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Abstract
We show that the k-SUM problem can be solved by a linear decision tree of depth O(n2 log2 n),
improving the recent bound O(n3 log3 n) of Cardinal et al. [7]. Our bound depends linearly on k,
and allows us to conclude that the number of linear queries required to decide the n-dimensional
Knapsack or SubsetSum problems is only O(n3 logn), improving the currently best known
bounds by a factor of n [28, 29]. Our algorithm extends to the RAM model, showing that the
k-SUM problem can be solved in expected polynomial time, for any fixed k, with the above
bound on the number of linear queries. Our approach relies on a new point-location mechanism,
exploiting “ε-cuttings” that are based on vertical decompositions in hyperplane arrangements in
high dimensions. A major side result of the analysis in this paper is a sharper bound on the
complexity of the vertical decomposition of such an arrangement (in terms of its dependence
on the dimension). We hope that this study will reveal further structural properties of vertical
decompositions in hyperplane arrangements.
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1 Introduction

Problem definition and the model. In this paper we study the k-SUM problem, and the
more general k-linear degeneracy testing (k-LDT) problem. We define them formally:

I Definition 1 (k-SUM). Given a point x := (x1, x2, . . . , xn) ∈ Rn, decide whether there
exist k indices i1, i2, . . . , ik such that xi1 + xi2 + . . .+ xik

= 0.

In what follows, we assume that we are looking for a k-tuple of distinct coordinates. The
case where some coordinates can be repeated more than once is also easy to handle, by a
straightforward extension of the technique presented here, which we omit, for the sake of
simplicity of presentation.
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41:2 A Nearly Quadratic Bound for the Decision Tree Complexity of k-SUM

IDefinition 2 (k-LDT). Given a fixed k-variate linear function f(y1, . . . , yk) = a0+
∑k

i=1 aiyi,
where a0, a1, . . . , ak are real coefficients, and a point x := (x1, x2, . . . , xn) ∈ Rn, decide
whether there exist k indices i1, i2, . . . , ik such that f(xi1 , xi2 , . . . , xik

) = 0.1

By definition, k-SUM is a special case of k-LDT when we set f(y1, . . . , yk) =
∑k

i=1 yi.
We note that the special case k = 3, the so-called 3-SUM problem, received considerable
attention in the past two decades, due to its implications to conditional lower bounds on the
complexity of many fundamental geometric problems; see [18] and below for a list of such
problems. From now on we focus only on the k-SUM problem; the algorithm that we present
applies more or less verbatim to k-LDT too.

Following the approach in Cardinal et al. [7] for k-SUM (see also [2, 15]), let H be the
collection of the

(
n
k

)
hyperplanes h in Rn of the form xi1 +xi2 + · · ·+xik

= 0, over all k-tuples
1 ≤ i1 < i2 < · · · < ik ≤ n. Then the k-SUM problem can be reformulated as asking, for a
query point x, whether x lies on any hyperplane of H. This can be determined by locating
x in the arrangement A(H) formed by those hyperplanes.

The model in which we consider this problem is the s-linear decision tree: Solving an
instance of the problem with input x = (x1, . . . , xn) is implemented as a search with x in
some tree T . Each internal node v of T is assigned a linear function in the n variables
x1, . . . , xn, with at most s non-zero coefficients. The outgoing edges from v are labeled <, >,
or =, indicating the branch to follow depending on the sign of the expression at v evaluated
at x. Leaves are labeled “YES” or “NO”, where “YES” means that we have managed to
locate x on a hyperplane of H, and “NO” means that x does not lie on any hyperplane. Each
“YES” leaf has an edge labeled “=” leading to it (but not necessarily vice versa, because
some of the tests may involve auxiliary hyperplanes that are not part of the input). To solve
an instance of the problem, we begin at the root of T . At each node v that we visit, we
test the sign at x of the linear function at v, and proceed along the outgoing edge labeled
by the result of the test. We conduct this search until we reach a leaf, and output its label
“YES” or “NO”. At each internal node, the test (which we also refer to as a linear query)
is assumed to cost one unit. All other operations are assumed (or rather required) not to
depend on the specific coordinates of x (although they might depend on discrete data that
has been obtained from the preceding queries with x), and incur no cost in this model. Thus
the length of the search path from the root to a leaf is the overall number of linear queries
performed by the algorithm on the given input, and is thus our measure for its cost. In other
words, the worst-case complexity of the algorithm, in this model, is the maximum depth of
its corresponding tree. As in [7], when s = n (the maximum possible value for s), we refer to
the model just as a “linear decision tree”. The study in this paper will only consider this
unconstrained case.

We also note that, although we could in principle construct the whole tree T in a
preprocessing stage, the algorithm that we present only constructs, on the fly, the search
path that x traces in T .

To recap, solving an instance of k-SUM, with input x, in this model amounts to processing
a sequence of linear queries of the form “Does x lie on some hyperplane h, or else on which
side of h does it lie?”. Each such query is a sign test, asking for the sign of h(x), where
h(·) is the linear expression defining h. Some of the hyperplanes h that participate in these
queries will be original hyperplanes of H, but others will be auxiliary hyperplanes that the
algorithm constructs. The algorithm succeeds if at least one of the linear queries that involves

1 We emphasize that in the k-LDT problem, the coefficients a0, a1, . . . , ak are fixed and the input is the
point x.
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an original hyperplane (or, during the recursion, a lower-dimensional hyperplane that is
contained in an original hyperplane) results in an equality, determining that x does lie on a
hyperplane of H.

