
Finding Axis-Parallel Rectangles of Fixed
Perimeter or Area Containing the Largest Number
of Points∗

Haim Kaplan1, Sasanka Roy2, and Micha Sharir3

1 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
haimk@tau.ac.il

2 Indian Statistical Institute, Kolkata, India
sasanka.ro@gmail.com

3 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
michas@tau.ac.il

Abstract
Let P be a set of n points in the plane in general position, and consider the problem of finding an
axis-parallel rectangle with a given perimeter, or area, or diagonal, that encloses the maximum
number of points of P . We present an exact algorithm that finds such a rectangle in O(n5/2 logn)
time, and, for the case of a fixed perimeter or diagonal, we also obtain (i) an improved exact
algorithm that runs in O(nk3/2 log k) time, and (ii) an approximation algorithm that finds, in

O

(
n+ n

kε5 log5/2 n

k
log
(

1
ε

log n
k

))
time, a rectangle of the given perimeter or diagonal that

contains at least (1− ε)k points of P , where k is the optimum value.
We then show how to turn this algorithm into one that finds, for a given k, an axis-parallel

rectangle of smallest perimeter (or area, or diagonal) that contains k points of P . We obtain the
first subcubic algorithms for these problems, significantly improving the current state of the art.

1998 ACM Subject Classification F.2.2 Geometrical problems and computations, E.1 Data
structures

Keywords and phrases Computational geometry, geometric optimization, rectangles, perimeter,
area

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.52

1 Introduction

In the basic problem studied in this paper, we are given a set P of n points in the plane
in general position, and a fixed parameter τ > 0, and we seek an axis-parallel rectangle of
perimeter 2τ that encloses the maximum number of points of P . We denote this problem as
max-pts(τ). We also consider variants of the problem, involving rectangles with other fixed
parameters, such as the area or the length of the diagonal. Such problems have been studied

∗ Work by Haim Kaplan has been supported by Grant 1161/2011 from the German-Israeli Science
Foundation, by Grant 1841-14 from the Israel Science Foundation, and by the Israeli Centers for
Research Excellence (I-CORE) program (center no. 4/11). Work by Micha Sharir has been supported
by Grant 2012/229 from the U.S.-Israel Binational Science Foundation, by Grant 892/13 from the Israel
Science Foundation, by the Israeli Centers for Research Excellence (I-CORE) program (center no. 4/11),
by the Blavatnik Research Fund in Computer Science at Tel Aviv University, and by the Hermann
Minkowski–MINERVA Center for Geometry at Tel Aviv University.

© Haim Kaplan, Sasanka Roy, and Micha Sharir;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 52; pp. 52:1–52:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.52
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

52:2 Axis-Parallel Rectangles Containing the Largest Number of Points

by many researchers (as we survey below) and arise in statistical clustering and pattern
recognition (see [1] and the references therein).

Earlier works on these problems have mainly studied the “dual” version, where we specify
k and seek an axis-parallel rectangle of minimum perimeter (or area, or diagonal) that
encloses k points of P . This so-called min-perim(k) (or min-area(k), or min-diag(k))
problem has been studied in Aggarwal et al. [1], who gave an O(nk2 logn)-time solution.
Eppstein and Erickson [7] gave an algorithm that runs in O(n logn+ nk2) time and requires
O(n logn+nk) storage. They observed that the k points in the optimal rectangle are among
the O(k) rectilinear nearest neighbors of each other. This allowed them to partition the
problem into O(n/k) subproblems, each on a subset of O(k) points, and to apply a naive
O(k3)-algorithm of Aggarwal et al. [1] to each subset. The partition is obtained using a data
structure for planar rectilinear nearest neighbors.

Datta et al. [5] suggested a different scheme to break the problem into O(n/k) subproblems,
each of size O(k). Their algorithm runs within the same time bound as the algorithm of
Eppstein and Erickson but requires only linear storage.

Segal and Kedem [15] gave algorithms for min-perim(k) and min-area(k), that are linear
for very large values of k. Their algorithms run in O(n+ k(n− k)2) time.

A very recent work on this problem, by De Berg et al. [6], develops a near linear algorithm
for min-area(k), for small values of k. Their algorithm runs in O(nk2 logn+ n log2 n) time.
They also give a (1− ε)-approximation algorithm for the dual min-pts(A) problem, which
asks for an axis-parallel rectangle of a given area A that contains the largest number of
points of P . Notice that all algorithms for min-perim(k) and min-area(k) are cubic in the
worst-case for some values of k.

As noted in [6], the variants of the problem involving area are harder. For example, it is
no longer the case that the k points in an optimal rectangle are among the O(k) rectilinear
nearest neighbors of each other. Our paper too, which handles all three variants, derives
faster algorithms for the cases of perimeter or diagonal, and the approximation algorithms
that we obtain apply only for these two cases.

Let us return to the case of perimeter. Using an algorithm for min-perim(k), one can
solve the original problem, that we have denoted as max-pts(τ), using binary search in
a straightforward manner. The overall cost of this algorithm is O(logn) times the cost of
min-perim(k).

The converse direction, to turn a given algorithm for max-pts(τ) into an efficient solution
of min-perim(k), is somewhat more involved, but is doable. Indeed, in this paper we first
solve max-pts(τ) directly, and then show how to solve min-perim(k) by a logarithmic
number of calls to max-pts(τ).

