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Abstract
We study the problem of k-dominance in a set of d-dimensional vectors, prove bounds on the
number of maxima (skyline vectors), under both worst-case and average-case models, perform
experimental evaluation using synthetic and real-world data, and explore an application of k-
dominant skyline for extracting a small set of top-ranked vectors in high dimensions where the
full skylines can be unmanageably large.
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1 Introduction

In multi-criteria optimization and decision-making applications, there is often no single best
answer, and a popular approach is to use pareto optimality. The set of pareto optimal points,
which are the coordinate-wise undominated solutions, is called the skyline. Unfortunately as
the dimension of the data grows,1 the size of the skyline tends to explode and most, if not all,
of the input vectors can appear on the skyline [4, 7, 8]. A database query for a car or a smart
phone, for instance, can easily produce an overwhelming number of incomparable choices. In
the National Basketball Association’s (NBA) database of 21, 961 players in 17 dimensions
(scoring attributes), more than 1400 players appear on the skyline (see Figure 2 for real-world
datasets with large skylines). The problem is even more pronounced in crowdsourced data
such as movies or consumer product ratings – each input vector is the rating profile of a
product by the users – where virtually every product can be highly ranked by some user,
potentially elevating it to the skyline. While the classical result of Bentley et al [4] shows
that the expected size of the skyline of n random vectors, whose components are chosen
independently, is O((log n)d−1) in d-dimensions, the exponential dependence on d renders
the skyline useless even in theory except in very low dimensions.

The k-dominant skyline KDS was introduced recently as a way to tame this curse of
dimensionality, where by relaxing d-dominance to k-dominance, for k < d, many more points
can be eliminated from the skyline, resulting in a smaller, more manageable, set of maxima.
Formally, given a finite set of points V in Rd, a point u is said to k-dominate another point

1 Although in theory all input points can appear on the skyline even in two dimensions, this pathological
behavior is rarely observed in low-dimensional real-world data.
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v if ui ≥ vi holds for k of the dimensions, i = 1, 2, . . . , d, with strict inequality in at least
one dimension. We use the notation u �k v to indicate k-domination of v by u, and write
u 6�k v when u does not k-dominate v. The k-dominant skyline of V , denoted KDS(V, k), is
the set of points that are not k-dominated:

KDS(V, k) = {v ∈ V | u 6�k v, ∀ u ∈ V \ {v}}.

In this paper we make both theoretical and applied contributions to the study of k-dominant
skylines.

1.1 Main Contributions
We derive the first non-trivial (poly-logarithmic) upper bound on the average size of KDS
for random vectors, and in the process generalize the result of Bentley et al. [4]. Our
experiments on synthetic and real-world data show that KDS size conforms to these bounds.
We then use movie ratings and NBA basketball datasets to show that KDS is an effective
tool for high-dimensional ranking queries. The full-dimensional skylines of these data sets are
unmanageably large, but KDS consistently finds top vectors using purely pareto property,
without the need for ad hoc preference (utility) functions. (We discuss these issues further in
Section 6.) Specifically, our paper makes the following contributions:
1. Average Case Bound: Let V be a set of n vectors in d dimensions where the components

of each vector are distributed independently of each other, and for each component the
magnitudes form a random permutation of {1, 2, . . . , n}. We show that the expected
number of vectors appearing on the k-dominant skyline is{

O
(
(log n)2k−d−1) for k > d+1

2

O(1) otherwise

Our result smoothly interpolates the cardinality of KDS for all values of k, and subsumes
the classical result of Bentley et al. [4] as a special case for k = d.

2. Efficient Algorithm: The k-dominance relation does not obey transitivity, which is needed
for the efficient (sub-quadratic) computation of skylines. We show that KDS can be
computed from the (traditional) skylines of all k-dimensional projections of the input
vectors. Our algorithm runs in worst-case time O

(
dd−kn logk−1 n

)
, which is subquadratic

even for non-constant dimensions as long as d ≤ c log n/ log log n, for some constant c.
3. Experiments: Our average case analysis assumes attribute distinctness and statistical

independence of input vectors. While there is no reason to believe that real-world datasets
meet these conditions, our experiments on a variety of data show that the KDS size
follows the exponential growth predicted by our analysis.