Previous work. The k-SUM problem is a variant of the SubsetSum problem,2 and is
therefore NP-complete (when k is part of the input); however, its behavior as a function of k
(say, in the standard RAM model) has not yet been fully resolved. Specifically, Erickson [15]
showed that the k-SUM problem can be solved (in the RAM model) in time O((2n/k)dk/2e)
for k odd, and O((2n/k)k/2 log (n/k)) for k even. Moreover, he presented a nearly-tight
lower bound of Ω((n/kk)dk/2e) for k-SUM in the k-linear decision tree model (see [2] for a
more comprehensive overview of Erickson’s result). Ailon and Chazelle [2] slightly improved
Erickson’s lower bound, and extended it to the s-linear decision tree model, where s > k,
showing a lower bound of Ω

(
(nk−3)

2k−s
2d(s−k+1)/2e (1−εk)

)
, where εk > 0 tends to 0 as k goes to

∞. As stated in [2], in spite of the strength of this latter lower bound, it is not very informative
for s ≥ 2k. In particular, when s is arbitrarily large (the case studied in this paper), one
can no longer derive a lower bound of the form nΩ(k). Indeed, Meyer auf der Heide [29]
showed an upper bound of O(n4 logn) on the number of linear queries for the n-dimensional
Knapsack problem3 (and thus, in particular, for k-SUM). Meiser [28] presented an efficient
point-location mechanism for high-dimensional hyperplane arrangements, in the standard
real RAM model. When interpreted in the linear decision tree model, and applied to the
instances at hand, it yields a linear decision tree for k-SUM (as well as for the more general
problem k-LDT) of depth that is only polynomial4 in k and n. Cardinal et al. [7] improved
this bound5 to O(n3 log3 n). Concerning lower bounds in this model of computation, Dobkin
and Lipton [14] showed a lower bound of Ω(n logn) on the depth of the linear decision tree for
k-LDT, and, in another paper [13], a lower bound of Ω(n2) for the n-dimensional Knapsack
problem. See also [5, 31] for more general non-linear decision tree models of computation.

The case k = 3, i.e., the 3SUM-problem, is related to various geometric problems to
which it can be reduced. These problems are known as 3SUM-hard. These include problems
such as testing whether there exist three collinear points in a given planar set of n points,
testing whether the union of n given triangles in the plane covers the unit square, or just
testing whether the union has any holes (i.e., is not simply connected), checking for polygon
containment under translation, visibility among triangles in 3-space, planar motion planning
(under translations and rotations), translational motion planning in 3-space, maximum depth
in an arrangement of disks, and more. The study of 3SUM-hard problems was pioneered
in the seminal work of Gajentaan and Overmars [18], who showed subquadratic reductions
from 3-SUM to many of these problems; see also Barequet and Har-Peled [4] and Aronov and
Har-Peled [3] for several additional reductions. During the last two decades, the prevailing
conjecture was that any algorithm for 3-SUM requires Ω(n2) time.6 In a recent dramatic

2 In this problem, given n real numbers, we want to determine whether there is a subset of them that
sums to 0.

3 This problem is an extension of SubsetSum, and asks, given n real numbers, whether there is a subset
of them that sums to 1.

4 The original analysis of Meiser was sketchy and relied on a suboptimal choice of parameters. Meiser’s
analysis has been somewhat tightened by Liu [26]. A careful and meticulous study of Meiser’s algorithm,
with improved performance bounds, is given in the full version (written with Har-Peled and Kaplan) [16].

5 We note however that the bound in [7] only applies to instances of k-LDT where all the coefficients are
rational.

6 In fact, before the term “3SUM-hard” was coined, these problems were referred to as “n2-hard”
problems [18].
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development, this has been refuted by Grønlund and Pettie [20], who presented a (slightly)
subquadratic algorithm for 3-SUM (see also the more recent work of Chan and Lewenstein [8],
as well as those of Gold and Sharir [19] and of Freund [17]). Furthermore, Grønlund and
Pettie showed that in the (2k − 2)-linear decision tree model, only O(nk/2√logn) queries
are required for k odd. In particular, for 3SUM, this bound is O(n3/2√logn). More recently,
this bound has further been improved by Gold and Sharir [19] to O(n3/2), or, more generally,
to O(nk/2) for arbitrary k, under a randomized (2k − 2)-linear decision tree model. Note
that in all these cases, the best known lower bound is just the standard Ω(n logn) bound,
and closing the gap between this bound and the aforementioned upper bounds still remains
elusive.

Our result. Our main result is an improvement by (more than) a factor of n over the recent
bound of Cardinal et al. [7] on the complexity of a linear decision tree for k-SUM and k-LDT.
Specifically, we show:

I Theorem 3. For any fixed k, the complexity of k-SUM and k-LDT in the linear decision-tree
model is O(n2 log2 n), where the constant of proportionality is linear in k.

In fact, the actual bound in Theorem 3 is O(n2 logn log |H|). We can apply this bound
to the n-dimensional Knapsack problem, in which the relevant hyperplanes are of the form
xi1 + · · ·+ xik

= 1, for all the 2n − 1 possible nonempty subsets {i1, . . . , ik} of {1, . . . , n}.
Taking then |H| = 2n − 1, we obtain the following corollary of Theorem 3, which improves
the previous bounds in [28, 29].

I Corollary 4. The complexity of the n-dimensional SubsetSum and Knapsack problems
in the linear decision-tree model is O(n3 logn).

We note that the two bounds that we obtain in Theorem 3 and Corollary 4 are larger by
only a factor of O(n logn) from the respective lower bounds of Dobkin and Lipton [13, 14].

On the “real” algorithmic front, we show that in the RAM model the k-SUM and k-LDT
problems can be solved in expected polynomial time, with the same number, O(n2 log2 n), of
linear queries (and with all other operations independent of the actual coordinates of x), as
in Theorem 3 (the description of the algorithm is deferred to the full version of this paper).

