα ζ
′′ if ζ ′′ is thin, and ζ →bα,cα ζinf → ζ ′′ for some ζinf ∈ R if ζ ′′ is

thick. Similarly, for the bias equations, we need to show:

inf
t :

ν+t∈ζ′′
{π((`, ν), (t, a))−G(`, ν) +B(`′, (ν + t)[ρ(a):=0], ζ ′)}

= π((`, ν, [ν]), (time(ν, (bα, cα))))−G(`, ν, [ν]) +B(`′, να[C:=0], ζ ′)

where να = ν+time(ν, (bα, cα)), ζ ′′[C:=0] = ζ ′ with ζ →bα,cα ζ
′′ if ζ ′′ is thin; and ζ →bα,cα

ζinf → ζ ′′ for some ζinf ∈ R or ζ →bα,cα ζsup → ζ ′′ for some ζsup ∈ R if ζ ′′ is thick. Given B
is regionally affine (and hence linear in t) and the price function is linear in t, the whole
expression π((`, ν), (t, a))−G(`, ν)+B(`′, (ν+t)[ρ(a):=0], ζ ′) is linear in t and from Lemma 8
it attains its infimum or supremum on either boundary of the region. J

4 Decidability for One Clock Binary-priced PTGA

Given the undecidability with 3 or more clocks, we focus on one clock PTGA. We provide
a strategy improvement algorithm to compute a solution G : Ŝ → R and B : Ŝ → R of
the optimality equations, i.e. (G,B) |= Opt(T̂) for the BRA T̂ = (Ŝ, ŜMin, ŜMax, Â, T̂ , π̂) of
one-clock binary-priced PTGAs with certain “integral payoff” restriction. Further, we show
that for one clock binary-priced integral-payoff PTGA, the solution of optimality equations
of corresponding BRG is such that the gains are regionally constant and biases are regionally
affine. Hence by Theorem 9, the algorithm can be applied to solve mean-payoff games for
one-clock binary-priced integral-payoff PTGAs. We also show how to lift the integral-payoff
restriction to recover decidability for one-clock binary-priced PTGA.

Regionally constant positional strategies. Standard strategy improvement algorithms
iterate over a finite set of strategies such that the value of the subgame at each iteration
gets strictly improved. However, since there are infinitely many positional strategies in a
boundary region abstraction, we focus on “regionally constant” positional strategies (RCPSs).
We say that a positional strategy µ : Ŝ → Â of player Min is regionally-constant if for
all (`, ν, ζ), (`, ν′, ζ) ∈ ŜMin we have that [ν]=[ν′] implies that µ(`, ν, ζ) = µ(`, ν′, ζ). We
similarly define RCPSs for player Max. In other words, in an RCPS a player chooses the
same boundary action for every valuation of a region – as a side-result we show that optimal
strategies for both players have this form. Observe that there are finitely many RCPSs for
both players. We write Π̂Min and Π̂Max for the set of RCPSs for player Min and player
Max, respectively. For a BRA T̂, χ ∈ Π̂Max, and µ ∈ Π̂Min we write T̂(χ) and T̂(µ) for the
“one-player” game on the sub-graph of BRAs where the strategies of player Max and Min
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Algorithm 1: ComputeValueZeroPlayer(T, µ, χ)
1 Consider T̂(µ, χ) as a (single successor) weighted graph G = (V,E,w) where

V = L×R×R (with an order �) and E ⊆ V × Â× V
(v1, α, v2) ∈ E if v1 = (`1, ζ1, ζ ′1), v2 = (`2, ζ2, ζ ′2), and µ(`1, ν1, ζ

′
1) = α (or

χ(`1, ν1, ζ
′
1) = α) for all ν1 ∈ ζ1 and (`1, ν1, ζ

′
1) α−→ (`2, ν2, ζ

′
2) for some ν2 ∈ ζ2.

w(v1, α, v2) is the expression ν 7→ bα − ν(cα);
for every cycle C of G do

Let Reach(C) be set of vertices that reach C;
Let γ be the average weight of the cycle (w is constant on cycles);
For every vertex V in Reach(C) set G(V ) = γ and B(V ) = ⊥;
For the smallest �-vertex V∗ in C. Set B(V∗) = 0;
while there is V ′ ∈ Reach(C) with B(V ′) = ⊥ do

Let (V ′, α, V ′′) ∈ E with B(V ′′) 6= ⊥;
B(V ′) := ν 7→ (w(V ′, α, V ′′)(ν)−G+B(V ′′));

return (G,B);

have been fixed to RCPSs χ and µ, respectively. Similarly we define the zero-player game
T̂(µ, χ) where strategies of both players are fixed to RCPSs µ and χ.

