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Abstract
We consider the approximate nearest neighbor (ANN) problem where the input set consists of
n k-flats in the Euclidean Rd, for any fixed parameters 0 ≤ k < d, and where, for each query
point q, we want to return an input flat whose distance from q is at most (1 + ε) times the
shortest such distance, where ε > 0 is another prespecified parameter. We present an algorithm
that achieves this task with nk+1(log(n)/ε)O(1) storage and preprocessing (where the constant of
proportionality in the big-O notation depends on d), and can answer a query in O(polylog(n))
time (where the power of the logarithm depends on d and k). In particular, we need only near-
quadratic storage to answer ANN queries amid a set of n lines in any fixed-dimensional Euclidean
space. As a by-product, our approach also yields an algorithm, with similar performance bounds,
for answering exact nearest neighbor queries amid k-flats with respect to any polyhedral distance
function. Our results are more general, in that they also provide a tradeoff between storage and
query time.
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1 Introduction

Nearest neighbor search is one of the most fundamental problems in computational geometry
and has been studied extensively in many different fields, including computational geometry,
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4:2 Approximate Nearest Neighbor Search Amid Higher-Dimensional Flats

databases, machine learning, and data mining; see [4, 11] for comprehensive surveys. The very
basic scenario, referred to as the post-office problem in [23], asks to preprocess a collection S
of n points in Rd (called sites), where d is a fixed parameter, into a data structure, so that
the site in S nearest to a query point q ∈ Rd, i.e., the site NN(q, S) = arg mins∈S dist(q, s),
where dist(·, ·) is the Euclidean distance, can be reported quickly.1 This basic version has
been extended in numerous ways over the last four decades. Most notably, in such extensions
the sites and/or the queries can be chosen from richer families of geometric objects (say, lines,
k-flats, or even convex polyhedra, not to mention curved objects like balls), and dist(·, ·) can
be another distance function, such as an lp-norm, a polyhedral distance function, or the
Hausdorff distance (for non-point sites or queries) [4, 11]. The best known solution for the
post-office problem requires roughly ndd/2e storage in the worst case, for answering queries in
O(logn) time, in any fixed dimension d ≥ 2. The extended versions of the problem, for non-
point sites and/or for other metrics/distance-functions, are naturally even more challenging.
In the search for more efficient data structures, we therefore give up the goal of finding the
exact nearest neighbor, and settle for structures that can answer efficiently approximate
nearest neighbor (or, shortly, ANN) queries. That is, given a prespecified error parameter
ε > 0, an ε-ANN query returns a site s ∈ S satisfying dist(q, s) ≤ (1 + ε)dist(q,NN(q, S)). In
what follows we use ANN(q, S) to denote the set of all sites with this property, i.e.,

ANN(q, S) = {s | dist(q, s) ≤ (1 + ε)dist(q,NN(q, S))}.

This paper focuses on the scenario in which S is a collection of n k-flats lying in the
Euclidean space Rd, of any fixed dimension d > k (where d and k are treated as constants),
and the queries are points q ∈ Rd. For a point q ∈ Rd and a site s ∈ S (assumed to
be closed), dist(q, s) is the minimum Euclidean distance between q and a point of s, i.e.,
dist(q, s) = minp∈s distp∈s(q, p). Given S and a parameter ε > 0, the goal is to preprocess
S into a data structure so that, for any query point q ∈ Rd, a k-flat s ∈ ANN(q, S) can be
reported quickly.

Related work. As mentioned above, nearest-neighbor (NN) searching, especially when the
input sites are points, has been studied extensively. It is beyond the scope of this paper to
review all the related work on nearest-neighbor searching, so we focus on the most relevant
work, and refer the reader to [4, 11, 30] for more comprehensive reviews.

The most obvious approach to answering NN queries is to construct the Voronoi diagram
of the set S of input objects, and perform point location in the diagram with the query point.
Recall that the Voronoi diagram of S is the decomposition of space into cells, where each
cell, associated with one of the input sites, consists of all points whose nearest site in S is
that site. It is well known that the complexity of the Euclidean Voronoi diagram of a set
of n points in Rd is Θ(ndd/2e) in the worst case. Better bounds on the complexity of the
diagram are known, though, in some special cases. For example, the expected complexity of
the Voronoi diagram of a set of n random points chosen uniformly in [0, 1]d is linear; see [19].