Our analysis uses a variant of the approach in [7], inspired by the point-location mechanism
of Meiser [28], where we locate the input point x in A(H) using a recursive algorithm that
exploits and locally simulates the construction of (a specific kind of) an ε-cutting of A(H).
While this framework is not new, a major difference between the construction of [7] and ours is
that the former construction applies bottom-vertex triangulation to the cells in arrangements
of suitable subsets of H, which partitions each cell into simplices. Since the ambient dimension
is n, each simplex is defined (in general) by Θ(n2) hyperplanes of H; see, e.g., [1, 12] and
below. In contrast, in our construction we partition the cells of such arrangements using the
vertical decomposition technique [1, 9], where each cell of the arrangement is partitioned into
a special kind of vertical prisms, each of which is defined by only at most 2n hyperplanes
of H. In both studies, ours and that of Cardinal et al. [7], the local construction of the cell
containing x (in an arrangement of some subsample of H) is carried out through n recursive
steps (reducing the dimension by 1 at each step). The difference is that the algorithm in [7]
needs to perform roughly quadratically many queries at each such recursive step, whereas our
algorithm performs only nearly linearly many queries. With a few additional observations
about the structure of vertical decompositions (see below for a detailed discussion), this
will eventually decrease the overall depth of the linear decision tree by (slightly more than)
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a factor of n, with respect to the bound in [7]. We note that, although the combinatorial
bound on the overall complexity of bottom vertex triangulations in hyperplane arrangements
is in general smaller than the currently best known bound on the complexity of vertical
decompositions (in dimensions d ≥ 5), this is not an issue in the decision tree model. In
other words, for the purpose of locating the cell containing x, in the (linear) decision tree
model, using vertical decompositions is the decisive winning strategy.

A note on vertical decomposition. As a by-product of this study, our analysis leads
to some new insights concerning the structure and complexity of vertical decompositions
of arrangements of hyperplanes, including a sharper bound on the complexity of such a
decomposition in high dimensions. Specifically, it follows from the study of Chazelle et al. [9],
or rather from its extension by Koltun [25], that this bound is O(n2d−4), where the coefficient
of proportionality is 2O(d2). We improve this coefficient to 2O(d) (Theorem 5), using a simple
but crucial observation about the structure of vertical decompositions, given in Lemma 8.
This property is also used by our algorithm to efficiently construct the (prism-like) cell
containing the query point x. This improvement is significant when d is not assumed to
be a constant (as in the cases, studied here, of the k-SUM and k-LDT problems, and in
the cases of the SubsetSum and Knapsack problems). Moreover, this improvement (from
2O(d2) to 2O(d)) is crucial for obtaining ε-cuttings with samples of size that is only (nearly)
linear in d. More details are given later in the paper. We believe these results to be of
independent interest, and we hope that these insights will lead to further improved bounds
on the complexity of vertical decompositions and for additional useful structural properties
and further applications of this construct. A more thorough and detailed analysis of these
issues is given in the full version [16].

2 Preliminaries: Arrangements and Vertical Decomposition

Let H be a collection of n hyperplanes in Rd (observe that the notation in this section is
different, as it caters to any collection of hyperplanes in any dimension). We emphasize that
H is not necessarily in general position, and that it may contain vertical hyperplanes (as
it does in the case of k-SUM). The vertical decomposition V(H) of the arrangement A(H)
is defined in the following recursive manner (see [1, 9] for the general setup, and [21, 25]
for the case of hyperplanes in four dimensions). Let the coordinate system be x1, x2, . . . , xd,
and let C be a cell in A(H). For each (d− 2)-face g on ∂C, we erect a (d− 1)-dimensional
vertical wall passing through g and confined to C; this is the union of all the maximal xd-
vertical line-segments that have one endpoint on g and are contained in C. The walls extend
downwards (resp., upwards) from faces g on the top boundary (resp., bottom boundary)
of C (faces on the “equator” of C, i.e., faces that have a vertical supporting hyperplane,
have no wall (within C) erected from them). Note that if g lies on a vertical hyperplane
h ∈ H, the vertical wall is contained in h. This collection of walls subdivides C into convex
vertical prisms, each of which is bounded by (potentially many) vertical walls, and by two
hyperplanes of H, one appearing on the bottom portion and one on the top portion of ∂C,
referred to as the floor and the ceiling of the prism, respectively; in case C is unbounded, a
prism may be bounded by just a single (floor or ceiling) hyperplane of H. In rare situations,
where all the hyperplanes of H are vertical, prisms have neither a floor nor a ceiling. (Note
that, by construction, a floor (resp., a ceiling) of a prism cannot be contained in a vertical
hyperplane of H.) More formally, this step is accomplished by projecting the bottom and
the top portions of ∂C onto the hyperplane xd = 0, and by constructing the overlay of these
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41:6 A Nearly Quadratic Bound for the Decision Tree Complexity of k-SUM

two convex subdivisions. Each full-dimensional (i.e., (d− 1)-dimensional) cell in the overlay,
when lifted vertically back to Rd and intersected with C, becomes one of the above prisms.

Note that after this step, the two bases (or the single base, in case the prism is unbounded)
of a prism may have arbitrarily large complexity, or, more precisely, be bounded by arbitrarily
many hyperplanes. Each base, say the floor base, is a convex polyhedron in Rd−1, namely in
the hyperplane h− containing it, bounded by at most 2n−1 hyperplanes (of dimension d−2),
where each such hyperplane is either an intersection of h− with another original hyperplane h,
or the vertical projection onto h− of an intersection of the corresponding ceiling hyperplane
h+ with some other h (for h vertical, the two cases coincide; that is, they yield the same
(d− 2)-hyperplane within h−); this collection might also include h− ∩h+. In what follows we
refer to these prisms as undecomposed prisms, or first-stage prisms. Our goal is to decimate
the dependence of the complexity of the prisms on n, and to construct a decomposition of
this kind so that each of its prisms is bounded by no more than 2d hyperplanes. To do
so, we recurse with the construction at each base of each prism, or rather, for simplicity,
within the common projection of the bases onto xd = 0. Each recursive subproblem is now
(d− 1)-dimensional.

