
On Maximal Cliques with Connectivity
Constraints in Directed Graphs∗

Alessio Conte1, Mamadou Moustapha Kanté†2, Takeaki Uno3, and
Kunihiro Wasa4

1 Università di Pisa, Pisa, Italy
conte@di.unipi.it

2 Université Clermont Auvergne, LIMOS, CNRS, Aubière, France
mamadou.kante@uca.fr

3 National Institute of Informatics, Tokyo, Japan
uno@nii.ac.jp

4 National Institute of Informatics, Tokyo, Japan
wasa@nii.ac.jp

Abstract
Finding communities in the form of cohesive subgraphs is a fundamental problem in network
analysis. In domains that model networks as undirected graphs, communities are generally
associated with dense subgraphs, and many community models have been proposed. Maximal
cliques are arguably the most widely studied among such models, with early works dating back to
the ’60s, and a continuous stream of research up to the present. In domains that model networks
as directed graphs, several approaches for community detection have been proposed, but there
seems to be no clear model of cohesive subgraph, i.e., of what a community should look like.
We extend the fundamental model of clique to directed graphs, adding the natural constraint of
strong connectivity within the clique. We characterize the problem by giving a tight bound for
the number of such cliques in a graph, and highlighting useful structural properties. We then
exploit these properties to produce the first algorithm with polynomial delay for enumerating
maximal strongly connected cliques.

1998 ACM Subject Classification G.2.2 Graph Theory, Graph algorithms

Keywords and phrases Enumeration algorithms, Bounded delay, Directed graphs, Community
structure, Network analytics

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.23

1 Introduction

The problem of community detection in graphs has been extensively studied. In undirected
graphs, dense subgraphs are often used to detect communities, with applications in areas
such as social network analysis [25, 28], biology [16], and more [13].

Several definitions of dense subgraph have been proposed to model communities [22, 28].
The earliest, and perhaps the most widely studied is that of the maximal clique: interest in
the problem of finding maximal cliques started several decades ago [1, 5, 21] and effort to
produce efficient algorithms can still be seen in recent works [8, 10, 12].

∗ This work was supported by JST CREST, Grant Number JPMJCR1401, Japan.
† M.M. Kanté is supported by French Agency for Research under the GraphEN project (ANR-15-CE-0009).

© Alessio Conte, Mamadou M. Kanté, Takeaki Uno, and Kunihiro Wasa;
licensed under Creative Commons License CC-BY

28th International Symposium on Algorithms and Computation (ISAAC 2017).
Editors: Yoshio Okamoto and Takeshi Tokuyama; Article No. 23; pp. 23:1–23:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


23:2 On Maximal Cliques with Connectivity Constraints in Directed Graphs

As for directed graphs, there seems to be consensus in literature [18, 19, 23] on the fact
that ignoring edge directions and applying community detection techniques for undirected
graphs is not satisfactory. Several ad-hoc techniques for clustering and community discovery
have been proposed, mirroring the goals of algorithms for undirected graphs.

Awerbuch et al. [3] proposed a bounded-error scheme for aggregating vertices in directed
graphs as a hierarchical structure. Leicht et al. [19] adapted the concept of modularity
to account for edge directions, with the aim of extracting more meaningful clusters. The
LinkRank algorithm [18] aimed at partitioning a directed graph into communities using
random walks and the PageRank algorithm. More approaches can be found in [13].

Subgraph-based community models in undirected networks are thoroughly studied in
community detection (and network analysis in general), thus it would be natural to imagine
that similar models were object of study in the directed area. Surprisingly, this seems to
be a road less traveled.1 Charikar et al. [6] considered communities in directed graphs as
sets of vertices whose induced subgraphs have many edges, regardless of connectivity. The
well-known work by Kleinberg et al. [17] defined a community in the web graph with respect
to a topic as a special bipartite clique Ki,j , in which each of the i vertices has edges towards
each of the other j vertices, which represent authority pages on the topic. To the best of
our knowledge, there are no other community models for directed graphs that are widely
accepted and rigorous. This motivates our interest in combining the basic maximal clique
model with connectivity in directed graphs, that is strong connectivity. We call this model a
strongly connected clique (scq for short), and investigate both its properties and the problem
of efficiently finding all maximal scqs.

Generic enumeration techniques for maximal subgraphs have been proposed for strongly
accessible properties [2], i.e., such that every non-maximal subgraph A which verifies the
property is included in a subgraph B of size exactly |A|+ 1 that also verifies the property.
Cohen et al. [7] proposed an algorithmic framework for enumerating maximal subgraphs with
respect to subsets of strongly accessible properties, namely hereditary and connected-hereditary
graph properties. scqs, however, fit in neither of these classes.

Finding maximal subgraphs satisfying a non accessible property is a challenging task, as
their structure is unsystematic, and their enumeration requires new techniques and theoretical
insight. In this work, we show that scqs have a peculiar but rigorous structure, which
fits under a relaxed, more general notion of accessibility. We then exploit this structure
to design scq-enum, an efficient algorithm that enumerates scqs with delay bounded by
O(min(ω(G)d2∆2,m2)), where ω(G), d, ∆ and m are respectively the largest size of an scq,
degeneracy, maximum degree and number of edges of the input graph, and the delay is the
maximum time elapsed between two consecutive outputs. The value of scq-enum is two-fold:
on one hand, it constitutes a first step towards the characterization, and potentially towards
general enumeration techniques, for a wider range of problems that are not accessible. On the
other hand, scq-enum is also an efficient practical tool for discovering community structures
in directed networks. Finally, we complete the analysis of the model by giving a tight bound
for the number of maximal scqs in an n-vertex graph.