Let T̂(χ, µ) be a zero-player game on the subgraph where strategies of player Max (and
Min) are fixed to RCPSs χ (and µ). Observe that for T̂(µ, χ) the unique runs originating from
states ŝ0 = (`, ν, ζ) and ŝ′0 = (`, ν′, ζ) with [ν] = [ν′] follow the same “lasso” after one step,
i.e. the unique runs ŝ0

α1−→ ŝ1 · · · ŝk( αk+1−−−→ · · · ŝk+N−1
αk+N−−−−→ ŝk)∗ and ŝ′0

α1−→ ŝ′1 · · · ŝ′k( αk+1−−−→
· · · ŝ′k+N−1

αk+N−−−−→ ŝ′k)∗ are such that for ŝi = (`i, νi, ζi) and ŝ′i = (`′i, ν′i, ζ ′i) we have that
`i = `′i, ζi = ζ ′i and νi = ν′i for all i ∈ [1, k+N−1]. This is so because for one-clock timed
automata the successors of the states ŝ0 = (`, ν, ζ) and ŝ′0 = (`, ν′, ζ) for action α1 = (b, c, a, ζ ′)
is the same (`′′, ν′′, ζ ′′) where ν′′(c) = ν(c) + (b− ν(c)) = b = ν′(c) + (b− ν′(c)) if c 6∈ ρ(a)
and ν′′(c) = 0 otherwise. Consider the optimality equations (See Appendix C.3 in [15]) for
the lasso. Observe that the gain for the states ŝ0, . . . , ŝk+N−1 is the same, and let’s call it g.
If we add the bias equations side-wise for the cycle, we get g = 1

N

∑N−1
i=0 π(ŝk+i, αk+i+1). It

follows from the previous observation that the gains are regionally constant.

Integral Payoff PTGA. The gain in a zero-player game, T̂(χ, µ), although regionally-
constant, may not be a whole number. We say that a PTGA is integral-payoff if for every
pair (µ, χ) ∈ Π̂Min × Π̂Max of RCPSs the gain as defined above is a whole number. Observe
that the denominator in the gains correspond to the number of edges in a simple cycle of the
BRA T̂. If there are N simple cycles in the region graph of length n1, n2 . . . , nN , then let
L be the least-common multiple of n1, n2 . . . , nN . We multiply the constants appearing in
the guards and invariants of the original PTGA T by L to obtain a PTGA ΥT. It is easy
to observe that mean-payoff of any state in T is the mean-payoff in ΥT divided by L. For
notational convenience, we assume that the given PTGA is an integral-payoff PTGA and
hence for RCPS strategy profile (µ, χ) the gain is regionally constant and integral.

4.1 Strategy Improvement Algorithm for Binary-Priced PTGA
Let T be a one-clock integral-payoff binary-priced PTGA T and T̂ be its boundary region
graph. For a given RCPS profile (µ, χ) ∈ Π̂Min× Π̂Max, Algorithm 1 computes the solution for
the optimality equations Opt(T(µ, χ)). This algorithm considers T̂(µ, χ) as a graph whose
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Algorithm 2: ComputeValueTwoPlayer(T)
1 Choose an arbitrary regionally constant positional strategy χ′ ∈ ΠMax;
2 repeat
3 χ := χ′;
4 Choose an arbitrary regionally constant positional strategy µ′ ∈ ΠMin;
5 repeat
6 µ := µ′;
7 (G,B) := ComputeValueZeroPlayer(T, µ, χ) ;
8 µ′ := ImproveMinStrategy(T, µ,G,B) ;
9 until µ = µ′;

10 χ′ := ImproveMaxStrategy(T, χ,G,B) ;
11 until χ = χ′;
12 return (G,B);

vertices are “regions” (`, [ν], ζ) corresponding to state (`, ν, ζ) ∈ Ŝ of the boundary region
graph, edges are boundary actions between them determined by the regionally constant
strategy profile, and weight of an edge is the time function associated with the boundary
action. Observe that every cycle in this graph will have constant weight on the edges since
taking boundary actions in a loop will require going from an integral valuation to another
integral valuation, and the average cost of such a cycle can be easily computed.

