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Engineering, Boǧaziçi University, Istanbul, Turkey
cmshalom@telhai.ac.il

6 Department of Mathematics, National and Kapodistrian University of Athens,
Greece and AlGCo project team, CNRS, LIRMM, France
sedthilk@thilikos.info

Abstract
We study the minimum diameter spanning tree problem under the reload cost model (Diameter-
Tree for short) introduced by Wirth and Steffan (2001). In this problem, given an undirected
edge-colored graph G, reload costs on a path arise at a node where the path uses consecutive
edges of different colors. The objective is to find a spanning tree of G of minimum diameter with
respect to the reload costs. We initiate a systematic study of the parameterized complexity of
the Diameter-Tree problem by considering the following parameters: the cost of a solution,
and the treewidth and the maximum degree ∆ of the input graph. We prove that Diameter-
Tree is para-NP-hard for any combination of two of these three parameters, and that it is FPT
parameterized by the three of them. We also prove that the problem can be solved in polynomial
time on cactus graphs. This result is somehow surprising since we prove Diameter-Tree to be
NP-hard on graphs of treewidth two, which is best possible as the problem can be trivially solved
on forests. When the reload costs satisfy the triangle inequality, Wirth and Steffan (2001) proved
that the problem can be solved in polynomial time on graphs with ∆ = 3, and Galbiati (2008)
proved that it is NP-hard if ∆ = 4. Our results show, in particular, that without the requirement
of the triangle inequality, the problem is NP-hard if ∆ = 3, which is also best possible. Finally,
in the case where the reload costs are polynomially bounded by the size of the input graph, we
prove that Diameter-Tree is in XP and W[1]-hard parameterized by the treewidth plus ∆.
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1 Introduction

Numerous network optimization problems can be modeled by edge-colored graphs. Wirth
and Steffan introduced in [28] the concept of reload cost, which refers to the cost that arises
in an edge-colored graph while traversing a vertex via two consecutive edges of different
colors. The value of the reload cost depends on the colors of the traversed edges. Although
the reload cost concept has many important applications in telecommunication networks,
transportation networks, and energy distribution networks, it has surprisingly received
attention only recently.

In heterogeneous communication networks, routing requires switching among different
technologies such as cables, fibers, and satellite links. Due to data conversion between
incompatible subnetworks, this switching causes high costs, largely outweighing the cost
of routing the packets within each subnetwork. The recently popular concept of vertical
handover [9], which allows a mobile user to have undisrupted connection during transitioning
between different technologies such as 3G (third generation) and wireless local area network
(WLAN), constitutes another application area of the reload cost concept. Even within
the same technology, switching between different service providers incurs switching costs.
Another paradigm that has received significant attention in the wireless networks research
community is cognitive radio networks (CRN), a.k.a. dynamic spectrum access networks.
Unlike traditional wireless technologies, CRNs operate across a wide frequency range in the
spectrum and frequently requires frequency switching; therefore, the frequency switching
cost is indispensable and of paramount importance. Many works in the CRNs literature
focused on this frequency switching cost from an application point of view (for instance, see
[3, 19, 4, 5, 11, 1, 26]) by analyzing its various aspects such as delay and energy consumption.
Operating in a wide range of frequencies is indeed a property of not only CRNs but also other
5G technologies. Hence, applications of the reload cost concept in communication networks
continuously increase. In particular, the energy consumption aspect of this switching cost is
especially important in the recently active research area of green networks, which aim to
tackle the increasing energy consumption of information and communication technologies
[6, 8].

The concept of reload cost also finds applications in other networks such as transportation
networks and energy distribution networks. For instance, a cargo transportation network
uses different means of transportation. The loading and unloading of cargo at junction points
is costly and this cost may even outweigh the cost of carrying the cargo from one point to
another [12]. In energy distribution networks, reload costs can model the energy losses that
occur at the interfaces while transferring energy from one type of carrier to another [12].

Recent works in the literature focused on numerous problems related to the reload cost
concept: the minimum reload cost cycle cover problem [14], the problems of finding a path,
trail or walk with minimum total reload cost between two given vertices [17], the problem
of finding a spanning tree that minimizes the sum of reload costs of all paths between all
pairs of vertices [15], various path, tour, and flow problems related to reload costs [2], the
minimum changeover cost arborescence problem [13, 22, 20, 18], and problems related to
finding a proper edge coloring of the graph so that the total reload cost is minimized [21].