1 It should be mentioned that strongly connected components have been object of thorough study, however
these may be very large, sparse, and thus may not be significant indicators of community structures.



A.Conte, M.M.Kanté, T. Uno, and K. Wasa 23:3

6

2

5

1

8

4

7

3

6

2

5

1

8

4

7

3

Figure 1 A graph with 4 maximal scqs ({1,5,6},{2},{3,6,7},{4,8}) whose underlying undirected
graph has 3 maximal cliques ({1,2,5,6},{2,3,6,7},{4,7,8}).

2 Preliminaries

We refer to [11] for our graph terminology, and all (directed) graphs considered in this paper
are without multi-edges and loops (but may contain edges of opposite direction). The vertex
set of a graph G is denoted by V (G) and its edge set by E(G). A (directed) edge (or arc)
from x to y is denoted by (x, y) in which x is the tail and y the head; we will say that the
edge is from x and towards y. When E(G) is symmetric, i.e., (x, y) ∈ E(G) if and only if
(y, x) ∈ E(G), we call G undirected and denote each edge (x, y) of G by xy (equivalently yx).
For a graph G, we denote by u(G), called underlying (undirected) graph of G, the undirected
graph with vertex set V (G) and edge set {xy | (x, y) ∈ E(G) or (y, x) ∈ E(G)}. We use n
and m to denote the number of vertices and edges, respectively, in any graph.

For a vertex x in a graph G, NG(x) denotes its set of neighbours, which includes both
in-neighbours, i.e., {y ∈ V (G) | (y, x) ∈ E(G)}, and out-neighbours, i.e., {y ∈ V (G) | (x, y) ∈
E(G)}. |NG(x)| denotes the degree of x, and ∆(G) the maximum degree of a vertex in G.
Any vertex with degree |V (G)| − 1 is called a universal vertex. The subgraph of G induced
by X ⊆ V (G) is the graph G[X] = (X,E(G) ∩ (X ×X)). When the graph G is clear from
the context we will drop the subscripts from the notations NG(x) and similar ones, and also
write V (or similar notations E, ∆, . . . ) instead of V (G) (or E(G), ∆(G), . . . ).

The power-set of the set V is denoted by 2V . For two sets of vertices A and B we
denote by A \ B the set {x ∈ A | x /∈ B}. Given a total ordering on the vertices in V ,
represented by increasing labels v1, . . . , vn, the associated lexicographic ordering on 2V ,
denoted by ≤, is such that A ≤ B if A contains the smallest element not in common, i.e.,
min((A ∪B) \ (B ∩A)) ∈ A.

A clique of an undirected graph G is a subset C of V (G) that induces a complete graph,
and a maximal clique is a clique C of G such that C ∪{x} is not a clique for all x ∈ V (G)\C.
Let G = (V,E) be a (directed) graph. A strongly connected clique (or scq for short) is a set
C ⊆ V (G) such that G[C] is strongly connected, and u(G)[C] is a clique of u(G). We recall
that a directed graph (or subgraph) is strongly connected if and only if for each bipartition
(V1, V2) of V there is an edge from V2 to V1 (and symmetrically from V1 to V2) [9]. We
assume that a single vertex is an scq; we denote the maximum size of an scq in G by ω(G),
and the maximum size of a clique in u(G) by ω(u(G)). It is worth noticing that if G is
undirected, scqs and cliques coincide. An scq C is maximal if there is no scq C ′ such that
C ⊂ C ′. Given C ⊆ V , the set X ⊆ V \ C is addible to C if C ∪X is an scq, and Y ⊆ C is
removable from C if C \ Y is an scq. Furthermore, we say that a vertex x is a sink w.r.t. C
if there is no (x, y) ∈ E(G) with y ∈ C, and a source w.r.t. C if there is no (y, x) ∈ E(G)
with y ∈ C. A graph with its maximal scqs and cliques is shown in Figure 1.

A graph G is d-degenerate if each induced subgraph of G has a vertex of degree at most d.
The degeneracy of a graph G is the minimum d such that G is d-degenerate. A degeneracy
ordering of a graph G of degeneracy d is a sequence v1, v2, . . . , vn of its vertex set such

ISAAC 2017



23:4 On Maximal Cliques with Connectivity Constraints in Directed Graphs

that the degree of each vi in G[{vi, . . . , vn}] is at most d; we call N(vi) ∩ {vi+1, . . . , vn} the
forward neighbours of vi. We assume that any graph is given with a degeneracy ordering2.

3 Problem Characterization

Maximal scqs are a challenging problem as they do not satisfy the strong accessibility property.
However, we provide some related properties that will be the key of our enumeration algorithm.

3.1 Relaxed Accessibility of Strongly Connected Cliques
We recall that a set system (V, E ⊆ 2V ) is (weakly) accessible if for each X ∈ E , there is
x ∈ X such that X \ {x} ∈ E , and it is strongly accessible if in addition for each X,Y ∈ E
with Y ⊂ X, there is x ∈ X \ Y such that Y ∪ {x} ∈ E . In both cases it is assumed that
∅ ∈ E . The following two lemmas prove a relaxed notion of weak and strong accessibility.