Also observe that, not unlike standard convention [21], our algorithm chooses a vertex
in a cycle arbitrarily and fixes the bias of all of the states in that vertex to 0. This is
possible since optimality equations over a cycle are underdetermined, and we exploit this
flexibility to achieve solution to biases in a particularly “simple” structure. We say that
a function f : Ŝ → R>0 is regionally simple [3] if for all ` ∈ L, ζ, ζ ′ ∈ R either i) there
exists a d ∈ N such that f(`, ν, ζ ′) = d for all ν ∈ ζ; or ii) there exists d ∈ N and c ∈ X
such that f(`, ν, ζ ′) = d− ν(c) for all ν ∈ ζ. Key properties of regionally simple functions
(Lemma 20 in Appendix C.2 in [15] include that they are also regionally affine, closed under
minimum and maximum, and if B : Ŝ → R is a regionally simple function and G : ŝ→ N is
a regionally constant function, then ŝ 7→ π(ŝ, α)−G(ŝ) +B(ŝ′), with ŝ α−→ ŝ′, is a regionally
simple function. Using these properties and induction on the distance to �-minimal element
in the reachable cycle, we prove the correctness and following property of Algorithm 1.

I Lemma 10. Algorithm 1 computes solution of optimality equations (G,B) |= Opt(T̂(µ, χ))
for µ ∈ Π̂Min and χ ∈ Π̂Max. Moreover, G is regionally constant and B is regionally simple.

The strategy improvement algorithm to solve optimality equations is given as Algorithm 2.
It begins by choosing an arbitrary regionally constant positional strategy χ′ and at every
iteration of the loop (2–11) the algorithm computes (5–9) the value (G,B) of the current
RCPS χ and based on the value, the function ImproveMaxStrategy returns an improved
strategy by picking boundary action that lexicographically maximizes gain and bias respecting
the policy that switches a decision only for a strict improvement. We formally define the
function ImproveMaxStrategy as follows: for χ∈Σ̂Max, G : Ŝ→R, and B : Ŝ→R we let
strategy ImproveMaxStrategy(T, χ,G,B) be such that for all ŝ ∈ ŜMax we have

ImproveMaxStrategy(T, χ,G,B)(ŝ) =
{
χ(ŝ) if χ(ŝ) ∈M∗(ŝ, G,B)
Choose(M∗(ŝ, G,B)) Otherwise.

where M∗(ŝ, G,B) = argmaxlex
α∈Â{(G(ŝ′), π(ŝ, α)−G(ŝ) + B(ŝ′)) : ŝ α−→ ŝ′} and Choose

picks an arbitrary element from a set. ImproveMaxStrategy satisfies the following.
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I Lemma 11. If χ ∈ Π̂Max, G is regionally constant, and B is regionally simple, then function
ImproveMaxStrategy(T, χ,G,B) returns a regionally constant positional strategy.

The lines (5–9) compute the value of the strategy χ of Player Max via a strategy improve-
ment algorithm. This sub-algorithm works by starting with an arbitrary strategy of Player
Min and computing the value (G,B) of the zero-player PTGA T̂(µ, χ). Based on the value,
the function ImproveMinStrategy returns an improved strategy of Min. The function
ImproveMinStrategy is defined as a dual of the function ImproveMaxStrategy where
χ is replaced by µ and argmax by argmin. ImproveMinStrategy satisfies the following.

I Lemma 12. If µ ∈ Π̂Min, G is regionally constant, and B is regionally simple, then function
ImproveMinStrategy(T, µ,G,B) returns a regionally constant positional strategy.

It follows from Lemma 11 and Lemma 12 that at every iteration of the strategy improvement
the strategies µ and χ are RCPSs. Together with finiteness of the set of RCPSs and strict
improvement at every step (see Lemmas 21 and 22 in [15] for the formal statements), we get
following result.

I Theorem 13. Algorithm 2 computes solution of optimality equations (G,B) |= Opt(T̂) for
integral payoff PTGA T. Moreover, G is regionally constant and B is regionally affine.

This theorem – together with Theorem 9 and Theorem 2 – gives a proof of decidability for
mean-payoff games for integral-payoff binary-priced one-clock timed automata.