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.3
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The work in [28], which introduced the concept of reload cost, focused on the following
problem, called Minimum Reload Cost Diameter Spanning Tree (Diameter-Tree
for short), and which is the one we study in this paper: given an undirected graph G = (V,E)
with a (non necessarily proper) edge-coloring χ : E(G) → X and a reload cost function
c : X2 → N0, find a spanning tree of G with minimum diameter with respect to the reload
costs (see Section 2 for the formal definitions).

This problem has important applications in communication networks, since forming a
spanning tree is crucial for broadcasting control traffic such as route update messages. For
instance, in a multi-hop cognitive radio network where a frequency is assigned to each wireless
link depending on availabilities of spectrum bands, delay-aware broadcasting of control traffic
necessitates the forming of a spanning tree by taking the delay arising from frequency
switching at every node into account. Cognitive nodes send various control information
messages to each other over this spanning tree. A spanning tree with minimum reload cost
diameter in this setting corresponds to a spanning tree in which the maximum frequency
switching delay between any two nodes on the tree is minimized. Since control information
is crucial and needs to be sent to all other nodes in a timely manner, ensuring that the
maximum delay is minimum is vital in a cognitive radio network.

Wirth and Steffan [28] proved that Diameter-Tree is inapproximable within a factor
better than 3 (in particular, it is NP-hard), even on graphs with maximum degree 5. They
also provided a polynomial-time exact algorithm for the special case where the maximum
degree is 3 and the reload costs satisfy the triangle inequality. Galbiati [12] showed stronger
hardness results for this problem, by proving that even on graphs with maximum degree 4,
the problem cannot be approximated within a factor better than 2 if the reload costs do not
satisfy the triangle inequality, and cannot be approximated within any factor better than
5/3 if the reload costs satisfy the triangle inequality. The complexity of Diameter-Tree
(in the general case) on graphs with maximum degree 3 was left open.

Our results. In this article we initiate a systematic study of the complexity of the Diameter-
Tree problem, with special emphasis on its parameterized complexity for several choices
of the parameters. Namely, we consider any combination of the parameters k (the cost
of a solution), tw (the treewidth of the input graph), and ∆ (the maximum degree of the
input graph). We would like to note that these parameters have practical importance in
communication networks. Indeed, besides the natural parameter k, whose relevance is clear,
many networks that model real-life situations appear to have small treewidth [24]. On the
other hand, the degree of a node in a network is related to its number of transceivers, which
are costly devices in many different types of networks such as optical networks [25]. For this
reason, in practice the maximum degree of a network usually takes small values.

Before elaborating on our results, a summary of them can be found in Table 1.
We first prove, by a reduction from 3-Sat, that Diameter-Tree is NP-hard on outer-

planar graphs (which have treewidth at most 2) with only one vertex of degree greater than
3, even with three different costs that satisfy the triangle inequality, and k = 9. Note that,
in the case where the costs satisfy the triangle inequality, having only one vertex of degree
greater than 3 is best possible, as if all vertices have degree at most 3, the problem can be
solved in polynomial time [28]. Note also that the bound on the treewidth is best possible as
well, since the problem is trivially solvable on graphs of treewidth 1, i.e., on forests.

Toward investigating the border of tractability of the problem with respect to treewidth,
we exhibit a polynomial-time algorithm on a relevant subclass of the graphs of treewidth
at most 2: cactus graphs. This algorithm is quite involved and, in a nutshell, processes in

IPEC 2017
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Table 1 Summary of our results, where k, tw, ∆ denote the cost of the solution, the treewidth,
and the maximum degree of the input graph, respectively. NPh stands for NP-hard. The symbol ‘X’
denotes that the result above still holds for polynomial costs.

