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Abstract
We study whether a depth two neural network can learn another depth two network using gradient
descent. Assuming a linear output node, we show that the question of whether gradient descent
converges to the target function is equivalent to the following question in electrodynamics: Given
k fixed protons in Rd, and k electrons, each moving due to the attractive force from the protons
and repulsive force from the remaining electrons, whether at equilibrium all the electrons will
be matched up with the protons, up to a permutation. Under the standard electrical force,
this follows from the classic Earnshaw’s theorem. In our setting, the force is determined by
the activation function and the input distribution. Building on this equivalence, we prove the
existence of an activation function such that gradient descent learns at least one of the hidden
nodes in the target network. Iterating, we show that gradient descent can be used to learn the
entire network one node at a time.

1998 ACM Subject Classification I.2.6 Learning

Keywords and phrases Deep Learning, Learning Theory, Non-convex Optimization

Digital Object Identifier 10.4230/LIPIcs.ITCS.2018.22

1 Introduction

Deep learning has resulted in major strides in machine learning applications including speech
recognition, image classification, and ad-matching. The simple idea of using multiple layers of
nodes with a non-linear activation function at each node allows one to express any function.
To learn a certain target function we just use (stochastic) gradient descent to minimize
the loss; this approach has resulted in significantly lower error rates for several real world
functions, such as those in the above applications. Naturally the question remains: how close
are we to the optimal values of the network weight parameters? Are we stuck in some bad
local minima? While there are several recent works [8, 11, 17] that have tried to study the
presence of local minima, the picture is far from clear.
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Figure 1 Test Error of Depth 2 Networks of Varying Width.

There has been some work on studying how well can neural networks learn some synthetic
function classes (e.g. polynomials [1], decision trees). In this work we study how well
can neural networks learn neural networks with gradient descent? Our focus here, via the
framework of proper learning, is to understand if a neural network can learn a function from
the same class (and hence achieve vanishing error).

Specifically, if the target function is a neural network with randomly initialized weights,
and we attempt to learn it using a network with the same architecture, then, will gradient
descent converge to the target function?

Experimental simulations (see Figure 1 and Section 5 for further details) show that for
depth 2 networks of different widths, with random network weights, stochastic gradient
descent of a hypothesis network with the same architecture converges to a squared `2 error
that is a small percentage of a random network, indicating that SGD can learn these shallow
networks with random weights. Because our activations are sigmoidal from -1 to 1, the
training error starts from a value of about 1 (random guessing) and diminishes quickly to
under 0.002. This seems to hold even when the width, the number of hidden nodes, is
substantially increased (even up to 125 nodes), but depth is held constant at 2.

In this paper, we attempt to understand this phenomenon theoretically. We prove that,
under some assumptions, depth-2 neural networks can learn functions from the same class
with vanishingly small error using gradient descent.

1.1 Results and Contributions
We theoretically investigate the question of convergence for networks of depth two. Our
main conceptual contribution is that for depth 2 networks where the top node is a sum
node, the question of whether gradient descent converges to the desired target function is
equivalent to the following question in electrodynamics: Given k fixed protons in Rd, and k
moving electrons, with all the electrons moving under the influence of the electrical force of
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Table 1 Activation, Potentials, and Convergence Results Summary

Name of Activation Potential (Φ(θ, w)) Convergence?
Almost λ-harmonic Complicated (see

Lem 13)
Yes, Thm 17

Sign 1 − 2
π

cos−1(θTw) Yes for d = 2, Lem 29
Polynomial (θTw)m Yes, for orthonormal wi. Lem 30

attraction from the protons and repulsion from the remaining electrons, at equilibrium, are
all the electrons matched up with all the fixed protons, up to a permutation?

In the above, k is the number of hidden units, d is the number of inputs, the positions
of each fixed charge is the input weight vector of a hidden unit in the target network, and
the initial positions of the moving charges are the initial values of the weight vectors for the
hidden units in the learning network. The motion of the charges essentially tracks the change
in the network during gradient descent. The force between a pair of charges is not given by
the standard electrical force of 1/r2 (where r is the distance between the charges), but by
a function determined by the activation and the input distribution. Thus the question of
convergence in these simplified depth two networks can be resolved by studying the equivalent
electrodynamics question with the corresponding force function.