Recently, there has been some work on Voronoi diagrams of non-point sites. For example,
Chew et al. [17] have shown that the complexity of the Voronoi diagram of a set of n lines
in R3 under the polyhedral metric (or distance function) defined by a convex polytope Q
of constant complexity (see Section 2 for the definition of polyhedral distance functions)
is O(n2α(n) logn), where the constant of proportionality depends on the complexity of

1 The site NN(q, S) is uniquely defined, unless q belongs to a set of measure zero (namely, if q lies on the
boundaries of two or more cells in the Voronoi diagram of S).
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Q. The near-quadratic bound was subsequently extended to the case when the input sites
are constant-complexity convex polyhedra in R3 [25]. It is an open question whether the
complexity of the Euclidean Voronoi diagram of a set of lines in R3 is nearly quadratic; so
far, the near-quadratic upper bound has been confirmed only for lines with constantly many
orientations [24]. See the book by Aurenhammer et al. [13] for comprehensive studies of
Voronoi diagrams.

Because of the potentially large complexity of the Voronoi diagram, there has also been
work on constructing a data structure for answering NN queries directly, that does not require
the construction of the Voronoi diagram. For example, an NN query amid a set of n points
in Rd can be answered in Õ(n1−1/dd/2e) time using linear space.2 More generally, for a given
parameter n ≤ m ≤ ndd/2e, a query can be answered in Õ(n/m1/dd/2e) time using O(m)
space. The known lower-bound results on range searching [2] suggest that this is the best
bound one can hope for.

Consequently, attention has focused on answering ANN queries, as described above (see,
e.g., [7, 12, 15, 20, 22], to name a few works that follow this paradigm). Earlier methods for
answering ANN queries stored the input points in a (compressed) quad tree, k-tree, or their
variants, and performed a spiral search to return a point in ANN(q, S) for a given query point
q; see, e.g., [21]. More recently, the notion of an approximate Voronoi diagram (AVD for
short) has been introduced; similar to a Voronoi diagram, AVD is a decomposition of space
into cells, each associated with a site s, so that s is an approximate nearest neighbor for all
query points in that cell. Har-Peled [20] constructed an approximate Voronoi diagram (AVD)
of a set of n points in Rd of size Õ

( 1
εdn
)
. Another AVD was proposed by Arya, Malamitos

and Mount [8, 9]; its size is linear in n, and it can be constructed in near-linear time.
A more elaborate approach yields a data structure for ANN queries that can answer an

ε-ANN query in O(log(n/ε)) time using O(n/εd/2) space; more generally, for a parameter
log 1

ε ≤ θ ≤ 1
εd/2 log(1/ε) , a query can be answered in O(logn + 1

θεd/2 ) time using O(nθ)
space [7].

The performance of these and of many earlier data structures for answering ANN queries
depends exponentially on d, so they are not efficient for large values of d. This has lead to
extensive work on data structures for ANN-queries whose query time and size have polynomial
dependence on d, most notably using the locality-sensitive-hashing (LSH) technique and its
variants [3, 6]. The best-known data structure of this kind computes in n7/(8c2)+O(1/c3) time
a (c− 1)-ANN with high probability, for c > 1, using n1+7/(8c2)+O(1/c3) space. See [4] for a
survey of higher-dimensional NN problems and techniques.

Relatively little is known about ANN-queries for non-point input sites (e.g., lines, k-flats,
or even convex polyhedra); see, e.g., [5, 27, 29]. The best structures obtained for ANN-search
in such extended setups are typically more expensive than those obtained for the point-to-
point problem. The result of Koltun and Sharir [25] implies that an AVD for a set of n
pairwise disjoint triangles in R3, of size Õ(n2), can be constructed in near-quadratic time,
and thus an ANN-query for this setting can be answered in O(logn) time using Õ(n2) space.
A simple grid-like construction shows that any AVD for a set of n lines in any dimension
d ≥ 2 has Ω(n2) complexity [20], which suggests that a near-linear-size data structure with
O(logn) query time is unlikely. For higher dimensions, the best known data structure for
lines is by Mahabadi [27]; it answers an ε-ANN query for lines in Rd in (d+ logn+ 1/ε)O(1)

time, using (n+ d)O(1/ε2) space; see also [14, 26].