4. Applications: We show that KDS is a useful tool for robust ranking in high dimensions.
For instance, which players should be called the “10 most dominant NBA players” when
more than 1400 are pareto optimal (undominated)? Our experiments show that the
vectors (NBA players or movies) that are the first ones to populate the k-dominant skyline,
and therefore have the most longevity because k-dominance is a monotone property, are
indeed the natural candidates for top ranking.

1.2 Related Work
The skyline or maxima problem has a long history in computational geometry, databases,
and mathematical optimization [3, 4, 13, 6, 5, 9, 15, 19, 20, 21, 27, 28, 14, 22, 25], and the
quest for efficient algorithms that scale to high dimensions and large input continues to this
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day. It has also been observed that as the dimension grows, the skylines can quickly lose their
data-reduction utility because most of the input vectors may appear on the skyline [7, 10].

A number of approaches have been considered for identifying a smaller size representation
of the full skyline in high dimensions. One simple method aggregates all the dimensions
into a single utility function, and uses the ranking defined by this function. This approach
while computationally attractive is problematic because it simply transfers all the burden to
the “designer” of the utility function. Indeed, one of the important benefits of skyline-based
approaches is to let the users explore various tradeoffs across different components such
as price, location, brand etc. [7, 8]. Another approach is to compute a small set of input
vectors that approximates the skyline over all preference functions. Unfortunately, these
approaches are computationally intractability even for linear preference functions, as in the
case of k-regret set [10, 24, 26, 1], or approximate-skyline [18].

The focus of our paper is to both prove an upper bound on the size of the KDS and to
explore its applications for ranking high dimensional data. There exists a substantial and
rich literature on estimating the cardinality of (conventional) skylines [4, 6, 14, 15, 21, 28],
under a variety of data models, including in-memory, distributed, and data streams. However,
very little is known about the cardinality of k-dominant skylines. The k-dominant skyline
was introduced in [7] but the primary goal of that paper is to design efficient heuristics for
computing the KDS scalably in practice. (In a related work, Chan et al. [8] compute vectors
that appear in many k-dominant skylines, but again the paper is concerned with the design
and evaluation of an efficient heuristic.) In [17], Hwang et al. consider certain threshold
phenomena in k-dominant skylines under a continuous probability model, and derive limit
bounds as n, d→∞. By contrast, we establish parametric upper bounds on the cardinality
of KDS under both random and worst-case inputs, similar to those for the conventional
skylines obtained by Bentley et al. [4] or Buchta [6].

2 K-Dominance and the Worst-Case Bound

Let V be a set of n vectors in d-dimensional space. We will use the letters u and v to denote
generic vectors of V, and vi as the ith coordinate of v ∈ V. That is, v = (v1, v2, . . . , vd)
is the coordinate representation of vector v. We will use the terms vectors and points
interchangeably since vectors are commonly viewed as points in d-dimensional space. Given
two vectors u, v ∈ V , we say that u dominates v, denoted u � v, if ui ≥ vi for i = 1, 2, . . . , d,
with strict inequality in at least one dimension. We say that a vector u k-dominates v if
ui ≥ vi for at least k of the d possible dimensions, with strict inequality in at least one. We
write this as u �k v, generalizing the original definition of domination, which is equivalent to
d-domination �d. The k-dominant skyline of V is the set of vectors that are not k-dominated
by any other vector. That is,

KDS(V, k) = {v ∈ V | u 6�k v, ∀ u ∈ V \ {v}}.

The k dimensions involved in k-dominance u �k v need not be the same as those involved
in u′ �k v′, and so the k-dominant skyline does not equal the skyline of V after projection
onto some fixed k-dimensional subspace. It also means that the k-dominance relation is not
transitive: if u �k v and v �k w, then we do not necessarily have u �k w.

Given a set of input vectors V in d dimensions, we define a directed graph Gk, called the
k-dominant graph, as follows: the vertices of Gk correspond to the vectors of V , and its edges
correspond to k-dominance relationships between pairs of vectors. That is, the graph Gk has
a directed edge (u, v) whenever u �k v, for u, v ∈ V. The in-degree of a node v in Gk is the
number of edges directed into v, namely, in-degree(v) = |{(u, v) ∈ Gk}|. The following two
facts are easy to establish, whose proofs are omitted from this abstract due to lack of space.

ESA 2017



65:4 K-Dominance in Multidimensional Data: Theory and Applications

1
2
... Va

i− 1
i

i + 1
... Vb

n

Figure 1 Average case analysis of KDS. The vector v is the ith vector. The first (i− 1) vectors
form the subset Va, and the last (n− i) vectors form the subset Vb.