I Theorem 1 (informal statement of Theorem 5). Applying gradient descent for learning the
output of a depth two network with k hidden units with activation σ, and a linear output node,
under squared loss, using a network of the same architecture, is equivalent to the motion of
k charges in the presence of k fixed charges where the force between each pair of charges is
given by a potential function that depends on σ and the input distribution.

Based on this correspondence we prove the existence of an activation function such that the
corresponding gradient descent dynamics under standard Gaussian inputs result in learning
at least one of the hidden nodes in the target network. We then show that this allows us to
learn the complete target network one node at a time. For more realistic activation functions,
we only obtain partial results. We assume the sample complexity is close to its infinite limit.

I Theorem 2 (informal statement of Theorem 12). There is an activation function such that
running gradient descent for minimizing the squared loss along with `2 regularization for
standard Gaussian inputs, at convergence, we learn at least one of the hidden weights of the
target neural network.

We prove that the above result can be iterated to learn the entire network node-by-node using
gradient descent (Theorem 17). Our algorithm learns a network with the same architecture
and number of hidden nodes as the target network, in contrast with several existing improper
learning results.

In the appendix, we show some weak results for more practical activations. For the sign
activation, we show that for the loss with respect to a single node, the only local minima are
at the hidden target nodes with high probability if the target network has a randomly picked
top layer. For the polynomial activation, we derive a similar result under the assumption
that the hidden nodes are orthonormal.

ITCS 2018
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1.2 Intuition and Techniques

Note that for the standard electric potential function given by Φ = 1/r where r is the
distance between the charges, it is known from Earnshaw’s theorem that an electrodynamic
system with some fixed protons and some moving electrons is at equilibrium only when
the moving electrons coincide with the fixed protons. Given our translation above between
electrodynamic systems and depth 2 networks (Section 2), this would imply learnability of
depth 2 networks under gradient descent under `2 loss, if the activation function corresponds
to the electrostatic potential. However, there exists no activation function σ corresponding
to this Φ.

The proof of Earnshaw’s theorem is based on the fact that the electrostatic potential is
harmonic, i.e, its Laplacian (trace of its Hessian) is identically zero. This ensures that at every
critical point, there is direction of potential reduction (unless the hessian is identically zero).
We generalize these ideas to potential functions that are eigenfunctions of the Laplacians,
λ-harmonic potentials (Section 3). However, these potentials are unbounded. Subsequently,
we construct a non-explicit activation function such that the corresponding potential is
bounded and is almost λ-harmonic, i.e., it is λ-harmonic outside a small sphere (Section 4).
For this activation function, we show at a stable critical point, we must learn at least one
of the hidden nodes. Gradient descent (possibly with some noise, as in the work of Ge et
al. [12]) is believed to converge to stable critical points. However, for simplicity, we descend
along directions of negative curvature to escape saddle points. Our activation lacks some
regularity conditions required in [12]. We believe the results in [16] can be adapted to our
setting to prove that perturbed gradient descent converges to stable critical points.

There is still a large gap between theory and practice. However, we believe our work can
offer some theoretical explanations and guidelines for the design of better activation functions
for gradient-based training algorithms. For example, better accuracy and training speed were
reported when using the newly discovered exponential linear unit (ELU) activation function
in [9, 21]. We hope for more theory-backed answers to these and many other questions in
deep learning.

1.3 Related Work

If the activation functions are linear or if some independence assumptions are made, Kawagu-
chi shows that the only local minima are the global minima [17]. Under the spin-glass and
other physical models, some have shown that the loss landscape admits well-behaving local
minima that occur usually when the overall error is small [8, 11]. When only training error
is considered, some have shown that a global minima can be achieved if the neural network
contains sufficiently many hidden nodes [23]. Recently, Daniely has shown that SGD learns
the conjugate kernel class [10]. Under simplifying assumptions, some results for learning
ReLU’s with gradient descent are given in [24, 7]. Our research is inspired by [1], where the
authors show that for polynomial target functions, gradient descent on neural networks with
one hidden layer converges to low error, given a large number of hidden nodes, and under
complex perturbations, there are no robust local minima. Even more recently, similar results
about the convergence of SGD for two-layer neural networks have been established for a
polynomial activation function under a more complex loss function [13]. And in [19], they
study the same problem as ours with the RELU activation and where lower layer of the
network is close to identity and the upper layer has weights all one. This corresponds to the
case where each electron is close to a distinct proton – under these assumptions they show
that SGD learns the true network.
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Under worst case assumptions, there has been hardness results for even simple networks.
A neural network with one hidden unit and sigmoidal activation can admit exponentially
many local minima [4]. Backprogration has been proven to fail in a simple network due to
the abundance of bad local minima [6]. Training a 3-node neural network with one hidden
layer is NP-complete [5]. But, these and many similar worst-case hardness results are based
on worst case training data assumptions. However, by using a result in [18] that learning a
neural network with threshold activation functions is equivalent to learning intersection of
halfspaces, several authors showed that under certain cryptographic assumptions, depth-two
neural networks are not efficiently learnable with smooth activation functions [20, 27, 26].