2 Throughout this paper, we use Õ(f(n)) to denote O(f(n) polylog(n)).
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There is also some work on the dual problem, in which the input sites are points
but the query objects are k-flats. For the case when the query is a line, i.e., a 1-flat,
Andoni et al. [5] proposed a data structure that answers an ε-ANN query in O

(
d3n1/2+δ)

time, using d2nO(1/ε2+1/δ2) space, for any constant δ > 0. Later, Mulzer et al. [29] proposed
a data structure for the case where the query objects are k-flats. Assuming there is an ANN
data structure, when both input sites and query objects are points in Rd, with O(nρ) query
time and O(nσ) space, for some parameters ρ, σ > 0, their data structure answers a query
with a k-flat in time O

(
nk/(k+1−ρ)+δ), using O (n1+σk/(k+1−ρ) + n logO(1/δ) n

)
space, for

any constant δ > 0.

Our results. We present an efficient data structure for answering ANN-queries when the
input sites are k-flats in Rd. The main results are summarized in the following theorem.

I Theorem 1. Let d be a constant, let 0 ≤ k ≤ d − 1 be an integer, let ε > 0 be a given

error parameter, and let γ = O

(
(1/ε)

d−1
2 min(d−k,k+1)

)
. For a given parameter m with

n ≤ m ≤ nk+1, a given set S of n k-flats in Rd can be preprocessed in Õ(γm) expected time
into a data structure of Õ(γm) size, so that, for a query point q ∈ Rd, a flat f ∈ ANN(q, S),

with respect to the Euclidean metric, can be reported in Õ
(
γn/m

1
k+1

)
time.

In particular, in the high-storage/fast-query regime, choosing m = nk+1, we can perform,
in any dimension d > k, ANN search with Õ(1) query cost (a) amid points (k = 0), using
a near-linear structure, or (b) amid k-flats, for k ≥ 1, using a structure of size Õ

(
γnk+1).

For k = 1, i.e., for lines in Rd (d ≥ 2), our data structures requires storage that is nearly
quadratic in n in order to answer a query in Õ(1) time. For d = 3, our bound nearly coincides
with that obtained from the three-dimensional AVD construction of Chew et al. [17], but no
near-quadratic data structure was known for d > 3.

Unlike some of the recent ANN data structures for point sites [8, 9], we do not explicitly
maintain the AVD of S. Instead, we approximate the Euclidean distance by a suitable
polyhedral metric (see Section 2 for the definition), and use multi-level partition trees
(designed for simplex range searching) [2] to answer (exact) NN-queries amid the flats of S
with respect to the approximating polyhedral metric. As a byproduct, we obtain a simple
and efficient data structure for answering exact NN queries amid k-flats with respect to
a polyhedral distance function; see Theorem 2. An advantage of this approach is that it
allows a trade-off between the size of the data structure and the query time, as stated in
Theorem 1. In particular, an ANN query amid k-flats can be answered in Õ

(
n1−1/(k+1))

time with near-linear storage.

2 Warm-up: Lines in R3

In this section we establish Theorem 1 for a set of lines in R3. Let L be a set of n lines in R3,
and let ε > 0 be a parameter. We wish to preprocess L into a data structure that answers
efficiently queries of the form: given a point q ∈ R3, find a line ` ∈ L such that

dist(q, `) ≤ (1 + ε)dist(q, L), where dist(q, L) := min
`′∈L

dist(q, `′),

and where dist denotes the Euclidean distance.
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We(q)

`

qq + λQ

q + λe

Figure 1 The Q-distance distQ(q, `) is the scaling factor λ for which the line ` touches q+ λQ, at
some edge q + λe (and misses the interior of q + λQ).