I Lemma 1. A vector v belongs to KDS(V, k) if and only if v has in-degree zero in Gk.

I Lemma 2. KDS(V, k′) ⊆ KDS(V, k), for k′ < k.

With these preliminaries, we can now prove the following bound for the size of the KDS
in the worst-case. Due to lack of space, the proof is omitted from this abstract.

I Theorem 3. The worst-case cardinality of KDS obeys the following bound:
1. Given any set of n vectors in d-space and any k with k ≤ (d + 1)/2, |KDS(V, k)| ≤ 1.
2. For any n ≥ 1, and k, d such that k > (d + 1)/2, there exists a set V of n vectors in

d-space for which |KDS(V, k)| = n.

3 Average Case Analysis

We now analyze the size of the k-dominant skylines when the input vectors are drawn
randomly from a distribution. Our analysis uses the standard “attribute distinctness and
statistical independence” model [4, 6, 14], which only assumes that the vector components
are distributed independently of each other, and for each component the magnitudes form
a random permutation of {1, 2, . . . , n}, namely, a total rank ordering. While not all data
sets necessarily satisfy these assumptions, the model is sufficiently general, elegant and
mathematically tractable for deriving non-trivial bounds.

We interpret the input set of n vectors as an n × d array, whose rows are the vectors
and whose columns are permutations of {1, 2, . . . , n}. The set of all possible permutations
produces exactly (n!)d distinct vectors. We analyze the complexity of the k-dominant skyline
for an input array V chosen uniformly at random from this set. What is the expected size of
the k-dominant skyline for such an input V?

We analyze the average size of KDS by setting up a recurrence. In order to aid that
derivation, let A(n, d, k) denote the average size of the k-dominant skyline for a set of n

vectors in d dimensions, where the vectors are chosen under the random model described
above. We assume, without loss of generality, that the first column of the input n× d array
is sorted in the ascending order (1, 2, . . . , n) – that is, the first coordinate of the ith vector
is i, which if necessary can be realized by simply relabeling the vectors. See Figure 1 for
illustration.

Let us focus on a single but arbitrary vector v, and derive the probability that it belongs
to the k-dominant skyline. Suppose the vector v is represented as the ith row, which means
its first coordinate is v1 = i. We partition the remaining set of input vectors into two groups:
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Va = {u ∈ V | u1 < v1} and Vb = {u ∈ V | u1 > v1} (1)

That is, Va is the set of vectors that v dominates on the first coordinate, and Vb is the set of
vectors that dominate v on the first coordinate. The key observation is that for v to be a
KDS vector both of the following two events must occur:
1. None of the vectors in Va k-dominates v among dimensions {2, 3, . . . , d}, and
2. none of the vectors in Vb (k − 1)-dominates v among dimensions {2, 3, . . . , d}.

This follows because v can fail to be on the KDS only if either some vector in Va or
some vector in Vb k-dominates it. If some vector in Va were to k-dominate v, it has to do so
using all k dimensions from the set {2, 3, . . . , d} since v already dominates each vector of
Va on dimension 1. Condition (1) computes the probability that no u ∈ Va k-dominates v.
On the other hand, since each vector u ∈ Vb already dominates v on the first coordinate, it
needs to only find k − 1 other dimensions among {2, 3, . . . , d} to achieve k-domination of
v. Condition (2) computes the probability that no u ∈ Vb k-dominates v. The two events
are independent because the remaining d− 1 dimensions are independent of the first, and
so the probability that v belongs to the KDS is the product of these two probabilities. The
following two lemmas derive these probabilities.

I Lemma 4. The probability of event (1) is A(i,d−1,k)
i .

Proof. Consider the i× (d−1) array consisting of the first i rows and the last (d−1) columns
of V. This is a random set of i vectors in (d− 1)-dimensional space, which for convenience
we call the reduced space. By induction, the expected KDS size for this set is A(i, d− 1, k).
The probability that v is one of these skyline vectors is A(i, d− 1, k)/i, by symmetry. Since
v already dominates all the vectors of Va in the first coordinate, it is on the KDS of Va ∪{v}
with the same probability. J

I Lemma 5. The probability of event (2) is A(n−i+1,d−1,k−1)
n−i+1 .