Due to the difficulty of analysis of the non convex gradient descent in deep learning, many
have turned to improper learning and the study of non-gradient methods to train neural
networks. Janzamin et. al use tensor decomposition methods to learn the shallow neural
network weights, provided access to the score function of the training data distribution [15].
Eigenvector and tensor methods are also used to train shallow neural networks with quadratic
activation functions in [20]. Combinatorial methods that exploit layerwise correlations in
sparse networks have also been analyzed provably in [3]. Kernel methods, ridge regression, and
even boosting were explored for regularized neural networks with smooth activation functions
in [22, 27, 26]. Non-smooth activation functions, such as the ReLU, can be approximated by
polynomials and are also amenable to kernel methods[14]. These methods however are very
different from the simple popular SGD.

2 Deep Learning, Potentials, and Electron-Proton Dynamics

2.1 Preliminaries
We will work in the spaceM = Rd. We denote the gradient and Hessian as ∇Rdf and ∇2

Rdf

respectively. The Laplacian is defined as ∆Rdf = Tr(∇2
Rdf). If f is multivariate with variable

xi, then let fxi be a restriction of f onto the variable xi with all other variables fixed. Let
∇xi

f,∆xi
f to be the gradient and Laplacian, respectively, of fxi

with respect to xi. Lastly,
we say x is a critical point of f if ∇f does not exist or ∇f = 0.

We focus on learning depth two networks with a linear activation on the output node. If
the network takes inputs x ∈ Rd (say from some distribution D), then the network output,
denoted f(x) is a sum over k = poly(d) hidden units with weight vectors wi ∈ Rd, activation
σ(x,w) : Rd×Rd → R, and output weights bi ∈ R. Thus, we can write f(x) =

∑k
i=1 biσ(x,wi).

We denote this concept class Cσ,k. Our hypothesis concept class is also Cσ,k.
Let a = (a1, ..., ak) and θ = (θ1, ..., θk); similarly for b,w and our guess is f̂(x) =∑k
i=1 aiσ(x, θi). We define Φ, the potential function corresponding to the activation σ, as

Φ(θ, w) = E
X∼D

[σ(X, θ)σ(X,w)].

We work directly with the true squared loss error L(a, θ) = Ex∼D[(f − f̂)2]. To simplify L,
we re-parametrize a by −a and expand.

L(a, θ) = E
X∼D

( k∑
i=1

aiσ(X, θi) +
k∑
i=1

biσ(X,wi)
)2

=
k∑
i=1

k∑
j=1

aiajΦ(θi, θj) + 2aibjΦ(θi, wj) + bibjΦ(wi, wj), (1)

ITCS 2018
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Given D, the activation function σ, and the loss L, we attempt to show that we can use
some variant of gradient descent to learn, with high probability, an ε-approximation of wj
for some (or all) j. Note that our loss is jointly convex, though it is quadratic in a.

In this paper, we restrict our attention to translationally invariant activations and
potentials. Specifically, we may write Φ = h(θ − w) for some function h(x). Furthermore, a
translationally invariant function Φ(r) is radial if it is a function of r = ‖x− y‖.
I Remark. Translationally symmetric potentials satisfy Φ(θ, θ) is a positive constant. We
normalize Φ(θ, θ) = 1 for the rest of the paper.

We assume that our input distribution D = N (0, Id×d) is fixed as the standard Gaussian
in Rd. This assumption is not critical and a simpler distribution might lead to better bounds.
However, for arbitrary distributions, there are hardness results for PAC-learning halfspaces
[18].

We call a potential function realizable if it corresponds to some activation σ. The
following theorem characterizes realizable translationally invariant potentials under standard
Gaussian inputs. Proofs and a similar characterization for rotationally invariant potentials
can be found in Appendix B.