Polyhedral distance functions. In the general d-dimensional case, given a centrally sym-
metric convex polytope Q ⊂ Rd, the polyhedral distance (with respect to Q) distQ(p, q), for a
pair of points p, q ∈ Rd, is defined as3

distQ(p, q) = sup {t | q /∈ p+ tQ},

and, more generally, for a point q and a convex object c not containing q,

distQ(q, c) = sup {t | c ∩ (q + tQ) = ∅}.

The classical result of Dudley [18] implies that, for any ε > 0, there exists a convex polytope
Qε, which is an intersection of O

( 1
ε(d−1)/2

)
halfspaces, or, alternatively, the convex hull of

a similar number of vertices, such that distQε
approximates the Euclidean metric up to a

factor of 1 + ε; that is, for any pair of points p, q, we have

dist(p, q) ≤ distQε
(p, q) ≤ (1 + ε)dist(p, q). (1)

The advantage of using polyhedral distance functions for answering ANN-queries is that,
when q is a point and f is a k-flat, distQ(q, f) can be characterized as the smallest expansion
factor t for which f makes contact with some (d−k−1)-face of the expanding polytope q+tQ.
This allows us to process each of the O(1) (d − k − 1)-faces σ of Q for fast face-shooting
queries, in which, given a query point q, we seek the smallest t for which q + tσ hits a flat
in S, and return that flat. For example, for the case of line sites in R3, the case studied in
this section, each such query shoots a fixed segment from the query point q; the expanding
segment traces a flat (two-dimensional) wedge that emanates from q and is a translate of
some fixed wedge (that depends on the edge of Q that we shoot). We seek the first time at
which the expanding wedge hits an input line and return that line.4 Hence, in the general
case of k-flats in Rd, we prepare a constant number of face-shooting structures, one for each
face of Q of the appropriate dimension, search with the query point q in each of them, and
return the smallest expansion factor that the queries output, and the corresponding flat of S
as the nearest neighbor.

In what follows we return to the special case of lines in R3. Given the error parameter
ε > 0, we approximate the Euclidean unit ball by a centrally symmetric convex polytope
Q = Qε, of complexity O(1/ε) (using Dudley’s bound). We then solve the exact NN problem

3 In fact, the polyhedral metric also can be defined for non-centrally-symmetric polytopes (or, for that
matter, for any compact convex body Q), but, to simplify matters in this presentation and to ensure
that the distance function is a metric, we take Q to be centrally symmetric.

4 Note that the wedge might miss the line completely, in which case we output +∞.

ESA 2017
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q + λe(q, `)e

`

p`
q

∆e(q, `)

We(q)

Figure 2 The wedge We(q) is the union of all the copies q+λ∆e, for λ ≥ 0. λe(q, `) is the scaling
factor λ for which the triangle q + λ∆e touches ` at its edge q + λe, and ∆e(q, `) is that triangle.
For each boundary edge e of Q, we seek the line ` ∈ L which minimizes the scaling distance λe(q, `).

for the lines of L with respect to distQ, that is, for any query point q, the algorithm computes
distQ(q, L), and returns the line of L that is nearest to q under this metric. In fact, the
procedure presented next solves the exact NN problem for any convex polytope Q, not even
assuming that it is centrally symmetric with respect to the origin.

Exact NN-search for L with respect to an arbitrary polytope Q. Given a point q and a
line `, there exists at least one edge e of Q (that depends on q and `), such that the distance
distQ(q, `) is the scaling factor λ for which (i) q+ λe and ` touch one another, and (ii) ` does
not meet the interior of q + λQ. See Figure 1.

To decompose the problem, we consider, for each edge e of Q, the triangle ∆e ⊂ Q

spanned by the origin o and e. Assume with no loss of generality that no ` ∈ L is parallel
to ∆e.5 Thus, for each ` ∈ L there exists a unique scaling factor λe(q, `) ∈ R ∪ {∞}, such
that the homothetic placement q + λe(q, `)∆e touches ` at a point of q + λe(q, `)e (we put
λe(q, `) := +∞ when there is no such placement). We have λe(q, `) < ∞ if and only if `
intersects the planar wedge We(q) which is the union of all the copies q + λ∆e, for λ ≥ 0. In
what follows, we denote the resulting placement q + λe(q, `)∆e by ∆e(q, `); see Figure 2.