Specifically, after the first decomposition step described above, we project each of the
first-stage prisms just obtained onto the hyperplane xd = 0, obtaining a (d− 1)-dimensional
convex polyhedron C ′, which we vertically decompose using the same procedure described
above, only in one lower dimension. That is, we now erect vertical walls within C ′ from
each (d− 3)-face of ∂C ′, in the xd−1-direction. These walls subdivide C ′ into xd−1-vertical
(undecomposed) prisms, each of which is bounded by (at most) two facets of C ′, which form
its floor and ceiling (in the xd−1-direction), and by some of the vertical walls. We keep
projecting these prisms onto hyperplanes of lower dimensions, and produce the appropriate
vertical walls. We stop the recursion as soon as we reach a one-dimensional instance, in
which case all prisms projected from previous steps become line-segments, requiring no
further decomposition.7 We now backtrack, and lift the vertical walls (constructed in lower
dimensions, over all iterations), one dimension at a time, ending up with (d− 1)-dimensional
walls within the original cell C; that is, a (d− i)-dimensional wall is “stretched” in directions
xd−i+2, . . . , xd (applied in that order), for every i = d, . . . , 2.

Each of the final cells is a “box-like” prism, bounded by at most 2d hyperplanes. Of
these, two are original hyperplanes, two are hyperplanes supporting two xd-vertical walls
erected from some (d− 2)-faces, two are hyperplanes supporting two xd−1xd-vertical walls
erected from some (d− 3)-faces (within the appropriate lower-dimensional subspaces), and
so on. Note that since we do not assume general position, some of these vertical walls may
be original hyperplanes of H (this issue is discussed in more detail later on).

We note that each final prism is defined in terms of at most 2d original hyperplanes of
H, in a sense made precise in the ensuing description. We establish this property using
backward induction on the dimension of the recursive instance. Initially, we have two original
hyperplanes h−, h+, which contain the floor and ceiling of the prism, respectively. We
intersect each of them with the remaining hyperplanes of H (including the intersection
h− ∩ h+), and project all these intersections onto the (d− 1)-hyperplane xd = 0. Suppose
inductively that, when we are at dimension j, we already have a set Dj of (at most) 2(d− j)
original defining hyperplanes (namely, original hyperplanes defining the walls erected so

7 If we care about the complexity of the resulting decomposition, in terms of its dependence on n, which
is not a crucial issue in our approach, it is better to stop the recursion earlier. The terminal dimension
is d = 2 or d = 3 in [9], and d = 4 in [25].
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far), and that each (lower-dimensional) hyperplane in the current collection Hj of (j − 1)-
hyperplanes is obtained by an interleaved sequence of intersections and projections, which
are expressed in terms of some subset of the ≤ 2(d− j) defining hyperplanes and (at most)
one additional original hyperplane. Clearly, all this holds trivially in the initial step j = d.
We now choose a new floor and a new ceiling from among the hyperplanes in Hj , gaining
two new defining hyperplanes (the unique ones that define the new floor and ceiling and
are the ones not in Dj). We add them to Dj to form Dj−1, intersect each of them with
the other hyperplanes in Hj , and project all the resulting (j − 2)-intersections onto the
(j − 1)-hyperplane xj = 0, to obtain a new collection Hj−1 of (j − 2)-hyperplanes. Clearly,
the inductive properties that we assume carry over to the new sets Dj−1 and Hj−1, so this
holds for the final setup in d = 1 dimensions. Since each step adds at most two new defining
hyperplanes, the claim follows.

We apply this recursive decomposition for each cell C of A(H), and thereby obtain the
entire vertical decomposition V(H). We remark though that our algorithm does not explicitly
construct V(H). In fact, it does not even construct the (full discrete representation of the)
prism of V(H) containing the query point x. It will be clear shortly from the presentation
what the algorithm actually constructs. The description given above, while being constructive,
is made only to define the relevant notions, and to set the infrastructure within which our
algorithm will operate.

3 ε-Cuttings from Vertical Decompositions

Given a finite collection H of hyperplanes in Rd, by an ε-cutting for H we mean a subdivision
of space into prism-like cells, of the form just defined, that we simply refer to as prisms8,
such that every cell is crossed by (i.e., the interior of the cell is intersected by) at most
ε|H| hyperplanes of H, where 0 < ε < 1 is the parameter of the cutting. ε-cuttings are a
major tool for a variety of applications, including our own; they have been established and
developed in several fundamental studies [10, 11, 27].

Roughly speaking, when d is a (small) constant, the random sampling theory of Clark-
son [11] (see also Clarkson and Shor [12]) produces an ε-cutting as follows. We draw9 a
random sample R of cd

ε log d
ε hyperplanes from H, where cd is a parameter that depends

only on d; its actual dependence on d becomes a major issue in the analysis when d is large.
We then construct the arrangement A(R) of R and its vertical decomposition V(R). With a
suitable choice of cd, the random sampling technique of Clarkson [11] then guarantees, with
constant (high) probability, that each prism of V(R) is crossed by at most ε|H| hyperplanes
of H. (This also follows from the ε-net theory of Haussler and Welzl [23], but, as it turns out,
the coefficient cd has to be much larger when d is large; see below and [16] for more details.)

3.1 The Clarkson Framework
We keep denoting by H a set of n hyperplanes in Rd. Following the definitions and notations
in [22, Chapter 8], put T = T(H) :=

⋃
S⊆H

V(S); that is, T is the set of all possible prisms

8 In the original studies (see, e.g., [10]), these subcells were taken to be simplices, although both forms
have been used in the literature by now.