I Theorem 3. LetM = Rd and Φ is square-integrable and F(Φ) is integrable. Then, Φ is
realizable under standard Gaussian inputs if F(Φ)(ω) ≥ 0 and the corresponding activation is
σ(x) = (2π)d/4ex

T x/4F−1(
√

F(Φ))(x), where F is the generalized Fourier transform in Rd.

2.2 Electron-Proton Dynamics
By interpreting the pairwise potentials as electrostatic attraction potentials, we notice that
our dynamics is similar to electron-proton type dynamics under potential Φ, where wi are
fixed point charges in Rd and θi are moving point charges in Rd that are trying to find wi.
The total force on each charge is the sum of the pairwise forces, determined by the gradient of
Φ. We note that standard dynamics interprets the force between particles as an acceleration
vector. In gradient descent, it is interpreted as a velocity vector.

I Definition 4. Given a potential Φ and particle locations θ1, ..., θk ∈ Rd along with their
respective charges a1, ..., ak ∈ R. We define Electron-Proton Dynamics under Φ with
some subset S ⊆ [k] of fixed particles to be the solution (θ1(t), ..., θk(t)) to the following
system of differential equations: For each pair (θi, θj), there is a force from θj exerted on θi
that is given by Fi(θj) = aiaj∇θi

Φ(θi, θj) and

−dθi
dt

=
∑
j 6=i

Fi(θj)

for all i 6∈ S, with θi(0) = θi. For i ∈ S, θi(t) = θi.

For the following theorem, we assume that θ is fixed.

I Theorem 5. Let Φ be a symmetric potential and L be as in (1). Running continuous
gradient descent on 1

2L with respect to θ, initialized at (θ1, ..., θk) produces the same dynamics
as Electron-Proton Dynamics under 2Φ with fixed particles at w1, ..., wk with respective
charges b1, .., bk and moving particles at θ1, ..., θk with respective charges a1, ..., ak.

3 Earnshaw’s Theorem and Harmonic Potentials

When running gradient descent on a non-convex loss, we often can and do get stuck at a
local minima. In this section, we use second-order information to deduce that for certain
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classes of potentials, there are no spurious local minima. The potentials In this section are
often unbounded and un-realizable. However, in the next section, we apply insights developed
here to derive similar convergence results for approximations of these potentials.

Earnshaw’s theorem in electrodynamics shows that there is no stable local minima
for electron-proton dynamics. This hinges on the property that the electric potential
Φ(θ, w) = ‖θ − w‖2−d, d 6= 2 is harmonic, with d = 3 in natural setting. If d = 2, we instead
have Φ(θ, w) = − ln(‖θ − w‖). First, we notice that this is a symmetric loss, and our usual
loss in (1) has constant terms that can be dropped to further simplify.

L(a, θ) = 2
k∑
i=1

∑
i<j

aiajΦ(θi, θj) + 2
k∑
i=1

k∑
j=1

aibjΦ(θi, wj) (2)

I Definition 6. Φ(θ, w) is a harmonic potential on Ω if ∆θΦ(θ, w) = 0 for all θ ∈ Ω, except
possibly at θ = w.

I Definition 7. Let Ω ⊆ Rd and consider a function f : Ω→ R. A critical point x∗ ∈ Ω is a
local minimum if there exists ε > 0 such that f(x∗ + v) ≥ f(x∗) for all ‖v‖ ≤ ε. It is a
strict local minimum if the inequality is strict for all ‖v‖ ≤ ε.

I Fact 8. Let x∗ be a critical point of a function f : Ω→ R such that f is twice differentiable
at x∗. Then, if x∗ is a local minimum then λmin(∇2f(x∗)) ≥ 0. Moreover, if λmin(∇2f(x∗)) >
0, then x∗ is a strict local minimum.

Note that if λmin(∇2f(x∗)) < 0 then moving along the direction of the corresponding
eigenvector decreases f locally. If Φ is harmonic then it can be shown the trace of its Hessian
is 0 so if there is any non zero eigenvalue then at least one eigenvalue is negative. This idea
results in the following known theorem (see full proof in supplementary material) that is
applicable to the electric potential function 1/r in 3-dimensions since is harmonic. It implies
that a configuration of n electrons and n protons cannot be in a strict local minimum even if
one of the mobile charges is isolated (however note that this potential function goes to ∞ at
r = 0 and may not be realizable).

I Theorem 9. (Earnshaw’s Theorem. See [2]) LetM = Rd and let Φ be harmonic and L be
as in (2). Then, L admits no differentiable strict local minima.