As already noted, our strategy for computing distQ(q, L) is to design a separate data
structure De for each edge e of Q, which answers efficiently queries of the form: Given a point
q, find the smallest scaling factor λe(q) := min`∈L λe(q, `), and report the corresponding line
`∗ that attains λe(q) = λe(q, `∗).

With this machinery available, we return to our approximating polytope Qε, query each
of its O(1/ε) edge-structures De with q, and report the minimum of the corresponding output
values λe(q), and the line attaining that minimum. As is easily checked, the output gives a
(1 + ε)-approximation to the Euclidean dist(q, L).

The edge structures De. Let e be a fixed edge of Q. Given a point q, we wish to return
λe(q) := min`∈L λe(q, `) as well as the corresponding line `∗e that attains λe(q) = λe(q, `∗).
To simplify the presentation, and with no loss of generality, assume that e is the edge z = 0,
x = 1, −a ≤ y ≤ a, for some a > 0.

Let us express a query in algebraic terms. Recall that we assume no line in L to be
parallel to ∆e, i.e., no line in L is normal to the z-axis. Hence, we parametrize such a line `

5 If L contains lines that are parallel to ∆e, we apply an infinitesimally small rotation to Q which preserves
all of its essential properties.
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in R3 by the pair of equations

x = ux(`)z + vx(`), y = uy(`)z + vy(`),

for a suitable quadruple of real parameters (ux(`), vx(`), uy(`), vy(`)).
Let q = (x0, y0, z0) be the query point, and let ` be a line in L with the parameters

(ux(`), vx(`), uy(`), vy(`)). Notice that We(q) is contained in the plane z = z0, and this plane
meets ` at the point

p` = (ux(`)z0 + vx(`), uy(`)z0 + vy(`), z0).

The condition that p` lies in the wedge We(q) can be expressed as

−a (ux(`)z0 + vx(`)− x0) ≤ uy(`)z0 + vy(`)− y0 ≤ +a (ux(`)z0 + vx(`)− x0) ,

or (uy(`) + aux(`))z0 + (vy(`) + avx(`)) ≥ y0 + ax0 (2)
(uy(`)− aux(`))z0 + (vy(`)− avx(`)) ≤ y0 − ax0.

Both constraints in (2) are linear in ux(`), vx(`), uy(`), vy(`), with coefficients depending on
the query q and the constant a (that is, on the edge e). Among the lines that satisfy these
inequalities, our goal is to return the one that minimizes the scaling factor λe(q, `), given by

λe(q, `) = ux(`)z0 + vx(`)− x0,

which is also linear in the chosen parameterization of `.
In view of the above observations, we construct a three-level partition tree (see [1, 2, 16, 28])

on the lines of L. The first two levels are used to collect, for any given query point
q = (x0, y0, z0), the lines that satisfy both conditions in (2), as the (disjoint) union of a small
number of pre-stored “canonical” subsets, and the third level supports linear-programming-
like queries, where each query specifies a linear objective function and asks for the point in
the canonical subset that attains its minimum.

In more detail, we represent each line ` ∈ L, parametrized by (ux(`), vx(`), uy(`), vy(`)),
by the triple of points p+(`), p−(`), p◦(`) ∈ R2, where

p+(`) := (uy(`) + aux(`), vy(`) + avx(`))
p−(`) := (uy(`)− aux(`), vy(`)− avx(`)), and
p◦(`) := (ux(`), vx(`)),

and put

P+ := {p+(`) | ` ∈ L}, P− := {p−(`) | ` ∈ L}, P ◦ := {p◦(`) | ` ∈ L}.

A line ` satisfies (2) if and only if p+(`) lies above the line z0x+ y = y0 + ax0 and p−(`) lies
below the line z0x+ y = y0 − ax0.