Problem Parameterized complexity with parameter Polynomial
k + tw k + ∆ tw + ∆ k + tw + ∆ cases

NPh for NPh for NPh for FPT in P on
Diameter-Tree k = 9, tw = 2 k = 0, ∆ = 3 tw = 3, ∆ = 3 (Thm 7) cacti

(Thm 1) (Thm 2) (Thm 4) (Thm 6)
Diameter-Tree XP (Thm 7)
with poly costs X X W[1]-hard X X

(Thm 9)

a bottom-up manner the block tree of the given cactus graph, and uses at each step of the
processing an algorithm that solves 2-Sat as a subroutine.

Back to hardness results, we also prove, by a reduction from a restricted version of 3-Sat,
that Diameter-Tree is NP-hard on graphs with ∆ ≤ 3, even with only two different costs,
k = 0, and a bounded number of colors. In particular, this settles the complexity of the
problem on graphs with ∆ ≤ 3 in the general case where the triangle inequality is not
necessarily satisfied, which had been left open in previous work [28, 12]. Note that ∆ ≤ 3 is
best possible, as Diameter-Tree can be easily solved on graphs with ∆ ≤ 2.

As our last NP-hardness reduction, we prove, by a reduction from Partition, that the
Diameter-Tree problem is NP-hard on planar graphs with tw ≤ 3 and ∆ ≤ 3.

The above hardness results imply that the Diameter-Tree problem is para-NP-hard
for any combination of two of the three parameters k, tw, and ∆. On the positive side, we
show that Diameter-Tree is FPT parameterized by the three of them, by using a (highly
nontrivial) dynamic programming algorithm on a tree decomposition of the input graph.

Since our para-NP-hardness reduction with parameter tw + ∆ is from Partition, which
is a typical example of a weakly NP-complete problem [16], a natural question is whether
Diameter-Tree, with parameter tw + ∆, is para-NP-hard, XP, W[1]-hard, or FPT when
the reload costs are polynomially bounded by the size of the input graph. We manage to
answer this question completely: we show that in this case the problem is in XP (hence not
para-NP-hard) and W[1]-hard parameterized by tw + ∆. The W[1]-hardness reduction is
from the Unary Bin Packing problem parameterized by the number of bins, proved to be
W[1]-hard by Jansen et al. [23].

Altogether, our results provide an accurate picture of the (parameterized) complexity of
the Diameter-Tree problem.

Further research. In the hardness result of Theorem 4, the bound ∆ ≤ 3 is tight, but the
bound tw ≤ 3 might be improved to tw ≤ 2. A relevant question is whether the problem
admits polynomial kernels parameterized by k+ tw + ∆ (recall that it is FPT by Theorem 7).
Theorem 9 motivates the following question: when all reload costs are bounded by a constant,
is the Diameter-Tree problem FPT parameterized by tw + ∆? It also makes sense to
consider the color-degree as a parameter (cf. [20]). Finally, we may consider other relevant
width parameters, such as pathwidth (note that the hardness results of Theorems 1, 4, and 9
also hold for pathwidth), cliquewidth, treedepth, or tree-cutwidth.
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Organization of the paper. We start in Section 2 with some preliminaries about the
Diameter-Tree problem. Basic definitions about graphs, parameterized complexity, and
tree decompositions can be found in the full version. In Section 3 we provide the para-NP-
hardness results, and in Section 4 we present the polynomial-time algorithm on cactus graphs
and the FPT algorithm on general graphs parameterized by k + tw + ∆. In Section 5 we
focus on the case where the reload costs are polynomially bounded. Due to lack of space, the
proof of the results marked with ‘[?]’ can be found in the full version.

2 Reload costs and definition of the problem

For reload costs, we follow the notation and terminology defined by [28]. We consider
edge-colored graphs G = (V,E), where the colors are taken from a finite set X and the
coloring function is χ : E(G) → X. The reload costs are given by a nonnegative function
c : X2 → N0, which we assume for simplicity to be symmetric. The cost of traversing
two incident edges e1, e2 is c(e1, e2) := c(χ(e1), χ(e2)). By definition, reload costs at the
endpoints of a path equal zero. Consequently, the reload cost of a path with one edge
also equals zero. The reload cost of a path P of length ` ≥ 2 with edges e1, e2, . . . , e` is
defined as c(P ) :=

∑`
i=2 c(ei−1, ei). The induced reload cost distance function is given

by distc
G(u, v) = min{c(P ) | P is a path from u to v in G}. The diameter of a tree T is

diam(T ) := maxu,v∈V distc
T (u, v), where for notational convenience we assume that the

edge-coloring function χ and the reload cost function c are clear from the context.
The problem we study in this paper can be formally defined as follows:

Minimum Reload Cost Diameter Spanning Tree (Diameter-Tree)
Input: A graph G = (V,E) with an edge-coloring χ and a reload cost function c.
Output: A spanning tree T of G minimizing diam(T ).