I Lemma 1. Let C be a non-empty scq of G. There exists Z ⊆ C removable from C and
such that |Z| ≤ 2.

Proof. As a single vertex and the empty set are scqs, if |C| = 3 any Z ⊂ C with |Z| = 2
is removable, and if |C| = 1 or |C| = 2 any vertex in C is removable. Suppose then that
|C| ≥ 4 and let us prove that it has a removable vertex.

Let y be an arbitrary vertex of C and suppose that C ′ = C \ y is not strongly connected.
Then, there exists a bipartition (X,Y ) of C ′ such that E(G[C])∩(Y ×X) = ∅. As C = C ′∪{y}
is strongly connected, we must have w ∈ X and w′ ∈ Y such that (y, w), (w′, y) ∈ E(G[C]),
and y can reach every vertex in X, and also every vertex from Y can reach y. Since, |C| ≥ 4
and thus |C ′| ≥ 3, either |X| ≥ 2 or |Y | ≥ 2. Assume |X| ≥ 2: let z ∈ X be a leaf of a
traversal of X ∪ {y} starting from y (recall that y can reach all vertices in X). As z is a leaf,
if we remove it, y can still reach all vertices in X \ {z}. Furthermore, each vertex in X \ {z}
has an edge towards every vertex in Y , as C is an scq, and every vertex in Y can reach y.
Thus {y} ∪ (X \ {z}) ∪ Y = C \ {z} is an scq, i.e., Z = {z} is a removable set in C with
|Z| ≤ 2. If |X| = 1, then |Y | ≥ 2, and the proof is symmetrical by choosing z as a leaf vertex
in a traversal of G[Y ∪ {y}] with the edges reversed, starting from y. J

I Lemma 2. Given two scqs C and D such that D ⊂ C, there exists X ⊆ C \D addible to
D with |X| ≤ 2.

Proof. If |C \ D| ≤ 2 the lemma is trivially true, so assume |C \ D| ≥ 3. Any vertex in
C \D with edges both towards and from vertices in D is addible to D, so assume that no
such vertex exists. Hence, all the vertices in C \D are either sinks or sources w.r.t. D, that
we denote by K and R, respectively. Any set {k, r} with k ∈ K, r ∈ R and (k, r) ∈ E(G[C])
is an addible set to D. Assume then that no such set does exist: all the vertices in K

cannot reach R or D, and all the vertices in R cannot be reached from K or D. This is a
contradiction as C = D ∪K ∪R is strongly connected, thus an addible set {k, r} exists. J

And as any non-maximal scq is contained in a larger one, we obtain the following.

I Corollary 3. An scq C is maximal in G if and only if there is no X ⊆ V (G) \ C addible
to C with |X| ≤ 2.

2 Such an ordering can be computed in linear time by iteratively removing the smallest degree vertex.



A.Conte, M.M.Kanté, T. Uno, and K. Wasa 23:5

Thanks to Lemmas 1 and 2, we can say that the property of being an scq belongs to a
relaxed class of accessibility, since (i) for each X ∈ E , there is Z ⊆ X such that X \ Z ∈ E ,
and (ii) for each X,Y ∈ E with Y ⊆ X there is Z ∈ X \ Y such that Y ∪ Z ∈ E , where
the size of Z is at most 2. This is a generalization of the definitions of strong and weakly
accessible classes, which are obtained from the above by simply setting |Z| = 1.

3.2 Maximal Undirected and Strongly Connected Cliques
On top of the accessibility of the problem, we are interested in studying the relationship
between the scqs in G and the cliques in the underlying undirected graph u(G). Lemma 4
highlights the first basic, but important, relationship.

I Lemma 4. Given a directed (not necessarily strongly connected) clique D, the strongly
connected components of D are the maximal scqs in D.

Proof. Any scq C is contained in a strongly connected component of a directed clique by
definition, as C is strongly connected and u(G[C]) is a clique. Furthermore, an scq may not
contain vertices from different strongly connected components, as it would not be strongly
connected. Thus, a strongly connected component of D is a maximal scq in D. J

I Corollary 5. A directed clique D contains at most |D| maximal scqs, which are disjoint.

3.3 Bounding the Number of Maximal SCQs
For a graph G, let us denote by gc(G) and gc(u(G)) the number of maximal scqs in G and
maximal cliques in u(G) respectively, and for n, let us denote by g(n) the maximum number
of maximal scqs in an n-vertex graph. From Corollary 5, any maximal scq in a directed
graph G is contained in a maximal clique of u(G), i.e., gc(G) ≤ ω(u(G)) · gc(u(G)). But the
number of scqs in a graph can be much smaller than the number of cliques of its underlying
undirected graph: For instance, an n-vertex DAG has exactly n maximal scqs of size 1 while
the number of maximal cliques of its underlying undirected graph can be arbitrarily large.
As the maximum number of maximal cliques in an undirected n-vertex graph is 3 n

3 [21], we
can immediately conclude that 3 n

3 ≤ g(n) ≤ n× 3 n
3 . We can adapt the proof from [21] to

show that g(n) is indeed 3 n
3 .