Proof. The proof is similar to (1), and omitted from the abstract due to space. J

By combining the preceding two lemmas, we get the probability that v lies on the KDS:

Pr[v ∈ KDS] = A(i, d− 1, k)
i

× A(n− i + 1, d− 1, k − 1)
n− i + 1 .

By summing over all n points, we get

A(n, d, k) =
n∑

i=1

(
A(i, d− 1, k)

i
× A(n− i + 1, d− 1, k − 1)

n− i + 1

)
(2)

Since A(i,d−1,k)
i is a probability in this recurrence, we can replace it with 1 and derive the

following upper bound with a change of index:

A(n, d, k) ≤
n∑

i=1

(
A(n− i + 1, d− 1, k − 1)

n− i + 1

)
≤

n∑
i=1

A(i, d− 1, k − 1)
i

(3)

The function A(n, d, k) is monotone non-decreasing with n because

A(n, d, k) = A(n− 1, d, k) + A(n, d− 1, k)
n

× A(1, d− 1, k − 1)
1 (4)

ESA 2017
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where the second term is non-negative. Therefore, we have the following upper bound:

A(n, d, k) ≤
n∑

i=1

A(i, d− 1, k − 1)
i

≤ A(n, d− 1, k − 1)×
n∑

i=1

1
i

(5)

Since the harmonic number Hn =
∑n

i=1
1
i ≈ ln n [11], after j iterations, we get:

A(n, d, k) ≤ A(n, d− j, k − j)× (Hn)j

The stopping condition for the recurrence is reached when 2(k − j) becomes less than or
equal to (d− j) + 1, at which point the skyline size drops to at most 1 by Theorem 3. We
can show that the maximum number of iterations j is j = 2k − (d + 1), which leads to the
following theorem.

I Theorem 6. Let V be a set of n random points in d-dimensional space under the attribute
distinctness and statistical independence model. Then, the expected cardinality of their
k-dominant skyline is{

O
(
(log n)2k−d−1) for k > d+1

2 ,

O(1) otherwise .

Remarks

Theorem 6 smoothly interpolates between the two extreme cardinality bounds for KDS
previously known, namely, O(1) for k ≤ (d + 1)/2, and O(logd−1 n) for k = d, and the
classical result of Bentley et al. [4] emerges as a special case of this theorem for k = d. In
database systems, a constructive way to utilize this result could be this: by reducing the
value of k by one, we can expect the KDS to shrink by a significant fraction, namely, a factor
of O(log2 n). A query engine can therefore tune the parameter k to predictably control the
(expected) number of skyline vectors that appear on KDS.

4 Computing KDS in Subquadratic Time

Unlike full-dimensional dominance, the k-dominance relation is not transitive: that is, a �k b

and b �k c does not guarantee a �k c. The failure of transitivity means that the algorithms
for traditional skylines [3, 15] cannot be used for computing KDS. In fact, to the best of
our knowledge, no subquadratic time algorithm is known for k-dominant skylines even for a
constant dimension.

Let Ik ⊂ {1, 2, . . . , d} be an index set of size k, namely, |Ik| = k. There are
(

d
k

)
size k

distinct index sets, and each such set defines a subset of k dimensions. The projection of the
input set of points V along any particular set Ik is called a k-projection of V . A k-projection
is a set of k-dimensional points, and we refer to its skyline as the skyline of the k-projection.
Then, the following simple observation is the key to our algorithm.

I Lemma 7. A point v ∈ V belongs to KDS(V, k) if and only if v belongs to the skylines of
all distinct k-projections of V.

We can, therefore, compute KDS(V, k) by computing the skylines of all distinct k-projections
of V and taking their common intersection.

I Theorem 8. Let V be a set of n points in d dimensions, where d = O(log n/ log log n).
The k-dominant skyline KDS(V, k) is precisely the common intersection of the skylines of all
possible k-projections of V, and it can be computed in worst-case time O(n logd−1 n).
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Data Size n Dim d Full Skyline

NBA Career 4051 17 80
NBA Season 21961 17 1466
Movie Lens 1 1682 943 1330
Movie Lens 2 3952 6040 3475
Wine Quality 4898 12 3094
Human Activity 7352 561 7352
Internet Ads 3279 1558 1976
Particle Signal 130065 50 129596

Figure 2 Data sets used in experiments and the size of their d-dimensional skyline.