If for every three distinct edges e1, e2, e3 of G incident to the same node, it holds that
c(e1, e3) ≤ c(e1, e2) + c(e2, e3), we say that the reload cost function c satisfies the triangle
inequality. This assumption is sometimes used in practical applications [28].

Throughout the paper, we let n, ∆, and tw denote the number of vertices, the maximum
degree, and the treewidth of the input graph, respectively. When we consider the (paramet-
erized) decision version of the Diameter-Tree problem, we also let k denote the desired
cost of a solution.

3 Para-NP-hardness results

We start with the para-NP-hardness result with parameter k + tw.

I Theorem 1. The Diameter-Tree problem is NP-hard on outerplanar graphs with only
one vertex of degree greater than 3, even with three different costs that satisfy the triangle
inequality, and k = 9. Since outerplanar graphs have treewidth at most 2, in particular,
Diameter-Tree is para-NP-hard parameterized by tw and k.

Proof. We present a simple reduction from 3-Sat. Given a formula ϕ with n variables and
m clauses, we create an instance (G,χ, c) of Diameter-Tree as follows. We may assume
that there is no clause in ϕ that contains a literal and its negation. The graph G contains
a distinguished vertex r and, for each clause cj = (`1 ∨ `2 ∨ `3), we add a clause gadget
Cj consisting of three vertices vj

`1
, vj

`2
, vj

`3
and five edges {r, vj

`1
}, {r, vj

`2
}, {r, vj

`3
}, {vj

`1
, vj

`2
},

and {vj
`2
, vj

`3
}. This completes the construction of G. Note that G does not depend on the
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Cj

vj`1

vj`2

vj`3

r

Figure 1 Example of the graph G built in the reduction of Theorem 1.

formula ϕ except for the number of clause gadgets, and that it is an outerplanar graph with
only one vertex of degree greater than 3; see Figure 1 for an illustration.

Let us now define the coloring χ and the cost function c. For simplicity, we associate a
distinct color with each edge of G, and thus, with slight abuse of notation, it is enough to
describe the cost function c for every pair of incident edges of G, as we consider symmetric
cost functions. We will use just three different costs: 1, 5 and 10. We set

c(e1, e2) =


10 if e1 = {r, vj1

`i1
}, e2 = {r, vj2

`i2
} and `i1 = `i2 ,

5 if e1 = {r, vj1
`i1
}, e2 = {r, vj2

`i2
} and `i1 6= `i2 , and

1 otherwise.

Note that this cost function satisfies the triangle inequality since the reload costs between
edges incident to r are 5 and 10, and the reload costs between edges incident to other vertices
are 1.

We claim that ϕ is satisfiable if and only if G contains a spanning tree with diameter at
most 9. Since r is a cut vertex and every clause gadget is a connected component of G− r,
in every spanning tree, the vertices of Cj together with r induce a tree with four vertices.
Moreover the reload cost associated with a path from r to a leaf of this tree is always at
most 2. Therefore, the diameter of any spanning tree is at most 4 plus the maximum reload
cost incurred at r by a path of T .

Assume first that ϕ is satisfiable, fix a satisfying assignment ψ of ϕ, and let us construct
a spanning tree T of G with diameter at most 9. For each clause cj , the tree T j is the tree
spanning Cj and containing the edge between r and an arbitrarily chosen literal of cj that is
set to true by ψ. T is the union of all the trees Tj constructed in this way. The reload cost
incurred at r by any path of T traversing it is at most 5, since we never choose a literal and
its negation. Therefore, it holds that diam(T ) ≤ 9.