Let G be an n-vertex graph, and x, y two vertices of G, and let G(x; y) be defined
similarly to [21], as the graph obtained by removing all edges incident to x, and replacing
them so that the neighbourhood of x is identical to that of y, i.e., (x, v) ∈ E(G(x; y)) iff
(y, v) ∈ E(G) and (v, x) ∈ E(G(x; y)) iff (v, y) ∈ E(G). Let χ(x) be the number of maximal
scqs containing x, let α(x) be the number of new maximal scqs created by removing x (i.e.,
subsets of scqs containing x which become now maximal), and β(x) the number of scqs
which are not maximal anymore after removing x3. It is straightforward to see that if x and
y are not adjacent, the number of scqs in G(x; y) is given by gc(G) + χ(y)− χ(x) + α(x).
Indeed all scqs containing x have been removed, and replaced by α(x) new maximal cliques;
furthermore, for each of the χ(y) maximal scqs containing y in G, we now have a new one
containing x instead of y. If x and y are adjacent, any maximal scq containing y in G(x; y)
will be simply incremented with x; as a result, the number of maximal scqs in G(x; y) will

3 Note that in the undirected case α(x) is bounded by χ(x), but in the directed case α(x) may be larger
than χ(x) by up to an n factor.

ISAAC 2017



23:6 On Maximal Cliques with Connectivity Constraints in Directed Graphs

be only gc(G)− χ(x) + α(x). We are now ready to characterize the graph with the highest
number of maximal scqs.

I Lemma 6. Let G be a graph on n > 4 vertices with gc(G) = g(n). There exists G∗, an
n-vertex graph such that gc(G∗) = g(n) and u(G∗) is a complete multipartite graph with no
universal vertices.

Proof. If u(G) is a clique, it has at most n maximal scqs by Lemma 4, so we can replace
G with any DAG and still have n maximal scqs. Thus we can assume that u(G) is not a
clique, and has at least 2 non-universal vertices (i.e., not connected to every other vertex).

For two non-adjacent vertices x and y, we know that G(x; y) and G(y;x) cannot have
more scqs than G. As α(x) ≥ 0, we have χ(x) = χ(y) for any pair of non-adjacent vertices.
This implies α(x) = 0 for every non-universal vertex x. Thus, if x and y are non-adjacent,
gc(G(x; y)) = gc(G) = g(n). From G, we can obtain the graph G∗ as follows: for each vertex
x, and for each vertex y non-adjacent to x, iteratively replace G with G(y;x).

Observe from the discussion above that gc(G∗) = gc(G) = g(n). Also, u(G∗) is a complete
multipartite graph. Indeed, as each pair of non-adjacent vertices has the same neighbours,
we can partition the graph into independent sets such that two vertices in two different
independent sets are adjacent. Again, if u(G∗) is a clique (this may be the case for n = 4),
we replace G∗ with any DAG without compromising the number of maximal scqs and thus
obtaining at least 2 non-universal vertices.

Assume G∗ has a universal vertex v. Removing v can decrease the number of maximal
scqs by at most 1. In fact, any scq C that is non maximal after removing v, is included in a
larger scq C ′, to which v can be added as it is in the same strongly connected component as
C (which is a subset of C ′) and it is connected to all vertices of C ′. Thus the only maximal
scq that can may be lost is the one made by only v, if it is a maximal scq.

Let A be the set of universal vertices of G∗. If |A| > 1 we can simply remove the edges
between two vertices of A and replace each edge (a, b), for a ∈ A and b ∈ V (G∗) \A, by (b, a).
If |A| = 1, i.e., A = {v} for some v, let us take any independent set I in G∗ of size at least 2
(which exists because v is the only universal vertex), and then remove all the edges between
v and vertices in I, and replace any edge (v, b), for b ∈ V (G∗) \ I ∪{v}, by (b, v). As a sink is
a maximal scq, we can conclude from the paragraph above that the number of scqs of the
obtained graph is still equal to gc(G) = g(n). Since, the underlying undirected graph of this
obtained graph is a complete multipartite graph with no universal vertices, we are done. J

Thanks to Lemma 6, we can link the number of maximal scqs in G∗ to the number of
maximal cliques in u(G∗). This relation will enable us to give a tight bound for g(n).

I Lemma 7. Let G = (V,E) be a graph such that u(G) is a complete multipartite graph with
no universal vertices. Then gc(G) ≤ gc(u(G)).

Proof. Let S = {S1 . . . Sk} be the set of maximal independent sets of u(G), which forms a
k-partition of V . Let s(v) be the size of the unique maximal independent set Si containing
v; as G and u(G) have no universal vertices, s(v) ≥ 2. By definition each maximal scq in
G is a subset of some maximal clique of u(G), and recall that each maximal clique of u(G)
(a complete multipartite graph) is obtained by selecting exactly one vertex from each of its
maximal independent sets.

Let the occurrence mc(C) of an scq C be the number of maximal cliques of u(G) that
contain C, and let the weight w(C) of C be 1

mc(C) , or 0 if C = ∅. For a maximal clique Q
of u(G), let the weight w(Q) of Q be instead

∑
X a maximal scq of G[Q] w(X). The sum of the

weights of all maximal cliques in u(G) will be at least equal to the number of maximal scqs in



A.Conte, M.M.Kanté, T. Uno, and K. Wasa 23:7

G: any maximal scq C will be considered mc(C) times, each time adding w(C) = 1/mc(C),
for a total contribution of 1. This sum may be larger, as it can include subsets of maximal
cliques which are not maximal scqs in G, but cannot be smaller.