1.1 Our results

We first present, in Section 2, an algorithm for max-pts(τ) that runs in O(n5/2 logn) time.
The method is sufficiently general, so the algorithm also solves the variants where the area
or the diagonal of the rectangle are fixed (and we want to maximize the number of points of
P that it contains), within the same running time bound.

We then use, in Section 2.3, a simple grid-based construction that allows us to solve
max-pts(τ) in an output-sensitive manner. Specifically, the running time improves to
O(nk3/2 log k), where k is the output size, the maximum number of points of P contained in
such a rectangle. A simple modification of the same approach yields the same improvement
for the case of fixed diagonal, but, unfortunately, not for the case of fixed area.

H. Kaplan, S. Roy, and M. Sharir 52:3

We also obtain, in Section 3, an approximation algorithm that finds, in near-linear time
(see Theorem 3 for the precise bound), an axis-parallel rectangle of the given perimeter that
contains at least (1−ε)k points of P , for a prespecified error parameter ε. The approximation
algorithm extends to the case of diagonal but not to the case of area.

Finally, we consider the dual problem min-perim(k), as defined above, and present an
algorithm that solves it in O(nk3/2 log k logn) time, which is only O(logn) times slower
than the running time of our algorithm for max-pts(τ). We obtain this result by reducing
min-perim(k) to a logarithmic number of calls to max-pts(τ). This bound improves (for
almost all values of k) the previous best bound O(n logn+ nk2) of [5, 7]. Our reduction is
fairly general, and can also be applied to the cases of area or diagonal. For the case of area,
our algorithm is not output-sensitive, and runs in O(n5/2 log2 n) time. These are the first
subcubic algorithms for these problems (for any value of k), improving upon [1, 6, 5, 7, 15].
For the case of area, the algorithm in [6] is faster when k is small; for the cases of perimeter
or diagonal, our algorithms, as already noted, are significantly faster for almost all values
of k.

2 An exact algorithm for max-pts(τ)

We recall our basic problem: Let P be a set of n points in the plane in general position
(in particular, no two points of P have the same x- or y-coordinate), and let τ be a given
positive real number. We want to find an axis-parallel rectangle R of perimeter 2τ that
contains the largest number of points of P .

Let Q = Q(τ) denote the collection of all axis-parallel rectangles R of perimeter 2τ . Each
rectangle R ∈ Q can be parameterized by three parameters (x, y, z), where (x, y) is the
bottom-left vertex of R, and z is its width (x-span); its height (y-span) is then τ − z. In
other words, we identify the rectangles of Q with the points of R2 × [0, τ].

A point p = (p1, p2) lies in a rectangle R ∈ Q, parameterized by (x, y, z), if and only if

x ≤ p1 ≤ x+ z and y ≤ p2 ≤ y + τ − z. (1)

For each p = (p1, p2) ∈ P , let Kp denote the set of all rectangles in Q that contain p. In
the parametric 3-space, Kp is a tetrahedron, bounded by the four halfspaces specified in (1).
Our problem is now reduced to that of finding a point of maximum depth in the arrangement
of these n isothetic tetrahedra (i.e., a point contained in the largest possible number of
tetrahedra; note that these tetrahedra are indeed translates of one another).

The cross-section of a tetrahedron Kp, at any fixed z, is an axis-parallel rectangle Kp(z),
given by

p1 − z ≤ x ≤ p1 and p2 − τ + z ≤ y ≤ p2. (2)

All the rectangles Kp(z), for p ∈ P , are translates of one another; they are in fact the sets
p−R0(z), for p ∈ P , where R0(z) = [0, z]× [0, τ − z]. Let R(z) denote the collection of these
rectangles, for any z ∈ [0, τ], and let A(z) denote the planar arrangement of the rectangles
of R(z). Our problem now is to find a z at which the maximum depth ∆(z) of a point in
A(z) is maximized.

As z varies from 0 to τ , the rectangles of R(z) simultaneously deform, as their common
width (x-span) increases and their common height (y-span) decreases. The arrangement
A(z) varies continuously, but its combinatorial structure remains unchanged as long as both
the left-to-right order of the y-vertical edges of the rectangles, and the bottom-to-top order
of the x-horizontal edges of the rectangles, remain unchanged. Under the general position

ESA 2017

52:4 Axis-Parallel Rectangles Containing the Largest Number of Points

assumption, no pair of left edges, of right edges, of top edges, or of bottom edges, can ever
attain the same x- or y-coordinate. Hence, the critical values of z at which the combinatorial
structure of A(z) changes are those at which either the lines supporting the left side of one
rectangle and the right side of another coincide, or the lines supporting the bottom side of
one rectangle and the top side of another coincide. The set of critical values is therefore{

p1 − q1, p2 − q2 + τ | p = (p1, p2) 6= q = (q1, q2) ∈ P
}
∩ (0, τ).

There are at most n(n − 1) such critical values (for each pair p, q, at most one of p1 − q1,
q1 − p1 can lie in (0, τ), and the same holds for p2 − q2 + τ , q2 − p2 + τ), and we may assume
them to be all distinct, by our general position assumption. At each such critical value,
either the left edge of one rectangle and the right edge of another rectangle in R(z), that
are adjacent in the left-to-right order of the vertical edges, are swapped in this order, or
the bottom edge of one rectangle and the top edge of another rectangle, adjacent in the
bottom-to-top order of the horizontal edges, are swapped.

In what follows, we present a data structure that maintains the arrangement A(z), updates
it at each critical value of z, and keeps track of the maximum depth in A(z) after each update.
The data structure requires O

(
n3/2 logn

)
storage, can be initialized in O

(
n3/2 logn

)
time,

and each update takes O
(
n1/2 logn

)
amortized time. Using this structure, we obtain our

exact algorithm.