Conversely, let T be a spanning tree of G with diam(T ) ≤ 9. Then, the reload cost
incurred at r by any path traversing it is at most 5 since otherwise diam(T ) ≥ 10. For every
j ∈ [m], let Tj be the subtree of T induced by Cj and let {r, vj

`ij
} be one of the edges incident

to r in Tj . We note that for any pair of clauses cj1 , cj2 we have `ij1
6= `ij2

, since otherwise a
path using these two edges would incur a cost of 10 at r. The variable in the literal `ij is set
by ψ so that `ij

is true. All the other variables are set to an arbitrary value by ψ. Note that
ψ is well-defined, since we never encounter a literal and its negation during the assignment
process. It follows that ψ is a satisfying assignment of ϕ. J

We proceed with the para-NP-hardness result with parameter k + ∆.
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I Theorem 2. The Diameter-Tree problem is NP-hard on graphs with ∆ ≤ 3, even with
two different costs, k = 0, and a bounded number of colors. In particular, it is para-NP-hard
parameterized by k and ∆.

Proof. We present a reduction from the restriction of 3-Sat to formulas where each variable
occurs in at most three clauses; this problem was proved to be NP-complete by Tovey [27]. It
is worth mentioning that one needs to allow for clauses of size two or three, as if all clauses
have size exactly three, then it turns out that all instances are satisfiable [27].

We may assume that each variable occurs at least once positively and at least once
negatively, as otherwise we may set such a variable x to the value that satisfies all clauses
in which it appears, and delete x together with those clauses from the formula. We may
also assume that each variable occurs exactly three times in the given formula ϕ. Indeed,
let x be a variable occurring exactly two times in the formula. We create a new variable
y and we add to ϕ two clauses (x ∨ y) and (y ∨ y). Let ϕ′ be the new formula. Clearly ϕ
and ϕ′ are equivalent, and both x and y occur three times in ϕ′. Applying these operations
exhaustively clearly results in an equivalent formula where each variable occurs exactly three
times. Summarizing, we may assume the following property:

z Each variable occurs exactly three times in the given formula ϕ of 3-Sat. Moreover, each
variable occurs at least once positively and at least once negatively in ϕ.

Given a formula ϕ with n variables and m clauses, we create an instance (G,χ, c) of
Diameter-Tree with ∆(G) ≤ 3 as follows. Let the variables in ϕ be x1, . . . , xn. For
every i ∈ [n], we add to G a variable gadget consisting of five vertices ui, vi, pi, ri, ni and
five edges {ui, vi}, {vi, pi}, {pi, ri}, {ri, ni}, and {ni, vi}. For every i ∈ [n − 1], we add the
edge {ui, ui+1}. For every j ∈ [m], the clause gadget in G consists of a single vertex cj .
We now proceed to explain how we connect the variable and the clause gadgets. For each
variable xi, we connect vertex pi (resp. ni) to one of the vertices corresponding to a clause
of ϕ in which xi appears positively (resp. negatively). Finally, we connect vertex ri to the
remaining clause in which xi appears (positively or negatively). Note that these connections
are well-defined because of property z. This completes the construction of G, and note that
it indeed holds that ∆(G) ≤ 3; see Figure 2(a) for an example of the construction of G for a
specific satisfiable formula ϕ with n = 4 and m = 5.

Let us now define the coloring χ and the cost function c. We use nine colors 1, 2, . . . , 9
associated with the edges of G as follows. For i ∈ [n], we set χ({pi, ri}) = 1 and χ({ri, ni}) =
2, and all edges incident to ui or vi have color 3. Finally, for j ∈ [m], we color the edges
containing cj with colors in {4, 5, 6, 7, 8, 9}, so that incident edges get different colors, and
edges corresponding to positive (resp. negative) occurrences get colors in {4, 5, 6} (resp.
{7, 8, 9}); note that such a coloring always exists as each clause contains at most three
variables; see Figure 2(b). We will use only two costs, namely 0 and 1, and recall that we
consider only symmetric cost functions. We set c(1, 2) = 1, c(1, i) = 1 for every i ∈ {4, 5, 6},
c(2, i) = 1 for every i ∈ {7, 8, 9}, and c(i, j) = 1 for every distinct 4 ≤ i, j ≤ 9. All other
costs are set to 0. The following claim concludes the proof.