9 We use an alternative drawing mode, in which, to get a sample of size r, we sample each element of H
independently with probability p = r/|H|. The size of the sample is r only in expectation, but this does
not affect (in fact, it simplifies) the overall analysis; see, e.g., [30].
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41:8 A Nearly Quadratic Bound for the Decision Tree Complexity of k-SUM

defined by the subsets of H. For each prism τ ∈ T, we associate with τ its defining set D(τ)
and its conflict set K(τ). The former is the smallest subset D ⊆ H such that τ is a prism
in V(D), and the latter is the set of all hyperplanes h ∈ H for which τ does not appear in
V(D ∪ {h}); they are precisely the hyperplanes in H \D that cross τ . By our discussion in
Section 2 we have |D(τ)| ≤ 2d, for each τ ∈ T.

We have the following two axioms, which hold for any subset S ⊆ H:
(i) For any τ ∈ V(S), we have D(τ) ⊆ S and K(τ) ∩ S = ∅.
(ii) If D(τ) ⊆ S and K(τ) ∩ S = ∅, then τ ∈ V(S).
A key novel property of vertical decompositions, which we establish in this paper, is the
following result (some highlights of whose proof are given at the end of this section):

I Theorem 5. Let H be a set of n hyperplanes in Rd. Then the cardinality of T(H) is at
most O

(
22d

d7/2n
2d
)
.

In particular, we get a sharper bound on the complexity of vertical decompositions:

I Corollary 6. Let H be a set of n hyperplanes in Rd. Then the number of prisms in V(H)
is at most O

(
22d

d7/2n
2d
)
.

I Remark. As already mentioned in the introduction, the bound in Corollary 6 significantly
improves the previous upper bound of [9] in terms of its dependence on d, in that its “constant”
of proportionality drops from 2O(d2) to less than 4d. We pay a small price (it is small unless
n is huge relative to d) in terms of the dependence on n, which is n2d in the new bound,
instead of n2d−4 in [25] (and only O(nd) if one uses instead bottom-vertex triangulation).
See below for an additional discussion of this issue.

Equipped with Theorem 5, we obtain (we omit the standard proof, which follows the
analysis in [11, 12] 10):

I Theorem 7. Given a set H of n hyperplanes in d-space, and a parameter ε ∈ (0, 1), a
random sample R of O

(
d
ε log d

ε

)
hyperplanes of H (with an appropriate absolute constant

of proportionality) satisfies, with constant probability, the property that each prism in the
vertical decomposition V(R) of A(R) is crossed by at most ε|H| hyperplanes of H.

I Remark.
1. To turn this random sampling into a procedure that generates an ε-cutting almost surely,

we draw a random sample R of the aforementioned (expected) size, and test whether
it satisfies the property asserted in Theorem 7. If not, we simply discard this sample
and repeat the construction with a new sample. Clearly, since we fail with constant
probability (which we can make rather small by increasing the constant of proportionality),
the expected number of trials till a successful sample is drawn is constant (close to 1).

2. Our construction uses vertical decomposition. Expanding upon an earlier made comment,
we note that an alternative construction, for arrangements of hyperplanes, is the bottom-
vertex triangulation (see [1]). It has the advantage, over vertical decomposition, that the
(bound on the) number of cells (simplices) that it produces is significantly smaller (at
most |R|d), but its major disadvantage for the analysis in this paper is that the typical
size of a defining set of a simplex in this decomposition is d0 = d(d+ 3)/2, as opposed
to the much smaller value d0 = 2d for vertical decomposition; see above, [1], and the

10 It is important to notice that we can follow this analysis because the coefficient is only singly exponential
in d.
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full version [16], for more details. The fact that prisms in the vertical decomposition
have such a smaller bound on the size of their defining sets, combined with our improved
bound on the complexity of vertical decomposition, is what makes vertical decomposition
a superior technique for the (decision-tree complexity of the) k-SUM problem.

3. We also remark that the method that we use here is not optimal, from a general
perspective, in several aspects: First, it does not involve the refining second resampling
stage of Chazelle and Friedman [10] (and of others), which leads to a slight improvement in
the number of cells (or, alternatively, to a smaller required sample size). More significantly,
in d ≥ 5 dimensions there are no sharp known bounds on the complexity of the vertical
decomposition, even for arrangements of hyperplanes (see [9, 24] for the general case,
and [21, 25] for the case of hyperplanes). Nevertheless, these issues are irrelevant for the
technique employed here (mainly because, as already mentioned, we will not construct
the entire vertical decomposition), and the coarser method reviewed above serves our
purposes just fine.

4. Finally, we note that, in principle, we could have also used the ε-net theory of [23] to
ensure the ε-cutting property of the resulting decomposition. However, the VC-dimension
of the suitably defined corresponding range space is much larger than 2d. Concretely,
it follows from the analysis in the full version [16] that the VC-dimension is O(d3) and
Ω(d2). Since the size of the random sample in the theory in [23] has to be (slightly more
than) proportional to the VC-dimension, this approach results in much poorer bounds,
which will cause our algorithm to be at least as slow as the one in [7].

3.2 Key Properties in the Proof of Theorem 5
Following the presentation in Section 2, we first analyze the complexity of the vertical
decomposition of a single cell of A(H), and then derive a global bound for the entire
arrangement. Due to lack of space, we only present here a key property of the analysis, which
is also crucial for the analysis of our k-SUM algorithm presented in Section 4.

Let C be a fixed cell of A(H). With a slight abuse of notation, denote by n the number of
its facets (that is, the number of hyperplanes of H that actually appear on its boundary), and
consider the procedure of constructing its vertical decomposition, as described in Section 2.
As we recall, the first stage produces vertical prisms, each having a fixed floor and a fixed
ceiling. We take each such prism, whose ceiling and floor are contained in two respective
hyperplanes h1, h2 of H, project it onto the hyperplane xd = 0, and decompose the projection
Cd−1 recursively.