I Theorem 1. Given a set P of n points in the plane in general position, and a parameter
τ > 0, one can find, in O

(
n5/2 logn

)
time, an axis-parallel rectangle of perimeter 2τ that

contains the maximum number of points of P . The algorithm requires O
(
n3/2 logn

)
storage.

Other fixed parameters. As already noted, the approach described so far can also handle,
with minor modifications, other fixed parameters, such as the area, or the length of the
diagonal, or any parameter that depends on the lengths of the edges of the rectangles, so that
the length of one edge uniquely determines the length of the other edge (all the parameters
mentioned so far have this property). For example, in the case where our rectangles have a
fixed area A, we have to replace (1) and (2) by

x ≤ p1 ≤ x+z, y ≤ p2 ≤ y+A/z, and p1−z ≤ x ≤ p1, p2−A/z ≤ y ≤ p2,

respectively. The latter pair of inequalities defineKp, so it is no longer a simplex. Nevertheless,
the cross sections Kp(z), for any z > 0, are all isothetic rectangles, and the critical values
of z are similarly constructed – they are now of the form |p1 − q1| or A/|p2 − q2|. This
allows the rest of the analysis to proceed more or less verbatim. The case of fixed diagonal
is also handled in a fully analogous manner. That is, these variants can also be solved in
O(n5/2 logn) time.

2.1 The data structure
For any fixed value of z, one can compute the maximum depth of A(z) in O(n logn) time
and O(n) space [12, 14]. If we allow O(n logn) space (and O(n logn) time) then we can
perform this computation in a straightforward manner by sweeping R(z) from left to right
by a vertical line, while maintaining the cross sections of the rectangles in R(z) with the
sweepline in a dynamic segment tree T [3]. To efficiently recompute the maximum depth
after each update of T , we also store at each node of T the maximum depth of a leaf in its
subtree. (The depth of a leaf is the number of rectangles containing the vertical interval

H. Kaplan, S. Roy, and M. Sharir 52:5

B1 Bj B√
n

Ci,j

A√
n

Ai

A1

Figure 1 The grid G(z), the coarser grid,
its horizontal and vertical slabs, and a single
highlighted cell.

Ci,j

Figure 2 The sets Hi,j and Vi,j , and the
respective sets RH

i,j , RV
i,j of the rectangles

forming them, within a single highlighted cell
Ci,j .

that it represents within the sweepline.) An update affects these counters only at the nodes
on the two paths to the endpoints of the inserted or deleted segment, and it is therefore
straightforward to update these counters when we insert or delete a segment to/from the
segment tree, and to propagate them to the root, whose counter represents maximum the
depth that we seek.

One could attempt at making this (static) structure dynamic, under swaps of vertical
or horizontal rectangle edges, by maintaining all the versions of T , constructed during the
sweep, in some persistent data structure, and by updating that structure at each swap of
edges. Unfortunately, it is not clear how to perform such updates efficiently. (This is because
a swap of two horizontal edges might affect arbitrarily many versions of T ; vertical swaps, in
contrast, affect only two consecutive versions.) Instead, we present a slower, more symmetric
data structure for computing the maximum depth of A(z), which can be made dynamic at a
reasonably low cost.

The grid. Consider the grid G = G(z) formed by the horizontal and vertical lines supporting
the edges of the rectangles in R = R(z). (The other notations introduced below also depend
on z, but we make this dependence implicit from now on, to simplify the notation.) Assuming
that z is not critical, G is formed by 2n vertical lines and by 2n horizontal lines.

Partition G into
√
n×
√
n cells, by the

√
n− 1 horizontal lines and the

√
n− 1 vertical

lines whose indices are multiples of 2
√
n, referred to as dividers; the number of cells in the

resulting coarser grid is n. (We ignore in what follows the insignificant rounding issues.)
The horizontal dividers partition the plane into

√
n horizontal slabs, denoted A1, . . . , A√n

in this bottom-to-top order, and the vertical dividers partition the plane into
√
n vertical

slabs, denoted B1, . . . , B√n in this left-to-right order. See Figure 1. We regard each vertical
(resp., horizontal) slab as closed at its left (resp., bottom) boundary, and open at its right
(resp., top) boundary, so that each vertical (resp., horizontal) line is contained in exactly one
vertical (resp., horizontal) slab. Accordingly, each cell in the coarser grid is closed at its left
and bottom boundaries, and open at its right and top boundaries, making the cells pairwise
disjoint and covering all rectangles.

For each cell Ci,j = Ai ∩Bj of the coarser grid, let vi,j denote the number of corners of
the rectangles in R that lie in Ci,j . We have

∑
i,j vi,j = 4n, so, on average, each cell contains

four vertices, but some cells might contain many more vertices. Still, by construction, no cell
contains more than 4

√
n vertices. In fact, we have the stronger property that no vertical

or horizontal slab contains more than 4
√
n vertices (At most two on each vertical line in a

vertical slab, and similarly for horizontal slabs).

ESA 2017

52:6 Axis-Parallel Rectangles Containing the Largest Number of Points

Ci,j

Figure 3 Two short rectangles in Ci,j , and
the partition into query subcells that they
induce.

τ/2

τ/2

Figure 4 A rectangle R of perimeter 2τ
can intersect at most six grid cells.