I Claim 3. [?] ϕ is satisfiable if and only if G contains a spanning tree with diameter 0. J

Note that in the above reduction the cost function c does not satisfy the triangle inequality
at vertices pi or ni for i ∈ [n], and recall that this is unavoidable since otherwise the problem
would be polynomial [28].

Finally, we present the para-NP-hardness result with parameter tw + ∆.

I Theorem 4. The Diameter-Tree problem is NP-hard on planar graphs with tw ≤ 3 and
∆ ≤ 3. In particular, it is para-NP-hard parameterized by tw and ∆.

IPEC 2017



3:8 Complexity of Finding a Spanning Tree with Minimum Reload Cost Diameter

p1 r1 n1

v1

u1

p2 r2 n2

v2 v3 v4

u2 u3 u4

p3 r3 n3 p4 r4 n4

c1 c2 c3 c4 c5

(a) (b)

ui

vi

pi ri ni

3

33

33

1 2

4,5,6
4,5,6
7,8,9

7,8,9

Figure 2 (a) Graph G described in the reduction of Theorem 2 for the formula ϕ = (x1 ∨ x2 ∨
x3) ∧ (x1 ∨ x4) ∧ (x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4). The vertices pi, ri, ni corresponding to positive
(resp. negative) occurrences are depicted with circles (resp. squares). An assignment satisfying ϕ is
given by x1 = x2 = 1 and x3 = x4 = 0, and a solution spanning tree T with diameter 0 is emphasized
with thicker edges. (b) The (possible) colors associated with each edge of G are depicted in blue.

Proof. We present a reduction from the Partition problem, which is a typical example
of a weakly NP-complete problem [16]. An instance of Partition is a multiset S =
{a1, a2, . . . , an} of n positive integers, and the objective is to decide whether S can be
partitioned into two subsets S1 and S2 such that

∑
x∈S1

x =
∑

x∈S2
x = B

2 where B =∑
x∈S x.
Given an instance S = {a1, a2, . . . , an} of Partition, we create an instance (G,χ, c)

of Diameter-Tree as follows. The graph G contains a vertex r, called the root, and
for every integer ai where i ∈ [n], we add to G six vertices ui, u

′
i,mi,m

′
i, di, d

′
i and seven

edges {ui, u
′
i}, {mi,m

′
i}, {di, d

′
i}, {ui,mi}, {u′i,m′i}, {mi, di}, and {m′i, d′i}. We denote

by Hi the subgraph induced by these six vertices and seven edges. We add the edges
{r, u1}, {r, d1} and, for i ∈ [n − 1], we add the edges {u′i, ui+1} and {d′i, di+1}. Let G′
be the graph constructed so far. We then define G to be the graph obtained from two
disjoint copies of G′ by adding an edge between both roots. Note that G is a planar
graph with ∆(G) = 3 and tw(G) = 3. (The claimed bound on the treewidth can be
easily seen by building a path decomposition of G with consecutive bags of the form
{u′i−1, d

′
i−1, ui, di}, {ui, di,mi, u

′
i}, {di,mi, u

′
i,m

′
i}, {di, u

′
i,m

′
i, d
′
i}, . . ..)

Let us now define the coloring χ and the cost function c. Again, for simplicity, we
associate a distinct color with each edge of G, and thus it is enough to describe the cost
function c for every pair of incident edges of G. We define the costs for one of the copies of
G′, and the same costs apply to the other copy. For every edge e being either {u′i, ui+1} or
{d′i, di+1}, for 1 ≤ i ≤ n− 1, we set c(e, e′) = 0 for each of the four edges e′ incident with e.
For every edge e = {mi,m

′
i}, for 1 ≤ i ≤ n, we set c({ui,mi}, e) = c({di,mi}, e) = ai and

c(e, {m′i, u′i}) = c(e, {m′i, d′i}) = 0. All costs associated with the two edges containing r in
one of the copies G′ are set to 0. For e = {r1, r2}, where r1 and r2 are the roots of the two
copies of G′, we set c(e, e′) = 0 for each of the four edges e′ incident to e. The cost associated
with any other pair of edges of G is equal to B + 1; see Figure 3 for an illustration, where
(some of) the reload costs are depicted in blue, and a typical solution spanning tree of G is
drawn with thicker edges. The following claim concludes the proof.