Following the standard methodology of multi-level data structures, each of the three
levels of our partition tree, each of whose levels supports halfplane range searching queries
amid points of one of the planar sets P+, P− or P ◦. This is done as follows. We fix a
parameter n ≤ m ≤ n2. The first level is a partition tree T , as described in [16], over the set
P+. Each node of T is associated with some canonical subset P+

v . For a query halfplane
h, h ∩ P+ can be represented as the disjoint union of O(n/

√
m+ logn) canonical subsets

(those stored at the nodes of T that the query with h reaches). Next, for each node v of T ,

ESA 2017



4:8 Approximate Nearest Neighbor Search Amid Higher-Dimensional Flats

we construct a similar partition tree T (v), as a second-level structure, on the corresponding
subset P−v = {p−(`) | p+(`) ∈ P+

v } of P−. Again, each node z ∈ T (v) is associated with a
suitable canonical subset P−z,v ⊂ P−v . Finally, at the third level, we preprocess the point set
P ◦z,v = {p◦(`) | p−(`) ∈ P−z,v} into a data structure so that, for a query vector u ∈ R2, the
point of P ◦z,v that is minimal in direction u can be computed efficiently. Using a linear-size
halfplane range reporting data structure6 (see, e.g., [2]), such an extremal query can be
answered in O(logn) time. Putting everything together, we obtain a data structure of Õ(m)
size, so that, for a query point q ∈ R3, λe(q), and the corresponding line `∗e ∈ L, can be
computed in Õ(1 + n/

√
m) time. The further details, omitted here, can be found in the

aforementioned papers.
Hence, for any choice of n ≤ m ≤ n2, and for each of the O(1/ε) edges e of Qε, we

construct, in Õ(m) time, the data structure De, as just described. This takes a total of
Õ(m/ε) storage and preprocessing. Given a query point q ∈ R3, we query with q in each of
these structures, and output the smallest scaling factor λe(q), over all edges e, and the line
` ∈ L that attains this minimum. The total cost of a query is Õ( 1

ε (n/m1/2)).
In particular, we can answer ANN queries amid a set of n lines in R3 under the Euclidean

distance, in Õ(1) time using a data structure that requires only Õ(n2/ε) storage and
preprocessing time.

3 Proof of Theorem 1

The preceding algebraic approach can be extended, in a fairly straightforward manner, to
nearest-neighbor problems involving k-flats, for k ≥ 1, in Rd, for d ≥ 3 (and d > k). This is
done as follows.

Let F be a collection of n k-flats, in general position, in Rd, for some fixed d > k ≥ 1 and
d ≥ 3. We approximate the Euclidean unit ball by a fixed convex polytope Q = Qε, which is
centrally symmetric with respect to the origin o, so that the resulting Q-distance function
dQ, satisfies (1). By Dudley’s theorem [18], this can be achieved by a polytope Qε that has
either O

(
1/ε d−1

2

)
vertices, or O

(
1/ε d−1

2

)
facets.

As in Section 2, we next present a solution of the (exact) NN search problem for F with
respect to the Q-distance function distQ, for an arbitrary fixed convex polytope Q, not even
requiring it to be centrally symmetric.

Exact nearest neighbor search with respect to Q. For a k-flat f ∈ F and a point q, the
distance λ = distQ(q, f) is attained at a point v ∈ f such that v lies on a (d − k − 1)-face
of q + λQ. Thus, in complete analogy to the preceding treatment, we construct, for each
(d− k − 1)-face σ of Q, a data structure that supports queries of the form: given a query
point q, find the smallest λ such that q + λσ touches a flat of F .

By triangulating Q, if necessary, we may assume that σ is a simplex. Let Eσ be the
(d− k)-dimensional affine space spanned by o and σ, and let Kσ :=

⋃
λ≥0 λσ be the (d− k)-

dimensional wedge contained in Eσ.
The region Kσ(q) := q +Kσ =

⋃
λ≥0(q + λσ) is a (d− k)-dimensional simplicial wedge

whose (also (d− k)-dimensional) affine hull Eσ(q) is q+Eσ. Assuming general position, each
flat f of F intersects Eσ(q) at a unique point, denoted as fσ(q).

6 In this very special case, the structure is simply the convex hull of the underlying set.
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For each (d− k)-face σ of Q, we collect those points fσ(q) that lie in Kσ(q), and choose
among them a point that minimizes the scaling factor λσ(q) = λσ(q, f) at which q + λσ

touches the point fσ(q). As in Section 2, this is done by constructing a separate data
structure Dσ for each (d− k − 1)-face σ of Q.