Computing the depth within a cell: Rectangles fully containing the cell. Consider the
problem of computing for each such cell Ci,j , a counter wi,j , equal to the number of
rectangles of R that fully contain Ci,j . We compute the wi,j ’s by a sweep over the vertical
slabs, maintaining a dynamic segment tree (see [3]) over the horizontal slabs, or rather cells,
within the currently swept vertical slab. When moving from one vertical slab to the next, we
find the wi,j ’s of all cells in the new slab, in the following three steps. First, we remove all
the vertical segments that correspond to rectangles with a right edge in the current vertical
slab (since these rectangles do not contribute to the wi,j ’s in this slab). Then, we traverse
the segment tree bottom-up and compute, for each leaf, the number of segments (the y-spans
of the active rectangles) containing the cell that corresponds to the leaf, thereby obtaining
the desired counters wi,j . We then add the segments that correspond to rectangles with a
left edge in the current vertical slab (provided that their right edge is not in the slab). We
have O(n) insertions and deletions to/from this segment tree, each taking O(logn) amortized
time. In addition, the number of nodes in the segment tree is O(

√
n) and we traverse it

√
n

times, to compute the counters wi,j . It follows that the sweep takes O(n logn) total time.

Rectangles that straddle the cell. Let R be a rectangle that intersects Ci,j (without fully
containing it) and is not one of the O(vi,j) rectangles that have a corner in Ci,j . Then R
crosses Ci,j in either a horizontal strip or a vertical strip; that is, Ci,j ∩ ∂R consists either of
portions of one or two horizontal edges of R that cross Ci,j from side to side, or of portions
of one or two vertical edges that cross Ci,j from side to side. Let Hi,j (resp., Vi,j) denote the
set of the horizontal (resp., vertical) edges of this kind, and let RHi,j (resp., RVi,j) denote the
set of the rectangles that contain the edges of Hi,j (resp., of Vi,j). See Figure 2. The edges
in Hi,j partition Ci,j into at most 2

√
n horizontal strips, and the depth within each strip,

with respect to the rectangles in RHi,j , is fixed, and changes by ±1 as we move from one strip
to the next. Analogous properties hold for the edges in Vi,j .

It follows that if we ignore the O(vi,j) rectangles with vertices in Ci,j (we refer to them
as short rectangles) and the rectangles that fully contain Ci,j , the maximum depth in Ci,j
is the maximum depth δHi,j of the rectangles of RHi,j , plus the maximum depth δVi,j of the
rectangles of RVi,j . Each of δHi,j , δVi,j is the maximum of a sequence of depths, of length at
most 2

√
n, where consecutive elements differ by ±1.

We maintain the vertical projections (i.e., y-spans) of the intersections of the rectangles
of RHi,j with Ci,j in a segment tree THi,j (which we will make dynamic in the next section).

H. Kaplan, S. Roy, and M. Sharir 52:7

Each leaf v of THi,j is associated with a strip [h′, h), where h′ and h are consecutive edges of
Hi,j . The depth of this strip (with respect to RHi,j is the sum of the numbers of segments
stored at the ancestors of v).

We use this data structure to find, in O(logn) time, the strip of maximum depth in any
subsequence of consecutive strips, by storing at each internal node v of THi,j the maximum
depth of the leaves in its subtree (we omit the straightforward and fairly routine details of
this mechanism).

We maintain RVi,j in an analogously defined dynamic segment tree TVi,j . Clearly, THi,j and
TVi,j allow us to answer maximum depth queries, with respect to RHi,j ∪ RVi,j , where each
query specifies a range of consecutive horizontal strips and a range of consecutive vertical
strips, and asks for the maximum depth (with respect to RHi,j ∪RVi,j) within the rectangular
Cartesian product of these ranges. Each such query takes O(logn) time.

Short rectangles and computing the maximum depth. We use the structures THi,j and
TVi,j to compute the real maximum depth within Ci,j , which also takes into account the wi,j
rectangles that fully contain Ci,j , and the O(vi,j) short rectangles. To do so, we partition
Ci,j into O(v2

i,j) axis-parallel rectangular subcells by the horizontal and vertical lines that
pass through the vertices inside Ci,j ,1 and query THi,j and TVi,j for the maximum depth (in
RHi,j ∪ RVi,j) within each of the resulting subcells, to which we refer as query subcells. See
Figure 3. (Note that, in general, the left and right boundary edges of each query subcell
cross the interiors of two vertical strips stored in TVi,j , and the bottom and top boundary
edges of each query subcell cross the interiors of two vertical strips stored in THi,j . We expand
the horizontal and the vertical ranges of the query subcell to fully include the four relevant
strips.) Each query subcell, though, has an additional weight, equal to the number of short
rectangles that fully contain the subcell (by construction, there is no partial overlap of any
short rectangle with a query subcell). We refer to this additional weight of a query subcell as
the short weight of the subcell. These short weights are easy to compute in O(v2

i,j) time, by
constructing the coarse grid of these subcells (within Ci,j), followed by a suitable traversal
of the subcells, updating the count by 0, +1, or −1, as we pass from one subcell to the next.
For each query subcell, we add this short weight, and the global counter wi,j , to the depths
returned by the queries to THi,j and TVi,j . We then output the maximum of the resulting
depths, over all the O(v2

i,j) query subcells.