I Claim 5. [?] The instance S of Partition is a Yes-instance if and only if G has a
spanning tree with diameter at most B. J
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r1 a1
a1

a1
a1

an
an

r2

u2u′
2

d2d′2

m′
2 m2

an
an

a2
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Figure 3 Graph G built in the reduction of Theorem 4, where the reload costs are depicted in
blue at the angle between the two corresponding edges. For better visibility, not all costs and vertex
labels are depicted. The typical shape of a solution spanning tree is highlighted with thicker edges.

4 Polynomial and FPT algorithms

We start this section by presenting the polynomial-time algorithm to solve the Diameter-
Tree problem on cactus graphs, equivalently called cacti. We first need some definitions.

A biconnected component, or block, of a graph is a maximal biconnected induced subgraph
of it. The block tree of a graph G is a tree T whose nodes are the cut vertices and the blocks
of G. Every cut vertex is adjacent in T to all the blocks that contain it. Two blocks share at
most one vertex. The block tree of a graph is unique and can be computed in polynomial
time [10]. A graph is a cactus graph if every block of it is either a cycle or a single edge. We
term these blocks cycle blocks and edge blocks, respectively. It is well-known that cacti have
treewidth at most 2. Given a forest F and two vertices x and y, we define costF (x, y) to
be distc

T (x, y) if x and y are in the same tree T of F and where c is the given reload cost
function, and ⊥ otherwise. Given a tree T and a vertex v ∈ V (T ), we define the eccentricity
of v in T to be maxv′∈V (T ) costT (v, v′).

We present a polynomial-time algorithm that solves the decision version of the problem,
which we call Diameter-Tree*: the input is an edge-colored graph G and an integer k, and
the objective is to decide whether the input graph G has a spanning tree with reload cost
diameter at most k. The algorithm to solve Diameter-Tree* uses dynamic programming
on the block tree of the input graph.

As we aim at a strongly polynomial-time algorithm to solve Diameter-Tree, we cannot
afford to solve the decision version for all values of k. To overcome this problem, we perform
a double binary search on the possible solution values and two appropriate eccentricities,
resulting (skipping many technical details) in an extra factor of (log opt)2 in the running
time of the algorithm, where opt is the diameter of a minimum cost spanning tree. This
yields a polynomial-time algorithm solving Diameter-Tree in cactus graphs.

Roughly speaking, the algorithm first fixes an arbitrary non-cut vertex r of G and the
block Br that contains it. Then it processes the block tree of G in a bottom-up manner
starting from its leaves, proceeding towards Br while maintaining partial solutions for each
block. At each step of the processing, it uses an algorithm that solves an instance of the
2-Sat problem as a subroutine. The intuition behind the instances of 2-Sat created by the
algorithm is the following.

Suppose that we are dealing with a cycle block B of the block tree of G (the case of an
edge block being easier). Note that any spanning tree of G contains all edges of B except one.
Let GB be the graph processed so far (including B). For each potential partial solution Q in
GB, we associate, with each edge e of B, a variable that indicates that e is the non-picked
edge by the solution in B. Now, for any two such variables corresponding to intersecting
blocks, we add to the formula of 2-Sat essentially two types of clauses: the first set of

IPEC 2017



3:10 Complexity of Finding a Spanning Tree with Minimum Reload Cost Diameter

clauses, namely φ1, guarantees that the non-picked edges (corresponding to the variables set
to true in the eventual assignment) indeed define a spanning tree of GB , while the second
one, namely φ2, forces this solution to have diameter and eccentricity not exceeding the
given budget k. The fact the G is a cactus allows to prove that these constraints containing
only two variables are enough to compute an optimal solution in GB. Full details can be
found in the full version.

I Theorem 6. [?] The Diameter-Tree problem can be solved in polynomial time on cacti.

In the following theorem we prove that the Diameter-Tree problem is FPT on general
graphs parameterized by k, tw, and ∆. The proof is based on standard, but nontrivial,
dynamic programming on graphs of bounded treewidth. It should be mentioned that we can
assume that a tree decomposition of the input graph G of width O(tw) is given together
with the input. Indeed, by using for instance the algorithm of Bodlaender et al. [7], we can
compute in time 2O(tw) · n a tree decomposition of G of width at most 5tw. Note that this
running time is clearly dominated by the running time stated in Theorem 7.