Proof. The number of distinct k-projections of V is
(

d
k

)
=
(

d
d−k

)
. We can compute the skyline

of each of these projections in time O(n logk−1 n) using the divide-and-conquer algorithm
of [3]. The size of each of these skylines is at most n, and therefore we can compute their
common intersection in O(nd) time. The total running time of the algorithm is therefore
O
((

d
d−k

)
n logk−1 n

)
. Since

(
d

d−k

)
≤ ( ed

d−k )d−k = O(dd−k), we can upper bound the running

time as O
(

dd−kn logk−1 n
)
, which is sub-quadratic as long as d ≤ c log n/ log log n, for an

appropriate constant c. J

Finding a worst-case subquadratic algorithm in dimensions higher than Θ(log n) remains
a challenging open problem, even for conventional skylines.

5 Experimental Evaluation

Our theoretical bounds on the expected size of the KDS are predicated on certain properties
of random data (attribute distinctness and statistical independence), which may or may not
be satisfied by real-world datasets. In our experiments, we chose a number of diverse data
sets to evaluate how their KDS size behaves in practice. We also generated synthetic data
sets, following our theoretical distribution, to establish a baseline. (Since time complexity
was not an important concern, we implemented a simple algorithm, which constructs an
O(dn) space data structure in O(dn2) time from which the KDS for any value of k ≤ d can
be extracted in O(n) time explicitly.)

Data Sets

The synthetic data sets are produced by generating random permutations with n ≈ 105 and
d = 20 or 30. For the real-world data, we use a number of popular high-dimensional data
sets, as shown in Figure 2. The NBA basketball data is available at [2], the Movie Lens data
at [23, 16], and all the remaining datasets are available from the UCI repository [12]. They
vary in size from a few thousand points to more than hundred thousand points in dimensions
ranging from 10 to several thousand. Altogether these data sets allow us to evaluate the
behavior of KDS under highly diverse conditions. In addition, for many of these sets, nearly
all the input vectors show up on the full-dimensional skyline, providing a useful test for the
utility of the KDS. In all the experimental plots, the x-axis is the value of k and y-axis the
size of KDS.

ESA 2017



65:8 K-Dominance in Multidimensional Data: Theory and Applications

0 5 10 15 20

0

20K

40K

60K

80K

100K

Value of k

K
D

S
Si

ze

0 5 10 15 20 25 30

0

20K

40K

60K

80K

100K

Value of k

K
D

S
Si

ze

Figure 3 KDS size scaling for n = 105 random vectors in 20 (left) and 30 (right) dimensions.
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Figure 4 Results for the NBA player data sets, NBA-Career (left) and NBA-Season (right).

5.1 KDS Size for Synthetic Data
We generated a number of random data sets in moderate dimensions d ≤ 30, which proved
sufficient to show the exponential growth rate of the k-dominant skylines. Figure 3 shows
the results for n = 100K, with d = 20 and d = 30; the plots for other values of n and d were
found to be similar. (When the plots flatten out near the end, it means that the KDS size
has reached the total number of input vectors.)

5.2 KDS Size for Real-World Data
The NBA data sets [2] include scores in 17 different categories for 4051 basketball players. A
higher score indicates better performance in each skill (dimension). The NBA-Career set has
data aggregated over each player’s entire career, while the NBA-Season set has a separate
vector for each season in which a player was active (a total of 21961 vectors). Figure 4
shows the KDS size as a function of increasing k, for both NBA data sets, confirming a clear
exponential rate of growth.

Figure 5 shows the results for the Movie Lens data [23, 16], in which each entry is a movie
rating. We used first 100, 000 and first 1, 000, 000 ratings to generate two different data sets.
The former (Movie Lens 1) has n = 1682 distinct movies with d = 943 distinct reviewers,
and the latter (Movie Lens 2) has n = 3952 movies with d = 6040 reviewers. (Each movie is
rated on the scale of 1 (worst) to 5 (best), and we use the default value of 3 (average) for all
blank entries.)

Finally, the following figure shows the results for the remaining four data sets: wine
quality, human activity, Internet ads, and particle signal.
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Figure 5 Results for Movie Lens 1 (left) and Movie Lens 2 (right) data sets.
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Figure 6 Results for wine quality, human activity, Internet Ads, and particle signal data sets.