Let C be a maximal scq and let T ⊆ S be the maximal independent sets that do not
contain any vertex of C. Then, the maximal cliques that contain C are all the ones obtained
by adding a single vertex from each independent set in T , thus mc(C) =

∏
Si∈T |Si|. This

means that adding a vertex v to C reduces mc(C) and increases w(C) by a factor s(v).
Let us now consider the highest possible weight of a maximal clique Q in u(G). Note

that, by Corollary 5, the maximal scqs within Q are at most |Q| and do not overlap. If
Q contains a single maximal scq X, we have |X| = |Q|, mc(X) = 1 and w(X) = 1, thus
w(Q) = 1. Otherwise, let X and Y be two maximal scqs in Q, X being the one with highest
weight. Note that w(X) + w(Y ) ≤ 2w(X). Assume that we could remove a vertex v from
Y and add it to X, obtaining X ′ and Y ′: we have w(X ′) = s(v) · w(X), and as s(v) ≥ 2,
w(X ′)+w(Y ′) = w(X) ·s(v)+w(Y ′) ≥ 2w(X) ≥ w(X)+w(Y ). This hypothetical operation
can increase the total weight of Q but not decrease it, i.e., for any distribution of maximal
scqs in Q, a different that has the size of the largest scq increased by one, and that of
another one reduced by one, has greater or equal weight. We can repeat this hypothetical
step, iteratively enlarging X until we will finally consider a distribution with a single maximal
scq X of size |X| = |Q|. As w(Q) in this case is at least as large as that obtained with any
other distribution of maximal scqs in Q, and as shown above w(Q) = 1 in this case, we have
w(Q) is always at most 1. Therefore, the number of maximal scqs in G, i.e., the sum of all
weights of the maximal cliques in u(G) cannot be larger than gc(u(G)). J

It is known that the undirected graph with the highest number of maximal cliques is the
Moon-Moser graph [21], which is a complete multipartite graph in which as many maximal
independent sets as possible have size 3, while the remaining ones may only have size 2.4
Clearly, such a graph does not have universal vertices, and thus is compatible with the
definition of G∗. We can thus say that the underlying graph u(G) of the graph G∗ with the
highest number of maximal scqs will be a Moon-Moser graph. Furthermore, by Lemma 7
we get the upper bound g(n) = gc(G∗) ≤ gc(u(G∗)).

It is now easy to prove that this is a tight bound: when G is symmetric (i.e., (x, y) ∈ E(G)
iff (y, x) ∈ E(G)) then the connectivity in G is the same as in u(G) and each maximal clique
in u(G) will be a maximal scq in G. Thus we have g(n) = gc(G∗) = gc(u(G∗)). By
combining this lower bound with Lemma 7 and the Moon-Moser bound [21], we can conclude
the following (the case 2 ≤ n ≤ 4, not covered by Lemma 6, is omitted for space reasons, but
can be trivially verified).

I Theorem 8. For every integer n > 1,

g(n) =


3 n

3 if n ≡ 0 (mod 3),
4
3 · 3

bn
3 c if n ≡ 1 (mod 3)

2 · 3bn
3 c if n ≡ 2 (mod 3).

Finally, the same result can be proven for oriented graphs, that are directed graphs where
each edge may only have one direction, as long as n is not 5 or 6 (this is omitted for space
reasons but also involves suitable orientations of Moon-Moser graphs).

4 Equivalently, the remaining ones may have size 4. However it is not necessary to consider this case.

ISAAC 2017



23:8 On Maximal Cliques with Connectivity Constraints in Directed Graphs

4 Listing Maximal SCQs

While the number of maximal scqs in a graph G is at most n times the number of maximal
cliques of its underlying (undirected) graph u(G), and each maximal scq of G is contained
in some maximal clique of u(G), one cannot efficiently use output-polynomial algorithms for
listing maximal cliques in undirected graphs in order to list the maximal scqs of a graph.
For example, any orientation of a Moon-Moser n-vertex graph into a DAG has exactly n
maximal scqs, while its underlying graph has Θ(3 n

3 ) maximal cliques. This strategy would
hence take exponential running time to find just a linear number of maximal scqs.

In this section we design an algorithm that enumerates all maximal scqs of a graph
G = (V,E) with polynomial delay.

Intuitively, given a maximal scq (called sometimes a solution) S, our algorithm uses the
vertices in V \ S to find other solutions similar to S; we refer to this process as visiting S.
By visiting these newly found solutions the algorithm eventually finds all solutions in G.

4.1 Algorithm Description

The algorithm, which we call scq-enum, is described in Algorithm 1. scq-enum uses a
result set, which will store all solutions found so far. The primitive contains(S,result)
is a subroutine that returns true if S ∈ result, i.e., S has already been found and does
not need to be visited again, and the primitive add(S,result) adds S to the result set.
Finally, scq-enum exploits the function complete(X,A), which will iteratively add the
lexicographically minimum addible vertex or pair of vertices from A to a scq X, until X is
maximal w.r.t. A, and return it. For brevity, complete(X) represents complete(X,V ).
Thanks to the accessibility proven in Lemma 2 and Corollary 3, complete(X) will surely
return a maximal scq. We recall that we assume the graph given with the degeneracy
ordering, and we consider that ordering and its associated lexicographic one in the algorithm
(see Section 2). The primitive min-lex(T ) finds the minimum in the collection T ⊆ 2V .

scq-enum is in the same spirit as the one for listing the maximal cliques in an undirected
graph [10]. It does a DFS traversal of the graph of solutions where (S, S′) is an edge if S′
can be obtained from S by adding a new vertex (or a pair of vertices), removing its (their)
non-neighbours and finally completing the obtained set into a maximal scq. Let us describe
the algorithm.