Analysis. The running time of this algorithm is bounded as follows. We first sort the
vertices of the rectangles by their x- and y-coordinates, and compute the global counters
wi,j . This initialization takes O(n logn) time. Then, for each cell Ci,j , we construct the
trees THi,j and TVi,j , in O(

√
n) time (the relevant edges are already sorted), for an overall

O(n3/2) time. We then spend O(v2
i,j) time for constructing the coarse grid of query subcells

within Ci,j , and O(v2
i,j logn) time for querying THi,j and TVi,j with these subcells. Summing

over all cells, and using the fact that vi,j ≤ 4
√
n for each cell Ci,j , we get a total time of

O
(
n3/2 +

√
n
∑
i,j vi,j logn

)
= O

(
n3/2 logn

)
.

1 When constructing this partition into query subcells, we also consider vertices on the bottom and left
edges of ∂Ci,j , because, by our convention, these vertices are considered to be internal to the cell.

ESA 2017

52:8 Axis-Parallel Rectangles Containing the Largest Number of Points

2.2 Updating the data structure
In this section we show how to dynamically maintain the counters wi,j ’s, the trees THi,j and
TVi,j , the number of short rectangles in Ci,j containing each query subcell, and the depth
of each query subcell, as we increase z from 0 to τ . To retrieve the maximum depth after
updating the structures at each critical z-value, we also maintain the depths of the query
subcells, over all cells Ci,j , in a priority queue, and keep track of the maximum value in this
queue. The overall maximum depth, i.e., the maximum number of points of P contained in
an axis-parallel rectangle of perimeter 2τ , is the maximum attained by this priority queue
throughout the z-sweep.

Note that at z = 0 each rectangle is essentially a vertical line segment (The lines supporting
the left and right edges of the same rectangle are identical, and formally they are regarded
as consecutive in G.). This simplifies that initialization of the data structure. For example
initially wi,j = 0 for all 1 ≤ i, j ≤

√
n.

As the value of z increases, the coordinates of the vertices of the rectangles in R(z) vary
continuously, and so do the coordinates of the vertical and horizontal supporting lines that
form the grid G(z). However, discrete changes in the structure of G(z) occur only when two
horizontal or two vertical sides of two distinct rectangles partially overlap, or, in the looser
sense that we follow, when the lines supporting two such edges coincide. The maximum
depth in A(z) can change only at these discrete events.

Consider an event where the right side of one rectangle R1 and the left side of another
rectangle R2 swap their vertical order; that is, the two vertical lines supporting these edges
in G(z) coincide and then swap their order. The event where two horizontal sides partially
overlap is handled in a fully symmetric fashion This swap takes place either within a single
vertical slab Bj , or across the boundary (‘divider’) between two adjacent slabs. In total, this
affects up to 4

√
n cells of G (within these slabs). We describe here the case in which the

swap occurs within a single vertical slab Bj ; the other case is handled in a similar manner,
with a few minor modifications, and will appear in the full version of this paper.

Consider first the cells of Bj that do not contain the vertices of R1 and of R2. Within
each such cell Ci,j , the effect of the swap is that the right endpoint of the horizontal segment
corresponding to R1 and the left endpoint of the horizontal segment corresponding to R2
swap their order in TVi,j , assuming they both cross Ci,j . As a result, the depth of a single
vertical strip with respect to RVi,j increases by 2. This is because the x-spans of the rectangles
in R(z) increase as z increases; in the symmetric case of horizontal strips, the opposite holds
– the depth of a single strip decreases by 2. (As already mentioned, this holds only for cells
within the common y-range of R1 and R2; no change occurs in the other cells.) We update
the corresponding segments in the tree TVi,j . This takes O(logn) amortized time per cell, and
O(
√
n logn) time for all cells that are affected by the swap.

We now need to reapply the rectangular depth queries for the query subcells within each
affected cell Ci,j , but we note that only O(vi,j) of the queries can change their output – these
are the queries whose subcells are crossed by the vertical strip that has changed its depth.
We perform these queries, as in the static case, and update the depths of these query subcells
in the global priority queue accordingly (wi,j , and the short weights of the affected subcells,
do not change).

Consider next the at most four cells Ci,j that contain vertices of R1 or of R2 (that is,
endpoints of the swapped vertical edges). Here the swap does not affect TVi,j , because only
one (or none, when endpoints of both edges lie in Ci,j) of the swapped vertical edges belongs
to this set. We split the rest of the description of the required updates according to whether
Ci,j contains vertices only of R1 or only of R2, or vertices of both R1 and R2.

H. Kaplan, S. Roy, and M. Sharir 52:9

Consider first the case where Ci,j contains only vertices of R1, either the top-right vertex,
or the bottom-right vertex, or both; Ci,j may also contain left vertices of R1, but they have
no effect on the update procedure. The case where Ci,j contains only the top-left vertex or
the bottom-left vertex of R2, or both (and maybe also right vertices), is handled in a fully
symmetric manner. Denote by λR1 (resp., λL2) the vertical line supporting the right side of
R1 (resp., the left side of R2); these are the lines that swap their left-to-right order. In this
case the partition of Ci,j into query subcells essentially does not change, except that one line
in Vi,j , namely λL2 (it is in Vi,j because the left vertices of R2, which it supports, are not in
Ci,j) moves from one column of query subcells (just to the right of λR1) to another column
(just on the left of that line). We query THi,j and TVi,j to get the new depth of each of the
query subcells to the left and to the right of λR1 , with respect to the rectangles in RHi,j ∪RVi,j ,
add to it wi,j and the short weight of the subcell, and update the depths of all these subcells
in the priority queue.