The face structures Dσ. Without loss of generality, assume that the coordinate system
is such that the linear subspace Eσ spanned by σ is the x1x2 · · ·xd−k-space Rd−k (given by
xd−k+1 = xd−k+2 = · · · = xd = 0). Regard Kσ as the intersection of d− k fixed halfspaces
(through the origin) h+

1 , h
+
2 , . . . , h

+
d−k within Rd−k, and write h+

j = {x ∈ Eσ | x · ui ≥ 0}, for
fixed respective vectors u1, . . . , ud−k in Eσ.

We now cast the preceding observations in algebraic form. In general position, each k-flat
f ∈ F can be expressed by d− k linear equations of the form

xi =
k∑
j=1

aij(f)xd−k+j + bi(f), (3)

for i = 1, . . . , d− k. Let A(f) denote the (d− k)× k matrix of the coefficients aij(f), and let
b(f) denote the (d− k)-dimensional vector (b1(f), . . . , bd−k(f)).

For each flat f ∈ F , the condition that fσ(q) lies in Kσ(q) is equivalent to the condition
that fσ(q) − q lies in Kσ (within Eσ). The point fσ(q) is obtained by substituting in (3)
the last k coordinates of q. To simplify the notation, add the vector b(f) as a last column
of A(f) (and continue to denote the matrix as A(f)). Then fσ(q) = A(f)q∗, where q∗ is
the (k + 1)-dimensional vector whose first k coordinates are the last k coordinates of q, and
whose last coordinate is 1.

Hence, the condition that fσ(q)− q lies in Kσ is

uTj (A(f)q∗ − q) ≥ 0, for j = 1, . . . , d− k. (4)

Let ud−k+1 denote the outward normal of σ within Eσ. In analogy with Section 2, we
construct a (d− k + 1)-level partition tree, whose first d− k levels are used to collect the set
Fq of k-flats f that satisfy (4), and whose bottommost level is used to determine the flat
f ∈ Fq that minimizes the linear function fσ(q) · ud−k+1 = uTd−k+1A(f) · q∗ in Fq.

Notice that the intrinsic dimension at each level is only k+ 1, as we represent each f ∈ F
by the d− k + 1 (k + 1)-dimensional vectors:

cj(f) = uTj A(f), for j = 1, . . . , d− k + 1.

Since the vectors uj , for 1 ≤ j ≤ d− k + 1, are fixed, each vector cj(f) is a linear expression
in A(f), independent of the query q.

We thus prepare a (d − k + 1)-level (k + 1)-dimensional partition tree, each of whose
levels corresponds to a (k + 1)-dimensional halfspace range-searching data structure. Again,
we fix a parameter m with n ≤ m ≤ nk+1, and construct a partition tree of size O(m) in
O(m logm) expected time, using Chan’s algorithm [16] over the set {c1(f) | f ∈ F} ⊂ Rk+1.
Suppose we have constructed j − 1 levels of the data structure, for 2 ≤ j ≤ d − k. For
each canonical subset F ′ of the (j − 1)-level of the data structure, we construct a partition
tree, using Chan’s algorithm, over the set {cj(f) | f ∈ F ′} ⊂ Rk+1. Finally, for each
canonical node F ′ of level d − k, we again construct a partition tree on the point set
{cd−k+1(f) | f ∈ F ′} ⊂ Rk+1 so that, for a query vector u ∈ Rk+1, the minimal point in
direction u, i.e., fu = arg minf∈F ′ cd−k+1(f) · u is returned. The overall preprocessing time
and size of the data structure are Õ(m) [2, 16].
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Answering queries. Given a query point q, we query with q, for each (d− k − 1)-face σ of
Q, the corresponding structure Dσ, so as to find the flat f ∈ F that satisfies (4) and (among
all such flats) attains the minimum value cd−k+1(f) · q∗ − ud−k+1 · q.