scq-enum consists in calling the function enum(S), with S a maximal scq. In turn,
enum(S) will find all solutions that have a non-empty overlap with S. The function will
consider all vertices x ∈ V \ S, and for each of them will try to generate a new maximal scq
containing x and some vertices of S: by calling X ← complete({x}, I) the algorithm will
get the scq containing x, maximal w.r.t. the induced subgraph G[S ∪ {x}]; note that there
is only one such scq, as G[S ∪ {x}] is a clique in u(G[S ∪ {x}]) (see Lemma 4). Then X is
extended with complete(X) so that it is maximal w.r.t. G, i.e., a solution. Then, in the
second for loop, the same process is repeated for pairs of vertices rather than single vertices.
Every time a solution S′ is found, we recur in enum(S′), which will visit S′, adding it to the
result set and finding more solutions starting from S′. If S′ is already in the result set,
however, it means it was already visited and all the relative solutions have been found, thus
we can ignore it and backtrack.



A.Conte, M.M.Kanté, T. Uno, and K. Wasa 23:9

Algorithm 1: scq-enum
Input :A graph G=(V,E)
Output :The set result containing all maximal scqs in G
Global : result set, initially empty

1 for v ∈ V do
2 enum(complete({v}))
3 Function enum(S)
4 if contains(S,result) then return
5 add(S,result)
6 foreach x ∈ V \ S do
7 I ← (S ∩N(x) ∪ {x})
8 X ← complete({x}, I)
9 if X = {x} then continue

10 enum(complete(X))
11 foreach {y, z} ⊆ V \ S do
12 I ← (S ∩N(y) ∩N(z) ∪ {y, z})
13 X ← complete({y, z}, I)
14 if X = {y, z} then continue
15 enum(complete(X))

4.2 Correctness
We will hereby prove the correctness of scq-enum. The principle of finding maximal solutions
from other solutions is used by many enumeration algorithms, but this has so far been
applied exclusively to properties with strong accessibility [2], such as hereditary [10, 14, 26],
or connected-hereditary [4, 7].

Thanks to the results obtained in Section 3, however, we will be able to prove the
correctness of our technique, despite scqs not being strongly (or even weakly) accessible,
similar to [7]. In the following, given two scqs S and T , let S ∩scq T be the largest scq in
S ∩ T ; we recall that this may be a single vertex, which is indeed an scq.

Proving that no solution is found twice by scq-enum is trivial, as duplication is removed
by the result set, and since every output is a maximal scq since it is the result of a
complete call, we only need to prove that every maximal scq is found:

I Theorem 9. scq-enum finds all and only maximal scqs exactly once.

Proof. Let T be any solution not yet found by the algorithm. Let S be the solution found
by scq-enum which maximizes |S ∩scq T |. Note that |S ∩scq T | ≥ 1: for any v ∈ T , the
algorithm will visit C = complete({v}), a maximal scq containing v, so |C ∩scq T | ≥ 1.
Now let Z = S ∩scq T . We have Z 6= T , otherwise T would not be maximal, and by Lemma 2
there exists Y ⊆ T \ Z with 1 ≤ |Y | ≤ 2 s.t. Z ∪ Y is an scq. Note that Y is not contained
in S, as otherwise Z ∪ Y would be a larger scq in S ∩scq T . Three cases are possible: (i)
Y = {x}, then x ∈ V \ S and x is considered in the first for loop. (ii) Y = {y, z} ⊆ V \ S,
then {y, z} is considered in the second for loop. (iii) |Y | = {y, z}, with y ∈ V \ S and z ∈ S,
then y is considered in the first for loop and we will have z ∈ S ∩N(y) ∪ {y}.

In all these cases, the scq X (maximal in I) that is found, will contain Z∪Y by Lemma 4.
When we execute complete(X), we will either find T , or a maximal scq S′ that contains

ISAAC 2017



23:10 On Maximal Cliques with Connectivity Constraints in Directed Graphs

Algorithm 2: complete(X,A)
Input :X, an scq, and A ⊆ V , a set of vertices
Output :X ′ ⊇ X, an scq maximal with respect to A

1 Function complete(X,A)
2 while EXT ← min-extension(X,A) 6= null do
3 X ← X ∪ EXT ;
4 return X;
5 Function min-extension(X,A)
6 ADD ← {Y ⊆ A \X : 1 ≤ |Y | ≤ 2 and X ∪ Y is an scq};
7 return min-lex(ADD)

Z ∪ Y . As |Z ∪ Y | > |Z|, we have |S′ ∩scq T | > |S ∩scq T |. By induction, when visiting S′
we will either find T , or S′′ such that |S′′ ∩scq T | > |S′ ∩scq T |, until eventually, in at most
|T | such steps, scq-enum will find T . J

5 Complexity Analysis

We now analyze the complexity of scq-enum, i.e., Algorithm 1, showing that it lists maximal
scqs with delay O(min(ω(G)d2∆2,m2)). Recall that m, n, ∆, d and ω(G) are respectively
the number of edges, number of vertices, maximum vertex degree, degeneracy and maximum
size of an scq in G, and that the vertices are v1, . . . , vn are given in a degeneracy ordering.
Firstly, we bound the complexity of the function complete:

I Lemma 10. complete(X,A) (Algorithm 2) can be executed in time O(min(d∆,m)).