In summary, across a diverse collection of data sets, the k-dominant skylines follow the
exponential curve shown by our average case analysis, suggesting that the model of random
data with attribute distinctness and statistical independence is potentially useful in practice.

6 Application of KDS in Ranking of High-Dimensional Vectors

In multi-criteria decision problems, there is typically no single best answer and often too
many incomparable answers are possible. For instance, in the NBA basketball data, almost
1500 players are undominated, and thus arguably the best players. One approach, exemplified
by the top-k operator in databases, is to define a utility function that aggregates the user
preferences across multiple dimensions, for instance, as a linear combination. Formulating
an appropriate utility function, however, is quite challenging because it requires users to
accurately quantify their preferences, and also requires different dimensions to be similar in
scale. (In Section 6.3, we also compare simple aggregation-type rankings with the KDS-based
ranking.) The alternative approach of skylines uses the easier-to-apply principle of pareto
optimality – no rational user prefers a solution that is dominated by another on all dimensions
– but is stymied by the explosion of skyline size in higher dimensions.

The KDS suggests a natural approach for pruning the skyline using the control knob
of parameter k, based on the following insight: many vectors may be undominated in
high dimensions, but some are undominated only because they score highly in one or
few dimensions, while others are undominated because they score highly in most of the
dimensions. Intuitively, the second kind are the more significant ones. The KDS based
approach automatically selects the vectors that remain undominated on most dimensions, and
thus appear on the early skyline when k is small. Using the asymptotic expected growth rate
of KDS (cf. Theorem 6), a user can control the skyline to a desired size with parameter k.

In order to test this hypothesis, we carried out the following experiment. Suppose we
consider a random subset of dimensions for the data, compute the KDS of the reduced set,

ESA 2017
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and repeat this trial multiple times. How similar are the KDS in these trials? Intuitively, if
KDS vectors lacked any intrinsic significance, then these skylines should not have much in
common. On the other hand, if KDS vectors were fundamentally dominant, then they would
persist in many subsets of dimensions, and show a high Jaccard index of similarity. We chose
the Movie Lens and NBA data sets for these experiments because their “top vectors” are
familiar names, and easy to interpret.

6.1 Top Movies and NBA Players
For the movies, we use the Movie Lens 2 data set, and drop about 10% of the dimensions at
random, obtaining a set with 5426 dimensions out of the original 6040. We chose k = 4800,
for which we are assured to get a small KDS size, based on Figure 5. We repeated this
experiment 5 times, producing 5 different k-dominant skyline sets. The resulting skylines
had size between 27 and 29. We then counted how many times each KDS vector (movie)
appeared among these 5 skylines. Figure 7 shows the result: remarkably, the top 27 movies
are common to all five KDS sets. Arguably, all of these movies have claims to be considered
“top fan favorites,” demonstrating the consistency and utility of KDS as an automatic data
exploration tool.

For the basketball data, we use the NBA-Season data where we randomly dropped 2
of the 17 dimensions, and chose k = 12. We performed 5 trials of this experiment, and
counted how many times each KDS vector appears among these 5 skylines. Figure 8 shows
the results. Once again, most of the names found by the algorithm are all-time greats.

6.2 Jaccard Similarity
Among the five random trials of the Movie Lens data, the smallest KDS had 27 vectors, and
the largest one had 29 vectors. To quantify the pairwise similarity among these 5 sets, we
use the Jaccard similarity measure, which is defined as ‖A∩B‖

‖A∪B‖ , for two sets A and B. The
Jaccard index of 1 indicates a perfect match. As the following table shows, the similarity
index is between 0.93 and 1 in all cases. Among the five random trials of the NBA-Season
data, the smallest KDS for k = 12 had 49 vectors, and the largest one had 68 vectors. The
table below shows the Jaccard index of similarity among these 5 sets.

6.3 KDS vs. Aggregation-based Ranking
As a point of comparison, we now discuss some pitfalls suffered by alternative ranking
methods based on simple utility functions. We use the movie database because the results are
easier to interpret. We recall that in this dataset each vector represents a movie, with each
dimension being one user’s ratings on a 1–5 scale. The movie data, however, is incomplete
since not all users rate all movies, and so we use the following two (natural) scoring functions
to compare different vectors.
1. the weighted average of each movie’s ratings, and
2. the raw sum of each movie’s ratings.