Specifically, at each level 1 ≤ j ≤ d− k, we access each of its structures, built over the
canonical sets that the query retrieved at the preceding level j − 1, and query it with the
halfspace cj(f) · q∗ ≥ uj · q. As a result, after accessing all levels j = 1, . . . , d− k, we obtain
a compact representation of the above set Fq of flats f ∈ F that satisfy (4), as a union of
canonical sets that are stored at the (d− k)-level. We then query, for each of these canonical
sets F ′ ⊆ Fq, its (d − k + 1)-level structure, so as to find the flat f ∈ F ′ that minimizes
the objective function cd−k+1(f) · q∗ − ud−k+1 · q, and return the flat fσ that attains the
overall minimum value, along with that value, which is in fact equal to λσ(q) = λσ(q, fσ), as
defined above. Note that fσ exists if and only if (4) is satisfied for at least one f ∈ F . If this
process has failed to find any flat f ∈ Fq, we make fσ undefined, and return λσ(q) = +∞.
Nevertheless, there always exists at least one (d− k − 1)-face σ of Q for which fσ exists, so
at least one of the output values λσ(q, fσ) will be finite.

We iterate this process for each (d− k − 1)-face σ of Q, and return the flat fσ with the
minimum corresponding scaling factor λσ(q, fσ); as just observed, this minimum is always
finite, so the output flat is always well defined (and is unique for a generic query q).

Using the standard results on multi-level partition-trees and on halfspace range search-
ing [2, 16, 28], the overall size and preprocessing time of the data structure are Õ(m) and a
query can be answered in Õ(n/m1/d) for every face of Q. Summing this bound over all faces
of Q, we obtain the following general result for exact NN-search with respect to a polyhedral
distance functions.

I Theorem 2. Let d ≥ 2 be a constant, let 0 ≤ k ≤ d− 1, let Q be a convex polytope in Rd
with γ faces of dimension d− k − 1. For a given parameter m with n ≤ m ≤ nk+1, a given
set F of n k-flats in Rd can be preprocessed in Õ(γm) expected time into a data structure
of Õ(γm) size, so that, for a query point q ∈ Rd, a flat f ∈ F that attains the smallest
Q-distance dQ(q, f) can be reported in Õ

(
γ
(
n/m

1
k+1

))
time.

Back to Euclidean ANN-search. We now apply the machinery just derived to obtain an
efficient solution to the Euclidean ANN-search problem. Given ε > 0, we take a convex
centrally symmetric polytope Qε that approximates the Euclidean ball, in the sense that its
corresponding Qε-distance function satisfies (1). Recall that, using Dudley’s bound, we can
take Qε to have either O

(
(1/ε) d−1

2

)
vertices or O

(
(1/ε) d−1

2

)
facets.

The maximum number γ of (d− k − 1)-faces of such a polytope Qε satisfies

γ = O
(

(1/ε)
d−1

2 min(d−k,k+1)
)
.

In this bound, we use a polytope Qε with a small number of facets (resp., vertices) when
k + 1 ≤ d− k (resp., k + 1 > d− k).

Plugging this into Theorem 2 finally yields Theorem 1. �

4 Discussion and Open Problems

Our data structure answers ANN queries amid a set F of k-flats in Rd by answering exact NN
queries amid F with respect to a suitable polyhedral Q-metric. The most obvious direction
towards further improving the bounds of Theorem 1 is to replace the exact NN-search under
the Q-norm by some approximate version. Ideally, this would allow us to avoid the use of the
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fairly expensive halfspace range searching structures. Unfortunately, our parametrization of
k-flats by (k + 1)-dimensional points does not preserve distances, so the existing machinery
of approximate range searching, such as in [10], does not directly apply.

The most interesting instance of the problem involves lines in Rd. Notice that our fast
structure, using only nearly quadratic storage in n, does not yield an approximate Voronoi
diagram whose description complexity is also nearly quadratic. A challenging open problem
is whether an approximate Voronoi diagram of near-quadratic size exists for a set of lines in
Rd, for d > 3. More generally, does an approximate Voronoi diagram of size O(nk+1) exist
for a set of k-dimensional flats in Rd, for d > k?

Acknowledgement. The authors thank Sariel Har-Peled for helpful discussions. We also
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of the paper.
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