Proof. Consider the vertices in A adjacent to all vertices of X, i.e.
⋂

x∈X(N(x)) ∩A, and
partition them in three sets, each stored in increasing lexicographical order: sink contains
all the sinks w.r.t. X; source the sources w.r.t. X, and both all vertices that have at least
one edge from and one towards some vertex in X (i.e., neither sinks nor sources w.r.t. to X).
The computing time is the sum of the degrees of vertices in X, i.e. min(ω(G)∆,m) and the
total size |sink|+ |source|+ |both| of the sets is bounded by ∆.

As each step adds either one or two vertices to X, and |X| is bounded by ω(G), we
will have at most ω(G) steps. Whenever we add a vertex a to X, we can update the sink,
source, both sets by only looking at N(a): any non neighbour of a is excluded from these
sets, any vertex in sink with an edge towards a, or vertex in source with an edge from a is
moved in both. This takes O(|N(a)|) time, thus O(min(ω(G)∆,m)) time for all updates.

If the both set is not empty, we can find the (lexicographically) smallest x in O(1) time.
Then, we need to find the smallest pair a ∈ sink, b ∈ source s.t. there is an edge from a

to b, if it exists. We do this by scanning vertices in sink ∪ source in order, and for each
scanning its forward neighbours, still in order; we stop at the first pair that verifies the
property. We never need to consider the same pair twice, as the condition (edge from a to b)
will stay false (although the vertices might be later moved to both and still enter X), thus
the total cost will be O(min(d∆,m)) for all steps. Finally, the smallest among x and {a, b}
corresponds to min-extension(X,A); we add it to X and update the sink, source, both
sets. The total cost is given by O(min(ω(G)∆,m) + min(d∆,m)) = O(min(d∆,m)) J

Finally, we are ready to give the time complexity of scq-enum:



A.Conte, M.M.Kanté, T. Uno, and K. Wasa 23:11

I Lemma 11. scq-enum (Algorithm 1) has O(min(ω(G)d2∆2,m2)) time delay.

Proof. Let us first focus on the amortized cost per solution, i.e., the cost of an execution
of enum(S) without considering children recursive calls (which lead to other solutions). To
compute contains(S,result) and add(S,result) we store result as a trie, whose depth
will be O(ω(G)), and degree will be bounded by ∆ as scqs are made of adjacent vertices.5
Checking the existence and adding a solution to this trie takes time O(min(ω(G) log(∆),m)).

In the for loops we only need to consider x and {y, z} s.t. I 6= {x} and I 6= {y, z}, thus
only vertices with a neighbour in S: for x we have |S|∆ ≤ min(ω(G)∆, n) choices; as for
{y, z} we have min(ω(G)∆, n) choices for y, and for each y up to d choices for z (we only
need to consider each pair once, e.g. when y < z, so we only scan the forward neighbours
of y), for a total of min(ω(G)d∆,m) choices. The cost of each loop is given by O(∆) for
computing I, and O(min(d∆,m)) to compute X and complete(X). If the recursive call
enum(complete(X)) will generate a new solution, the cost will be attributed to the child
solution; otherwise the recursive call will only perform the contains(S,result) call.

The total cost of an iteration of enum(S) is thus the cost of the contains/add proced-
ures, plus the number of execution of the loops times the cost of a loop iteration, i.e.,
O(min(ω(G) log(∆),m) + min(ω(G)d∆,m) · (min(ω(G) log(∆),m) + min(d∆,m))). Thus,
the cost per solution is bounded by both O(ω(G)d2∆2) and O(m2).

Finally, as each recursive call outputs a solution, we can exploit the alternative output
method by Uno [27], as done in [20, 10]: we output a solution at the beginning of a recursive
call when the depth of the recursion tree is even, and at the end when it is odd; this way the
delay of the algorithm will be equal to the amortized cost per solution. J

Calling α the number of solutions, this gives us a total time of α ·O(min(ω(G)d2∆2,m2)).
The space complexity is dominated by the size of the result set, that is O(α · ω(G)) as
it will contain α solutions of size bounded by ω(G) ≤ d + 1 ≤ n. While α is potentially
exponential, we remark that scq-enum can still be efficiently applied to analyze real world
networks: recalling Corollary 5 and the discussion in Section 3.3, we have that α will only be
up to a factor ω(u(G)) ≤ n larger than the number of maximal (undirected) cliques in u(G).
It is generally agreed upon that real-world networks are sparse [12, 15], and as such contain
an extremely small number of maximal cliques compared to the theoretical maximum [24].
Furthermore, the number of maximal cliques is actually polynomial when the degeneracy (or
arboricity) is bounded [12], which is the case in many sparse networks.

6 Conclusions and Future Work

In this work we proposed a model for communities in directed graphs, that of maximal
strongly connected cliques. We analyzed this model, giving tight bounds on the number of
such cliques in an n-vertex graph and proving some accessibility properties. We exploited
these properties to produce scq-enum, an algorithm that lists maximal strongly connected
cliques with polynomial delay, i.e., O(min(ω(G)d2∆2,m2)), that can be a valid tool for
analyzing the community structures of directed real-world networks.

Future work is focused in two directions: the first is using the proposed algorithm to
discover new community structures in directed networks, while the second is to further
investigate the generalized definition of accessibility given by the existence of an addible (or
removable) set of elements of bounded size to each non-maximal solution.