The (d − 2)-hyperplanes that bound Cd−1 are projections of intersections of the form
h ∩ h1, h ∩ h2, for h ∈ H \ {h1, h2}, including also h1 ∩ h2, if it arises. In principle, the
number of such hyperplanes is at most 2n − 1, but, as shown in the following lemma the
actual number is smaller:

I Lemma 8. Let τ be a first-stage prism, whose ceiling and floor are contained in two
respective hyperplanes h1, h2. Then for each hyperplane h ∈ H, h 6= h1, h2, the following
holds.
(a) If h is nonvertical then only one of g1 := h1 ∩ h or g2 := h2 ∩ h can appear on ∂τ . It is

g1 if C lies below h, and g2 if C lies above h.
(b) If h is vertical, both g1 and g2 can appear on ∂τ , but their projections onto xd = 0

coincide.
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Proof.
(a) Assume that h is nonvertical. Then either C lies fully above h or it lies fully below h.

Without loss of generality, assume that the former case holds. Since C lies below h1, the
intersection g1 = h ∩ h1, if it shows up on ∂C at all, must bound an equator facet ϕ of C. If
ϕ appears on ∂τ , then the interior of τ must contain a vertical segment whose endpoints lie
on h (bottom) and on h1 (top), contradicting the fact that the floor of τ lies on h2. Hence
only g2 can appear on ∂τ . The case where C lies below h is handled symmetrically.

The proof of (b) is straightforward; it follows from the fact that h1 and h2 are nonvertical,
and in fact both projections of g1 and g2 coincide with that of the entire h. J

I Remark. An important feature of the proof is that it also holds when τ is any convex
vertical prism, obtained at any recursive step of the decomposition, and, in particular, when
τ is the vertical prism obtained at the final step.

It is straightforward to verify that Lemma 8 implies that the projection of τ onto xd = 0
has at most n− 1 facets. Using this property we derive a recurrence relation to bound the
complexity of the vertical decomposition of a single cell C, and then, using axioms (i)–(ii),
we obtain a bound for the entire arrangement. These details appear in the full paper [16].

4 The Algorithm

4.1 Algorithm outline
The high-level approach of our algorithm can be regarded as an optimized variant of the
algorithm of Cardinal et al. [7], which is inspired by the point-location mechanism of
Meiser [28]. We choose ε > 0 to be a constant, smaller than, say, 1/2, and apply the ε-cutting
machinery, as reviewed in Theorem 7. For a given input point x, the algorithm proceeds as
follows.
(i) Construct a random sample R of r := O

(
n
ε log n

ε

)
= O(n logn) hyperplanes of H,

with a suitable absolute constant of proportionality (recall that in our application, the
dimension of the underlying space is n). If R violates the ε-cutting property asserted in
Theorem 7, discard R and repeat the process with a new sample.

(ii) Construct the prism τ = τx of V(R) that contains the input point x. If at that step we
detect an original hyperplane of H that contains x, we stop and return “YES”.

(iii) Construct the conflict list CL(τ) of τ (the subset of hyperplanes of H that cross τ), and
recurse on it.

(iv) Stop as soon as |CL(τ)| is smaller than the sample size r = O
(

n
ε log n

ε

)
(we use the

same sample size in all recursive steps). When that happens, test x, in brute force,
against each original hyperplane of H in CL(τ); return “YES” if one of the tests results
in an equality, and “NO” otherwise.

We note that those parts of the algorithm that do not depend11 on x, which are costly in
the RAM model, are performed here for free. That is, our goal at this point is only to bound
the number of linear queries performed by the algorithm. We also note that although the
construction of the prism containing x (described below) is conceptually simple, it involves
several technical details, which mainly follow from the fact that H may contain vertical
hyperplanes (vs. the simpler scenario where all hyperplanes are in general position).

11By this we mean that they do not compute any explicit expression that depends on the coordinates of
x. They might (and in general, will) depend on previously computed discrete data that does depend on
x, but accessing this data in our model, once computed, is for free.
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We next describe the details of implementing step (ii). We comment that step (i) costs
nothing in our model, so we do not bother with its implementation details. The tests in
step (iii), although being very costly in the “full” standard RAM model of computation, are
independent of the specific coordinates of x, and thus cost nothing in our model. We present
this step in detail in the full version of this paper.

Constructing the prism containing x. Since the overall complexity of a prism (the number
of its faces of all dimensions) is exponential in the dimension n, we do not construct it
explicitly. Instead we only construct explicitly its at most 2n bounding hyperplanes, consisting
of a floor and a ceiling (or only one of them in case the cell Cx in A(R) containing x is
unbounded), and at most 2n − 2 vertical walls (we have strictly fewer than 2n − 2 walls
in cases when either the floor of τ intersects its ceiling (on ∂τ), or when this happens in
any of the projections τ∗ of τ in lower dimensions, or when the current subcell becomes
unbounded at any of the recursive steps). The prism τ , as defined in step (ii), is then
implicitly represented as the intersection of the halfspaces bounded by these hyperplanes and
containing x. Let Hx denote this set of at most 2n hyperplanes. From now on we assume,
to simplify the presentation but without loss of generality, that Cx is bounded, and that τ
has exactly 2n− 2 vertical walls (and thus exactly 2n bounding hyperplanes).

The following recursive algorithm constructs Hx, and also detects whether x lies on one
of the bounding hyperplanes of τ . Let r = O

(
n
ε log n

ε

)
denote the (expected) size of our

sample R. Initially, we set Hx := ∅. We first perform r linear queries with x and each of the
hyperplanes of R, resulting in a sequence of r output labels “above” / “below” / “sideways” /
“on”. At the top level of recursion (before reducing the dimension), encountering a label “on”
means that x lies on an original hyperplane of H, and thus there is a positive solution to our
instance of k-SUM, and we stop the entire procedure and output “YES”. At deeper recursive
levels (in lower-dimensional spaces), when we encounter “on”, we need to check that the
relevant (now lower-dimensional) hyperplane is fully contained in an original hyperplane of
H, in order to output “YES” (the full containment condition is addressed later on). As will
be discussed below, such a hyperplane does not have to belong to R, so the procedure for
performing this test, and in particular its analysis, is rather elaborate.