I Theorem 7. [?] The Diameter-Tree problem can be solved in time (k∆·tw ·∆ · tw)O(tw) ·
nO(1). In particular, it is FPT parameterized by k, tw, and ∆.

5 Polynomially bounded costs

So far, we have completely characterized the parameterized complexity of the Diameter-
Tree problem for any combination of the three parameters k, tw, and ∆. In this section we
focus on the special case when the maximum cost value is polynomially bounded by n. The
following corollary is an immediate consequence of Theorem 7.

I Corollary 8. If the maximum cost value is polynomially bounded by n, the Diameter-Tree
problem is in XP parameterized by tw and ∆.

From Corollary 8, a natural question is whether the Diameter-Tree problem is FPT
or W[1]-hard parameterized by tw and ∆, in the case where the maximum cost value is
polynomially bounded by n. The next theorem provides an answer to this question.

I Theorem 9. When the maximum cost value is polynomially bounded by n, the Diameter-
Tree problem is W[1]-hard parameterized by tw and ∆.

Proof. We present a parameterized reduction from the Bin Packing problem parameterized
by the number of bins. In Bin Packing, we are given n integer item sizes a1, . . . , an and an
integer capacity B, and the objective is to partition the items into a minimum number of bins
with capacity B. Jansen et al. [23] proved that Bin Packing is W[1]-hard parameterized by
the number of bins in the solution, even when all item sizes are bounded by a polynomial of
the input size. Equivalently, this version of the problem corresponds to the case where the
item sizes are given in unary encoding; this is why it is called Unary Bin Packing in [23].

Given an instance ({a1, a2, . . . , an}, B, k) of Unary Bin Packing, where k is the number
of bins in the solution and where we can assume that k ≥ 2, we create an instance (G,χ, c)
of Diameter-Tree as follows. The graph G contains a vertex r and, for i ∈ [n] and j ∈ [k],
we add to G vertices vi, `

i
j , r

i
j and edges {r, `1j}, {vi, `

i
j}, {vi, r

i
j}, and {`i

j , r
i
j}. Finally, for

i ∈ [n− 1] and j ∈ [k], we add the edge {ri
j , `

i+1
j }. Let G′ be the graph constructed so far;

see Figure 4 for an illustration.
Similarly to the proof of Theorem 4, we define G to be the graph obtained by taking two

disjoint copies of G′ and identifying vertex r of both copies. Note that G can be clearly built in
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Figure 4 Graph G′ built in the reduction of Theorem 9. The reload costs are not depicted.

polynomial time, and that tw(G) ≤ k+ 1 and ∆(G) = 2k (since we assume k ≥ 2). Therefore,
tw(G)+∆(G) is indeed bounded by a function of k, as required. (Again, the claimed bound on
the treewidth can be easily seen by building a path decomposition ofG with consecutive bags of
the form {vi, `

i
1, `

i
2, . . . , `

i
k, r

i
1}, {vi, `

i
1, `

i
2, . . . , `

i
k−1, r

i
1, r

i
2}, {vi, `

i
1, `

i
2, . . . , `

i
k−2, r

i
1, r

i
2, r

i
3}, . . ..)

Let us now define the coloring χ and the cost function c. Once more, for simplicity,
we associate a distinct color with each edge of G, and thus it is enough to describe the
cost function c for every pair of incident edges of G. The cost function is symmetric for
both copies of G′, so we just focus on one copy. For i ∈ [n], let e1, e2 be two distinct edges
containing vertex vi. We set c(e1, e2) = 2B + 1 unless e1 = {vi, `

i
j} and e2 = {vi, r

i
j} for

some j ∈ [k], in which case we set c(e1, e2) = ai. The cost associated with any other pair of
edges of G is set to 0. Note that, as ({a1, a2, . . . , an}, B, k) is an instance of Unary Bin
Packing, the reload costs of the instance (G,χ, c) of Diameter-Tree are polynomially
bounded by |V (G)|. Again, the following claim concludes the proof.

I Claim 10. [?] ({a1, a2, . . . , an}, B, k) is a Yes-instance of Unary Bin Packing if and
only if G has a spanning tree with diameter at most 2B. J
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