5 The root of the trie has degree up to n; we store this as a vector of size n, accessible in O(1) time.

ISAAC 2017



23:12 On Maximal Cliques with Connectivity Constraints in Directed Graphs

References
1 Eralp Abdurrahim Akkoyunlu. The enumeration of maximal cliques of large graphs. SIAM

J Comput, 2(1):1–6, 1973.
2 Hiroki Arimura and Takeaki Uno. Polynomial-delay and polynomial-space algorithms for

mining closed sequences, graphs, and pictures in accessible set systems. In Proceedings of
the 2009 SIAM International Conference on Data Mining, pages 1088–1099. SIAM, 2009.

3 Baruch Awerbuch and Yuval Shavitt. Topology aggregation for directed graphs.
IEEE/ACM Transactions On Networking, 9(1):82–90, 2001.

4 Devora Berlowitz, Sara Cohen, and Benny Kimelfeld. Efficient enumeration of maximal
k-plexes. In SIGMOD, pages 431–444, New York, NY, USA, 2015. ACM.

5 Coenraad Bron and Joep Kerbosch. Finding all cliques of an undirected graph (algorithm
457). Commun. ACM, 16(9):575–576, 1973.

6 Moses Charikar. Greedy approximation algorithms for finding dense components in a graph.
In APPROX, pages 84–95. Springer, 2000.

7 Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. Generating all maximal induced sub-
graphs for hereditary and connected-hereditary graph properties. Journal of Computer and
System Sciences, 74(7):1147 – 1159, 2008.

8 Carlo Comin and Romeo Rizzi. An improved upper bound on maximal clique listing via
rectangular fast matrix multiplication. CoRR, abs/1506.01082, 2015.

9 Alessio Conte, Roberto Grossi, Andrea Marino, Romeo Rizzi, and Luca Versari. Directing
road networks by listing strong orientations. IWOCA, pages 83–95, 2016.

10 Alessio Conte, Roberto Grossi, Andrea Marino, and Luca Versari. Sublinear-space bounded-
delay enumeration for massive network analytics: Maximal cliques. In ICALP, 2016.

11 Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics). Springer, 2005.
12 David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal cliques in large

sparse real-world graphs. ACM Journal of Experimental Algorithmics, 18, 2013.
13 Santo Fortunato. Community detection in graphs. Physics reports, 486(3):75–174, 2010.
14 Komei Fukuda. Note on new complexity classes ENP, EP and CEP, 1996. Accessed:

02-2016. URL: https://www.inf.ethz.ch/personal/fukudak/old/ENP_home/ENP_note.
html.

15 Gaurav Goel and Jens Gustedt. Bounded arboricity to determine the local structure of
sparse graphs. In WG, pages 159–167. Springer, 2006.

16 Björn H. Junker and Falk Schreiber. Analysis of biological networks, volume 2. John Wiley
& Sons, 2011.

17 Jon M. Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew S.
Tomkins. The web as a graph: Measurements, models, and methods. In International
Computing and Combinatorics Conference, pages 1–17. Springer, 1999.

18 Darong Lai, Hongtao Lu, and Christine Nardini. Finding communities in directed networks
by pagerank random walk induced network embedding. Physica A: Statistical Mechanics
and its Applications, 389(12):2443–2454, 2010.

19 Elizabeth A. Leicht and Mark E.J. Newman. Community structure in directed networks.
Physical review letters, 100(11):118703, 2008.

20 Kazuhisa Makino and Takeaki Uno. New algorithms for enumerating all maximal cliques.
In Algorithm Theory-SWAT 2004, pages 260–272. Springer, 2004.

21 John W. Moon and Leo Moser. On cliques in graphs. Isr J Math, 3(1):23–28, 1965.
22 Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko. Clique relaxation models in social

network analysis. Handbook of Optimization in Complex Networks, pages 143–162, 2012.
23 Martin Rosvall and Carl T. Bergstrom. Maps of random walks on complex networks reveal

community structure. P Natl Acad Sci USA, 105(4):1118–1123, 2008.

https://www.inf.ethz.ch/personal/fukudak/old/ENP_home/ENP_note.html
https://www.inf.ethz.ch/personal/fukudak/old/ENP_home/ENP_note.html


A.Conte, M.M.Kanté, T. Uno, and K. Wasa 23:13

24 Matthew C. Schmidt, Nagiza F. Samatova, Kevin Thomas, and Byung-Hoon Park. A scal-
able, parallel algorithm for maximal clique enumeration. J Parallel Distr Com, 69(4):417–
428, 2009.

25 John Scott. Social network analysis. Sage, 2012.
26 Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. A new algorithm for

generating all the maximal independent sets. SIAM J Comput, 6(3):505–517, 1977.
27 Takeaki Uno. Two general methods to reduce delay and change of enumeration algorithms.

NII Technical Report NII-2003-004E, Tokyo, Japan, 4, 2003.
28 Stanley Wasserman and Katherine Faust. Social network analysis: Methods and applica-

tions, volume 8. Cambridge university press, 1994.

ISAAC 2017


	Introduction
	Preliminaries
	Problem Characterization
	Relaxed Accessibility of Strongly Connected Cliques
	Maximal Undirected and Strongly Connected Cliques
	Bounding the Number of Maximal SCQs

	Listing Maximal SCQs
	Algorithm Description
	Correctness

	Complexity Analysis
	Conclusions and Future Work