If Ci,j contains at least one vertex of R1 and at least one vertex of R2 then, in the grid
defining the partition of Ci,j into query subcells, the corresponding vertical lines λR1 and λL2
swap (with the former moving to the right of the latter). Consequently, the short weights
of some of the subcells in the column bounded these two lines (which ‘closes’ at the swap
and ‘re-opens’ afterwards) increases by 2; the affected cells are those that lie in the overlap
between the y-spans of R1 and R2 (as before, the corresponding short weights decrease by 2
in the symmetric case of a horizontal swap). We locally update these short weights and the
depths of these subcells accordingly, and similarly update the priority queue.

In both cases, the number of affected query subcells of Ci,j is only O(vi,j), so the total
amortized update time is O(vi,j logn).

The overall amortized time spent on maximum depth queries in THi,j and in TVi,j , and on
updates of short weights, is O (

∑
i vi,j logn), where we sum over all cells Ci,j in the single

vertical column Bj . Fortunately,
∑
i vi,j ≤ 4

√
n, so the overall (amortized) cost of an update

is O (
√
n logn).

As we mentioned the case where the swap occurs across a horizontal or a vertical divider
between adjacent is similar and takes the same amortized time. This completes the description
and analysis of the data structure, including both correctness and performance bounds, and
justifies the bounds given in Theorem 1.

2.3 An output-sensitive algorithm
Let k be the maximum number of points of P in an axis-parallel rectangle of perimeter 2τ .
In this section we show how to modify our algorithm so that it runs in O(nk3/2 log k) time.
The same modification holds for the case of fixed diagonal, but not for fixed area.

We cover the plane by a grid whose cells are of size τ/2× τ/2, and count the number of
points of P in each nonempty cell. Using the floor function and a universal hashing scheme
(see, e.g., [4]), this takes O(n) expected time. Let k0 denote the maximum number of points
in any grid cell. It follows that k0 ≤ k ≤ 6k0, where the left inequality follows since each grid
cell has perimeter 2τ , and the right inequality follows since any rectangle R of perimeter 2τ
(and in particular the optimal one) can intersect at most six grid cells as is easily checked;
see Figure 4.

We collect, in O(n) time, all the 2×3 and 3×2 clusters C of grid cells such that C contains
at least k0 points of P , and observe that the number of such clusters is O(n/k0) = O(n/k).
We apply our algorithm to each cluster separately and return the rectangle containing the
largest number of points in any of the clusters. We thus obtain the following theorem.

ESA 2017

52:10 Axis-Parallel Rectangles Containing the Largest Number of Points

I Theorem 2. Given a set P of n points in the plane in general position, and a parameter
τ > 0, let k denote the maximum number of points of P in an axis-parallel rectangle of
perimeter 2τ . One can find, in O((n/k)k5/2 log k) = O(nk3/2 log k) time, an axis-parallel
rectangle of perimeter 2τ that contains the maximum number k of points of P . The algorithm
requires O(n+ k3/2 log k) storage.

I Remark.
(1) The technique in this subsection also works for finding an axis-parallel rectangle with

diagonal of length d containing the maximum number of points of P . We use a (d/
√

2)×
(d/
√

2) grid (each of whose cells has diagonal = d), argue that any axis-parallel rectangle
of diagonal d is contained in some small local cluster of grid cells, and obtain, as above,
an algorithm that runs in O(nk3/2 log k) time, where k is the maximum number of points
in a rectangle of diagonal d.

(2) The technique in this subsection does not extend to the case of rectangles with a fixed
area, since no single grid can localize every rectangle of area A within a small cluster of
its cells. (In contrast, as already noted, the main algorithm, which runs in O(n5/2 logn)
time, does extend to the case of fixed area.)

Nevertheless, for the case of a fixed area, say A, we can use a similar idea to get an
algorithm whose running time depends (albeit rather weakly) on A, as follows. Assume that
P ⊂ [0, 1]2, and that the given area is A < 1 (the case A ≥ 1 is clearly trivial). Without
loss of generality, it suffices to consider only rectangles of width between A and 1, with
the corresponding height between 1 and A. We can partition the problem into O(log(1/A))
subproblems, so that in each subproblem we only consider rectangles whose widths are
between z0 and 2z0, and heights between A/z0 and A/(2z0), for some fixed z0. To each
subproblem we can apply a suitable variant of the preceding grid construction, and solve the
subproblem in O(nk3/2 log k) time, for a total cost of O(nk3/2 log k log(1/A)) time. We leave
it as an open problem to obtain an algorithm whose running time bound is k-sensitive and
independent of A, in the style of Theorem 2.

3 An approximate solution

In this section we present a randomized algorithm that computes, with high probability,
a rectangle of perimeter 2τ that contains at least (1 − ε)k points of P , for a prescribed
0 < ε < 1, where k is the maximum possible value, and runs in time

O

(
n+ n

kε5 log5/2 n

k
log
(

1
ε

log n
k

))
.

We use the grid partitioning of Section 2.3, and obtain (i) an approximation k0 of k, up
to a factor 6, and (ii) O(n/k0) = O(n/k) clusters of points, each of size Θ(k). We apply
the following procedure to each cluster separately, and return the rectangle containing the
largest number of points of P , among those output for each of the clusters.