5 Undecidability Results

I Theorem 14. The mean-payoff problem MPG(T, r) is undecidable for PTGA T with 3
clocks having location-wise price-rates π(`) ∈ {0, 1,−1} for all ` ∈ L and r = 0. Moreover, it
is undecidable for binary-priced T with 3 clocks and r > 0.

Proof. We first show the undecidability result of the mean-payoff problem MPG(T, 0) with
location prices {1, 0,−1} and no edge prices. We prove the result by reducing the non-halting
problem of 2 counter machines. Our reduction uses a PTGA with 3 clocks x1, x2, x3, location
prices {1, 0,−1}, and no edge prices. Each counter machine instruction (increment, decrement,
zero check) is specified using a PTGA module. The main invariant in our reduction is that on
entry into any module, we have x1 = 1

5c1 7c2 , x2 = 0 and x3 = 0, where c1, c2 are the values
of counters C1, C2. We outline the construction for the decrement instruction of counter
C1 in Figure 2. For conciseness, we present here modules using arbitrary location prices.
However, we can redraw these with extra locations and edges using only the location prices
from {1, 0,−1} as shown for WD1

1 in Figure 1.
The role of the Min player is to faithfully simulate the two counter machine, by choosing

appropriate delays to adjust the clocks to reflect changes in counter values. Player Max will
have the opportunity to verify that player Min did not cheat while simulating the machine.

We enter location `k with x1 = 1
5c1 7c2 , x2 = 0 and x3 = 0. Let’s denote by xold the value

1
5c1 7c2 . To correctly decrement C1, player Min should choose a delay of 4xold at location `k.
At location Check, there is no time elapse and player Max has three possibilities : (i) to go
to `k+1 and continue the simulation, or (ii) to enter the widget WD1

1, or (iii) to enter the
widget WD1

2. If player Min makes an error, and delays 4xold + ε or 4xold − ε at `k (ε > 0),
then player Max can enter one of the widgets and punish player Min. Player Max enters
widget WD1

1 if the error made by player Min is of the form 4xold + ε at `k and enters widget
WD1

2 if the error made by player Min is of the form 4xold − ε at `k.
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Figure 1 WD1
1 redrawn with location prices from {1, 0,−1}. Every location has a self loop with

the guard x2, x3 = 1, reset x2, x3, which is not shown here for conciseness. The curly edge from B

to C is shown below. The mean-payoff incurred in one transit from A to A via E is ε
14 . If Min

makes no error, this is 0.

0
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[x3 = 0]
`k+1WD1

1 WD1
2

−5
A

20
B

−15
C

0
D

0
E

x161
{x3} {x2}

x2=1
{x2}

x1=2
{x1}

x1=1
{x1}

x2=2
{x2}

x3 = 3, {x3}

W
D

1 1

Figure 2 Simulation to decrement counter C1, mean cost is ε for error ε. The widget WD1
2 has

exactly the same structure and guards on all transitions as WD1
1, but the price signs are reversed.

Let us examine the widget WD1
1. When we enter WD1

1 for the first time, we have
x1 = xold + 4xold + ε, x2 = 4xold + ε and x3 = 0. In WD1

1, the cost of going once from
location A to E is 5ε. Also, when we get back to A after going through the loop once, the
clock values with which we entered WD1

1 are restored; thus, each time, we come back to A,
we restore the starting values with which we enter WD1

1. The third clock is really useful for
this purpose only. It can be seen that the mean cost of transiting from A to A through E is
ε. In a similar way, it can be checked that the mean cost of transiting from A to A through
E in widget WD1

2 is ε when player Min chooses a delay 4xold − ε at `k. Thus, if player Min
makes a simulation error, player Max can always choose to goto one of the widgets, and
ensure that the mean pay-off is not 6 0. Note that when ε = 0, then player Min will achieve
his objective: the mean pay-off will be 0. Details of other gadgets are in Appendix D in [15].

For the MPG(T, r) problem (r > 0) we reduce the non-halting problem by constructing a
PTGA with 3 clocks and location prices in {0, 1} such that the meanpayoff is 6 1

3 iff Min
does a faithful simulation. Again, details can be found in Appendix D in [15]. J

In Appendix D.2 in [15], we show how this undecidability results extends (with the
same parameters) if one defines mean payoff per time unit instead of per step. This way of
averaging across time spent was considered in [10], where the authors show the undecidability
of MPG(T, 0) with 5 clocks. We improve this result to show undecidability already in 3
clocks.
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