We observe that, as expected, the first method tends to highly rank those movies that
have high scores but very few ratings. In fact, none of the movies ranked in the top 10 would
be considered popular – each had an average score of 5 but rated by at most five users! Our
second method corrects for this bias, and steers the ranking towards more popular movies by
summing the scores of all the users for each movie. However, this method leads to movies
that are widely known but not necessarily top rated candidates for many users. For instance,
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Movie Occur

Toy Story 5
The Usual Suspects 5
Braveheart 5
Star Wars: Ep. IV 5
Pulp Fiction 5
Shawshank Redemption 5
Forrest Gump 5
Schindler’s List 5
Terminator 2 5
Silence of the Lambs 5
Fargo 5
The Godfather 5
Casablanca 5
One Flew Over Cuckoo’s Nest 5
Star Wars: Episode V 5
The Princess Bride 5
Raiders of the Lost Ark 5
Groundhog Day 5
Back to the Future 5
L.A. Confidential 5
Saving Private Ryan 5
Shakespeare in Love 5
The Matrix 5
The Sixth Sense 5
American Beauty 5
Being John Malkovich 5
Gladiator 5

Figure 7 Occurrence frequency of top
movies in 5 random trials of KDS.

NBA Player Occur

Wilt Chamberlain 1961 5
Artis Gilmore 1974 5
Bob Mcadoo 1974 5
George Mcginnis 1974 5
K. Abdul-jabbar 1975 5
Julius Erving 1975 5
Artis Gilmore 1975 5
Moses Malone 1978 5
Michael Jordan 1984 5
Michael Jordan 1986 5
Charles Barkley 1987 5
Michael Jordan 1987 5
Michael Jordan 1988 5
Karl Malone 1988 5
Hakeem Olajuwon 1988 5
Karl Malone 1989 5
David Robinson 1990 5
Hakeem Olajuwon 1992 5
Shaquille O’neal 1993 5
David Robinson 1993 5
Dwight Howard 2007 5
Allen Iverson 2007 5
LeBron James 2007 5
Al Jefferson 2007 5
Amare Stoudemire 2007 5
Dwight Howard 2008 5
Dwyane Wade 2008 5
Kevin Durant 2009 5
Dwight Howard 2009 5
David Lee 2009 5
Charles Barkley 1987 4
Karl Malone 1988 4

Figure 8 Occurrence frequency of top
NBA players in 5 random trials.

1 2 3 4 5

1 1 0.931 0.966 0.966 0.931
2 0.931 1 0.964 0.964 1
3 0.966 0.964 1 1 0.964
4 0.966 0.964 1 1 0.964
5 0.931 1 0.964 0.964 1

Figure 9 Jaccard Similarity for top
movies.

1 2 3 4 5

1 1 0.603 0.716 0.638 0.776
2 0.603 1 0.459 0.493 0.568
3 0.716 0.459 1 0.718 0.658
4 0.638 0.493 0.718 1 0.585
5 0.776 0.568 0.658 0.585 1

Figure 10 Jaccard Similarity for top NBA
players.
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the original 3 Star Wars movies appeared in the top 4, however the lowest had an average
rating of roughly 4/5, which is significantly lower than that of many movies appearing much
later in the list. The NBA data set reveals another problem with aggregation-based ranking:
different dimensions have vastly different scales, making it difficult to combine them into a
single meaningful utility function.

By comparison, as the preceding experiments have shown, the KDS-based ranking gives
sensible and robust results without the need for a domain-specific and difficult to formulate
utility function. When the full skyline has far too many points, the tunable parameter k of
the KDS automatically acts as a proxy for the importance of skyline vectors: the earlier a
point appears on KDS the more significant it is.

7 Concluding Remarks

In this paper, we made both theoretical and applied contributions to the study of k-dominance
in multidimensional data. On the theoretical front, we derived an upper bound on the average
case complexity of KDS, which generalizes a classical result of Bentley et al. [4]. We also
showed that while k-dominance does not satisfy transitivity, one can still compute the KDS
in roughly the same time as the conventional skyline (worst-case sub-quadratic) as long
as the dimension is d = O(log n/ log log n). Our experiments show that the size of KDS
in many real-world multi-dimensional data sets follows the same exponential trend of our
average case analysis, suggesting that our theoretical bounds can be helpful predictors in
practice. Finally, we validate the usefulness of k-dominant skylines as a tool for selecting a
small set of top-ranked vectors when the full skyline contains far too many.
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