So let C be a fixed “heavy” cluster of grid cells, and let PC = P ∩ C denote the set

of points of P in C (of size Θ(k)). We take a random sample S of size s = Θ
(

1
ε2 log 1

δ

)
,

for some 0 < δ < 1. For a suitable sufficiently large constant of proportionality, S is an
(ε/12)-approximation of P for axis-parallel rectangular ranges, with probability at least
1 − δ. That is, with probability ≥ 1 − δ, we have, for each axis-parallel rectangle R,

H. Kaplan, S. Roy, and M. Sharir 52:11

∣∣∣∣ |R ∩ S||S|
− |R ∩ PC |

|PC |

∣∣∣∣ ≤ ε

12 (see, e.g., [11]).2

We now run the exact algorithm of Section 2.3 on S, and obtain an axis-parallel rectangle
RS (of perimeter 2τ) that contains the maximum number of points of S.

Correctness. Let R be an optimum rectangle (of perimeter 2τ) that contains k points of P ,
and let C be a cluster that fully contains R; by the arguments in Section 2.3, such a cluster
always exists. Let S be the corresponding random sample of s points of PC , and let RS denote,
as above, the axis-parallel rectangle of perimeter 2τ that contains the maximum number

of points, denoted s∗, of S. Then, with probability ≥ 1 − δ, we have
∣∣∣∣ |R ∩ S|s

− k

t

∣∣∣∣ ≤ ε

12 ,

where t = |PC | = Θ(k). On the other hand,∣∣∣∣ |RS ∩ S|s
− |RS ∩ PC |

t

∣∣∣∣ =
∣∣∣∣s∗s − |RS ∩ PC |t

∣∣∣∣ ≤ ε

12 ,

that is, |RS ∩ PC | ≥
s∗t

s
− 1

12εt ≥
|R ∩ S|t

s
− 1

12εt ≥
(
k − 1

12εt
)
− 1

12εt = k − 1
6εt.

Since t ≤ 6k, this is ≥ (1− ε)k. That is, the procedure will find, with probability at least
1− δ, a rectangle that contains at least (1− ε)k points of P .

Running time. Finding the heavy clusters C takes a total of O(n) time, and the overall
cost of drawing the random samples S also takes O(n) time. We take δ = (k/n)c, for some
suitably large exponent c, so as to guarantee correctness with high probability in all clusters.
(There are only O(n/k) clusters, so the probability to fail in at least one of them is at most
O((n/k) · (k/n)c) = O((k/n)c−1).) The cost of a single application of the exact algorithm is

O

(
1
ε5 log5/2 n

k
log
(

1
ε

log n
k

))
. Since the number of heavy clusters is O(n/k), we obtain a

total running time of O
(
n+ n

kε5 log5/2 n

k
log
(

1
ε

log n
k

))
. Assuming that k is not too small

and neglecting the logarithmic terms, we can even take ε = 1/k1/5, and obtain an algorithm
whose running time is ≈ O(n), which returns, with high probability, an axis-parallel rectangle
of perimeter 2τ that contains at least k −O(k4/5) points of P .

The same technique applies with minor modifications also to the case of a fixed diagonal.
We summarize the results of this section in the following theorem.

I Theorem 3. Let P be a set of n points in the plane, and let τ > 0 and ε ∈ (0, 1) be given

parameters. We can compute, in time O
(
n+ n

kε5 log5/2 n

k
log
(

1
ε

log n
k

))
, an axis-parallel

rectangle of perimeter 2τ that contains at least (1− ε)k points of P , where k is the maximum
number of points contained in such a rectangle. Within the same time bound we can compute
an axis-parallel rectangle of diagonal d that contains at least (1− ε)k points of P , where k is
the maximum number of points contained in such a rectangle.

We note that for the case of a fixed area, an approximation algorithm, based on a totally dif-
ferent approach, was recently obtained by De Berg et al. [6]; it runs in O((n/ε4) log2 n log(1/ε))
time.

2 Using discrepancy based methods one can find a smaller ε-approximation of size O(1
ε log2(1

ε)) [2].
However, such an ε-approximation is less efficient to compute (although polynomial).

ESA 2017

52:12 Axis-Parallel Rectangles Containing the Largest Number of Points

pL

pR

pB

pT

pL

pR

pB

pT

Figure 5 A quadruple (pL, pR, pB , pT) that defines a valid rectangle (left), and a quadruple that
does not (right).

4 An efficient exact algorithm for min-perim(k)

In this section we present an efficient algorithm for the dual version of the problem, in which
we specify k, and seek an axis-parallel rectangle of smallest perimeter that contains k points
of P . The same technique also applies to the cases where the objective is to minimize the
area, or the diagonal, of the enclosing rectangle. For the case of maximum diagonal, we
obtain the same bound, and for the case of maximum area, we obtain a bound that is not
output sensitive. In what follows we focus on the case of minimum perimeter, and only later
discuss the extensions to the cases of minimum area or diagonal.

Let Q be an optimum rectangle, namely, an axis-parallel rectangle of smallest perimeter
that contains k points of P . Clearly, each side of Q must contain a point of P , where these
four points are not necessarily distinct (the number of distinct points is always between
two and four). Denote by pL, pR, pB , and pT the points that lie on the left, right, bottom,
and top sides of Q, respectively. Naively, there are

(
n
2
)
candidate pairs (pL, pR), and

(
n
2
)

candidate pairs (pB , pT). However, using an observation of [7], the number of candidate pairs
is only O(nk), because pR is one of the O(k) rectilinear nearest neighbors of pL, and similarly
for pT and pB. We find the O(nk) left-right candidate pairs, and the O(nk) bottom-top
candidate pairs, in O(n logn + nk) time, as in [7]. We sort the ordered pairs (pL, pR) of
distinct points of P , with pL lying to the left of pR, in increasing order of the differences
between their x-coordinates, into a list X, and apply a symmetric construction with respect
to the bottom-top pairs (pB , pT) and their y-coordinates, to obtain another sorted list Y .