We thus assume, without loss of generality, that all labels are “above”, ”below”, or
“sideways”. We next partition the set of the hyperplanes in R according to their labels, letting
R1 denote the set of hyperplanes lying above x, R2 the set of hyperplanes below it, and
R0 the set of vertical hyperplanes to the side of x. We then identify the upper hyperplane
h1 ∈ R1 and the lower hyperplane h2 ∈ R2 with shortest vertical distances from x. We
do this by computing the minimum of these vertical distances, each of which is a linear
expression in x, using (|R1|− 1) + (|R2|− 1) < r additional comparisons. The hyperplanes h1
and h2 contain the ceiling and the floor of τ , respectively, and we thus insert them into Hx.

In order to produce the hyperplanes containing the vertical walls of τ , we recurse on
the dimension n. This process somewhat imitates the one producing the entire vertical
decomposition of Cx described above. However, the challenges in the current construction
are to build only the single prism containing x, to keep the representation implicit, and to
do this efficiently.

We generate all pairwise intersections h1 ∩ h and h2 ∩ h, for h ∈ R, h 6= h1, h 6= h2, and
obtain two collections G1, G2 of (n− 2)-dimensional flats, each of size at most r − 2, which
we project onto the hyperplane xn = 0.

By Lemma 8 (when the input set is now R) and the remark after it, the following holds
for each h ∈ R \ {h1, h2}. Put g1 := h1 ∩ h and g2 := h2 ∩ h. (a) If h is nonvertical then
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at most one of g1, g2 can appear on ∂τ . (b) If h is vertical, the projections of g1 and g2
coincide, and are in fact equal to the projection of the entire h. We can therefore discard one
of g1, g2 when h is nonvertical (using the simple rule in Lemma 8), and replace both by the
single projection of h, when h is vertical. Hence, the subset G ⊆ G1 ∪G2 of the surviving
intersections consists of at most |R| − 2 flats (of dimension n− 2). We denote by R(1) the
set of their projections onto the hyperplane xn = 0. (If h1 ∩ h2 is also relevant, we add its
projection to R(1), making its size go up to |R| − 1.)

We continue the construction recursively on R(1) in n − 1 dimensions. That is, at the
second iteration, we project x onto the subspace xn = 0; let x(1) be the resulting point. We
first perform at most r linear tests with x(1) and each of the hyperplanes in R(1). If we
encounter “on” for some h(1) ∈ R(1) then x lies on a vertical wall of τ passing through h(1).
If h(1) is fully contained in a (vertical) hyperplane h′ ∈ H, we output “YES”. We emphasize
that h′ does not have to belong to R (see a discussion of this issue in the proof of correctness,
given below), so, to determine whether such an h′ exists, we simply test h(1) against all
hyperplanes of H (which costs nothing in our model). Otherwise, if we encountered “on” for
some h(1) ∈ R(1) in the above test, but h(1) is not contained in any vertical hyperplane of
H, then the prism τ containing x (in the original n-space) is of one lower dimension (or,
alternatively, x lies on a facet of a full-dimensional prism, which projects to a portion of h(1)).
In this case, we can intersect all the remaining hyperplanes in R(1) with h(1), projecting the
whole setting to the hyperplane xn−1 = 0, and continue the construction recursively within
that hyperplane.

The general flow of the recursive procedure is as follows. At each step i, for i = 1, 2, . . . , n,
we have a collection R(i−1) of at most |R| hyperplanes of dimension n− i, and a point x(i−1),
in the x1 · · ·xn−i+1-hyperplane (for i = 1 we have R(0) = R and x(0) = x). We first test
whether x(i−1) lies on any of the hyperplanes h(i−1) in R(i−1). If so, we test whether h(i−1)

is contained in an original hyperplane of H (essentially12 a hyperplane that is parallel to
all the coordinates xn−i+2, . . . , xn that we have already processed, that is, vertical in all of
them), and, if so, we output “YES”. If x(i−1) lies on some h(i−1) (but no original hyperplane
of H contains h(i−1)), we recurse in one lower dimension, as described for the case i = 2.
Otherwise, we assume, without loss of generality, that no “on” label is produced. We find the
pair of hyperplanes that lie respectively above and below x(i−1) in the xn−i+1-direction, and
are closest to x(i−1) in that direction (they support the “ceiling” and “floor” of the recursive
prism, in the xn−i-direction), and then produce a set R(i) of fewer than |R| hyperplanes
of dimension (n − i − 1) in the x1 · · ·xn−i-hyperplane. We also project x(i−1) onto this
hyperplane, thereby obtaining the next point x(i). The construction of R(i) is performed
similarly to the way it is done in case i = 1, described above, and Lemma 8 (and the
remark following it) continues to apply, so as to ensure that indeed |R(i)| continues to be
(progressively) smaller than |R|, and that its members are easy to construct.

We stop when we reach i = n, in which case we are given a set of at most |R| points on
the real line, and we locate the two closest points to the final projected point x(n).

To complete the construction, we take each of the hyperplanes h(i−1)
1 , h(i−1)

2 , obtained
at each of the iterations i = 2, . . . , n, and lift it “vertically” in all the remaining directions
xn−i+2, . . . , xn, and add the resulting (n− 1)-hyperplanes in Rn to Hx. We comment that in
case x lies on a facet (or, more generally, a lower dimensional face) of τ , we need to confine
these liftings to the appropriate flat h containing this face(t).