Consider the matrix M whose rows are the elements of X (in sorted order) and whose
columns are the elements of Y (in sorted order). For each pair of pairs π1 = (pL, pR) of
X and π2 = (pB , pT) of Y , put M(π1, π2) = (x(pR)− x(pL)) + (y(pT)− y(pB)) , and note
that M(π1, π2) is half the perimeter of the axis-parallel rectangle defined by the quadruple
(pL, pR, pB , pT). To be precise, not every such quadruple defines a valid rectangle, but each
valid candidate rectangle is defined by such a quadruple; See Figure 5.

The matrix M is a monotone matrix, that is, each of its rows and each of its columns is
sorted in increasing order. Using the algorithm of Frederickson and Johnson [10] (see also
[8, 9, 13]), We can find the ρ-th largest element in M in time O(nk), for any rank ρ.

We thus run a binary search through the O((nk)2) critical perimeters (that is, entries of
M), by making O(logn) calls to our algorithm max-pts(τ), where the outcome of each call
guides the continuation of the binary search. Each call incurs an overhead of O(nk) time
to find in M the relevant perimeter τ , and the algorithm itself takes time O(nk3/2

τ log kτ)
where kτ is the maximum number of points in a rectangle of perimeter 2τ (see Theorem
2). To make the overall running time bound k-sensitive, we pause the execution of the
algorithm for max-pts(τ) after the step where it obtains an approximation k0 to kτ , satisfying
k0 ≤ kτ ≤ 6k0. If k0 > k we know that kτ > k, and we continue the binary search with a
smaller τ . If k > 6k0 we know that k > kτ , and we continue the binary search with a larger

H. Kaplan, S. Roy, and M. Sharir 52:13

τ . If k0 ≤ k ≤ 6k0, we let the algorithm run to completion, and bifurcate depending on the
relation between the output kτ and k. Altogether, we obtain the following result.

I Theorem 4. Given a set P of n points in the plane, and a parameter k ≤ n, we can find
an axis-parallel rectangle of minimum perimeter that contains k points of P in time

O
(
nk3/2 log k logn

)
.

I Remark. The same procedure applies to the cases of minimum area or minimum diagonal.
For the case of diagonal, we obtain the same performance bound. For the case of area, we
have to put all

(
n
2
)
pairs of points in X and Y , so selection in M takes O(n2) time, and

the “decision procedure” max-pts(A), where A is the given area, now takes O(n5/2 logn)
time, resulting in a k-insensitive algorithm that runs in time O(n5/2 log2 n). This is still a
significant improvement over the recent algorithm of De Berg et al. [6] when k is not too
small. It is an open problem to get an output sensitive bound, similar to the one in Theorem
4, for the case of area.

References
1 A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Finding k points with minimum diameter

and related problems. J. Algorithms, 12(1):38–56, 1991.
2 N. Bansal and S. Garg. Algorithmic discrepancy beyond partial coloring. In Proc. of the

49th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 914–926,
2017.

3 Y-J. Chiang and R. Tamassia. Dynamic algorithms in computational geometry. Proc.
IEEE, 80(9):1412–1434, 1992.

4 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press, 3rd edition, 2009.

5 A. Datta, H.P. Lenhof, C. Schwarz, and M. Smid. Static and dynamic algorithms for
k-point clustering problems. J. Algorithms, 19(3):474–503, 1995.

6 M. de Berg, S. Cabello, O. Cheong, D. Eppstein, and C. Knauer. Covering many points
with a small-area box. CoRR, abs/1612.02149, 2016.

7 D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal polytopes.
Discrete Comput. Geom., 11(3):321–350, 1994.

8 G. N. Frederickson and D. B. Johnson. The complexity of selection and ranking in X + Y
and matrices with sorted columns. J. Comput. Syst. Sci., 24(2):197–208, 1982.

9 G. N. Frederickson and D. B. Johnson. Finding kth paths and p-centers by generating and
searching good data structures. J. Algorithms, 4(1):61–80, 1983.

10 G. N. Frederickson and D. B. Johnson. Generalized selection and ranking: Sorted matrices.
SIAM J. Comput., 13(1):14–30, 1984.

11 S. Har-peled. Geometric Approximation Algorithms. American Mathematical Society, Bo-
ston, MA, USA, 2011.

12 H. Imai and T. Asano. Finding the connected components and a maximum clique of an
intersection graph of rectangles in the plane. J. Algorithms, 4(4):310–323, 1983.

13 A. Mirzaian and E. Arjomandi. Selection in X + Y and matrices with sorted rows and
columns. Information Processing Letters, 20(1):13–17, 1985.

14 S.C. Nandy and B.B. Bhattacharya. A unified algorithm for finding maximum and min-
imum object enclosing rectangles and cuboids. Computers Math. Applic., 29(8):45–61, 1995.

15 M. Segal and K. Kedem. Enclosing k points in the smallest axis parallel rectangle. Inform.
Process. Letts., 65(2):95–99, 1998.

ESA 2017

	Introduction
	Our results

	An exact algorithm for max-pts(tau)
	The data structure
	Updating the data structure
	An output-sensitive algorithm

	An approximate solution
	An efficient exact algorithm for min-perim(k)