12To be precise, it could also be that, accidentally, some other original hyperplane contains h(i−1).
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I Remark. The importance of Lemma 8 is that it controls the sizes of the sets R(i), i ≥ 1.
Without the filtering that it provides, the size of each R(i) would be roughly twice the size of
R(i−1), and the query would then require exponentially many linear tests. This doubling
effect shows up in the original analysis of the complexity of vertical decompositions [9].

Algorithm correctness. Let h be a hyperplane of H that contains x. Clearly, h must
intersect the interior or the boundary of τ . In the former case, h belongs to CL(τ), and
will be passed down the recursion. In the latter case, either h is the floor or ceiling of τ ,
and then the first stage of constructing τ will detect that x ∈ h. Otherwise h must be an
xd-vertical hyperplane. Indeed, no other original hyperplane can meet τ unless it intersects
its floor or ceiling; since x was found not to lie on the floor or the ceiling, it cannot lie on any
nonvertical h. If h is in R, then the algorithm outputs “YES”. It is possible, though, that
h /∈ R, in which case, since h does not intersect the interior of τ , it does not belong to CL(τ),
and we risk missing h altogether. (Clarkson’s theory, in the context used in this paper, does
not control the number of hyperplanes that touch τ without crossing it.) However, if x does
lie on h then x must lie on ∂τ , and one of the recursive steps in the construction of τ will
detect this fact. In the full version of this paper we describe a procedure, already alluded to
several times earlier, that tests for this property, and establish its correctness.

We emphasize that at each recursive step we construct the prism τ only with respect
to the conflict list of its parent cell τ0 (initially, τ0 = Rd and CL(τ0) = H), implying that
τ is not necessarily contained in τ0. In other words, the sequence of cells τ constructed in
our algorithm are spatially in no particular relation to one another (except that all of them
contain x). Still, this does not harm the correctness of the search process, a claim that is
argued as follows. The fact that x lies in τ0 and in τ implies that it can only lie either on one
of the hyperplanes in CL(τ0) or on one of the (at most 2d) bounding hyperplanes of τ . The
latter situation will be detected during the non-recursive processing of τ , during which the
algorithm (step (ii)) will test x against each of the bounding hyperplanes of τ (once again,
we describe this in more detail in the full paper). If it finds that x lies on such a hyperplane,
it then determines, as mentioned above, whether that hyperplane is an original hyperplane
of H (or, more precisely, of CL(τ0)). Hence, if x lies on some hyperplane h ∈ H, and this
fact has not yet been detected, h will be passed to the recursion as an element of CL(τ) at
step (iii). The case where τ is lower-dimensional is handled in a similar manner.

We next claim that the algorithm terminates (almost surely). Indeed, at each recursive
step, the sample R is drawn from the corresponding subset CL(τ0). Applying Theorem 7
to CL(τ0), we obtain that the conflict list of the next prism τ contains (with certainty, due
to the test applied at step (i)) only at most ε|CL(τ0)| hyperplanes of CL(τ0). Hence, with
probability 1, after a logarithmic number of steps (see below for the concrete analysis) we
will reach step (iv), and then the algorithm will correctly determine whether x lies on a
hyperplane of H (by the invariant that we maintain, any such hyperplane belongs to the
final conflict list CL(τ)).

(The termination is guaranteed only almost surely, because of the possibility of the event
(that has probability 0) of repeatedly failing to choose a good sample at some recursive
application of step (i).)

The query complexity. Due to lack of space, we describe the analysis of the query complexity
very briefly, and postpone the remaining details to the full paper. Roughly speaking, at each
recursive step in the construction of τ we need to perform O(r) linear queries in order to
determine, for each hyperplane h ∈ R whether it lies above, below, on, or sideways from x,
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and then find the ceiling and floor hyperplanes h1 and h2. In order to test, for a nonvertical
hyperplane h ∈ R \ {h1, h2}, which of g1 := h1 ∩ h or g2 := h2 ∩ h can appear on ∂τ (or,
more specifically, on the boundary of the undecomposed convex prism τ̄ containing τ), we use
the simple rule provided in Lemma 8 (which holds in any dimension i ≤ n). This eventually
implies that we spend a total of O(n2 logn) linear queries over all n steps of the recursion
(on the dimension), for a grand total of O(n2 logn log |H|) = O(kn2 log2 n) linear queries,
over all O(log |H|) steps of the algorithm.

This completes the proof of Theorem 3 for the k-SUM problem. The analysis proceeds
more or less verbatim to the more general case of k-LDT with the same performance bound,
and generalizes, also trivially, to the cases of SubsetSum and Knapsack. We omit the easy
details in this version. J

Concluding remarks and open problems. It looks likely that the number of queries can
be brought down to O(n2 logn). To fit into the general theory of Clarkson, we have drawn
a sample R of size O(n logn). The logarithmic factor is needed if we want to ensure (with
constant, high probability) that the ε-cutting property holds for all prisms that arise in
V(R), but we only need this property to hold for the single prism that contains x. With a
smaller sample size O(n), and with some extra care, we seem to obtain an expected number
of O(n2 logn) queries. We plan to present this improvement in the full version [16], where
this under-sampling technique is referred to as optimal sampling. Applying this improvement
to the Knapsack or the SubsetSum problems, the number of queries goes down to O(n3).

We show in the full version that our algorithm, when cast into the RAM model, has an
implementation whose expected running time is nk+O(1) (but still using only O(n2 log2 n)
linear queries on x). An interesting open problem is whether the running time can be improved
to roughly O(ndk/2e), while still using only nearly-quadratically many linear queries. A
similar result was obtained in the previous work of Cardinal et al. [7] (but with a nearly-cubic
number of linear queries). We hope to obtain a similar improvement for the approach used
in this paper.

Acknowledgments. The authors would like to thank Shachar Lovett, Sariel Har-Peled, and
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