Note that the Hessian of a harmonic potential can be identically zero. To avoid this
possibility we generalize harmonic potentials.

3.1 λ-Harmonic Potentials
In order to relate our loss function with its Laplacian, we consider potentials that are
non-negative eigenfunctions of the Laplacian operator. Since the zero eigenvalue case simply
gives rise to harmonic potentials, we restrict our attention to positive eigenfunctions.

I Definition 10. A potential Φ is λ-harmonic on Ω if there exists λ > 0 such that for every
θ ∈ Ω, ∆θΦ(θ, w) = λΦ(θ, w), except possibly at θ = w.

Note that there are realizable versions of these potentials; for example Φ(a, b) = e−‖a−b‖1

in R1. In the next section, we construct realizable potentials that are λ-harmonic almost
everywhere except when θ and w are very close.

I Theorem 11. Let Φ be λ-harmonic and L be as in (1). Then, L admits no local minima
(a, θ), except when L(a, θ) = L(0,θ) or θi = wj for some i, j.

ITCS 2018
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Proof. Let (a, θ) be a critical point of L. On the contrary, we assume that θi 6= wj for all
i, j. WLOG, we can partition [k] into S1, ..., Sr such that for all u ∈ Si, v ∈ Sj , we have
θu = θv iff i = j. Let S1 = {θ1, . . . , θl}. We consider changing all θ1, . . . , θl by the same v
and define H(a, v) = L(a, θ1 + v, ..., θl + v, θl+1 . . . , θk).

The optimality conditions on a are 0 = ∂L
∂ai

= 2
∑
j ajΦ(θi, θj)+2

∑k
j=1 bjΦ(θi, wj). Thus,

by the definition of λ-harmonic potentials, we may differentiate as θi 6= wj and compute the
Laplacian as

∆vH = λ

l∑
i=1

ai

2
k∑
j=1

bjΦ(θi, wj) + 2
k∑

j=l+1
ajΦ(θi, θj)


= λ

l∑
i=1

ai

−2
l∑

j=1
ajΦ(θi, θj)

 = −2λ
l∑
i=1

ai

 l∑
j=1

aj

 = −2λ
(

l∑
i=1

ai

)2

If
∑l
i=1 ai 6= 0, then we conclude that the Laplacian is strictly negative, so we are not at

a local minimum. Similarly, we can conclude that for each Si,
∑
u∈Si

au = 0. In this case,
since

∑k
i=1 aiσ(θi, x) = 0, L(a, θ) = L(0,θ). J

4 Realizable Potentials with Convergence Guarantees

In this section, we derive convergence guarantees for realizable potentials that are almost
λ-harmonic, specifically, they are λ-harmonic outside of a small neighborhood around the
origin. First, we prove the existence of activation functions such that the corresponding
potentials are almost λ-harmonic. Then, we reason about the Laplacian of our loss, as in the
previous section, to derive our guarantees. We show that at a stable minima, each of the
θi is close to some wj in the target network. We may end up with a many to one mapping
of the learned hidden weights to the true hidden weights, instead of a bijection. To make
sure that ‖a‖ remains controlled throughout the optimization process, we add a quadratic
regularization term to L and instead optimize G = L+ ‖a‖2.

Our optimization procedure is a slightly altered version of gradient descent, where we
incorportate a second-order method (which we call Hessian descent as in Algorithm 1) that
is used when the gradient is small and progress is slow. The descent algorithm (Algorithm 2)
allows us to converge to points with small gradient and small negative curvature. Namely,
for smooth functions, in poly(1/ε) iterations, we reach a point inMG,ε, where

MG,ε =
{
x ∈M

∣∣∣‖∇G(x)‖ ≤ ε and λmin(∇2G(x)) ≥ −ε
}

We show that if (a, θ) is inMG,ε for ε small, then θi is close to wj for some j. Finally, we
show how to initialize (a(0), θ(0)) and run second-order GD to converge toMG,ε, proving
our main theorem.

I Theorem 12. Let M = Rd for d ≡ 3 mod 4 and k = poly(d). For all ε ∈ (0, 1), we
can construct an activation σε such that if w1, ..., wk ∈ Rd with wi randomly chosen from
wi ∼ N (0, O(d log d)Id×d) and b1, ..., bk be randomly chosen at uniform from [−1, 1], then
with high probability, we can choose an initial point (a(0), θ(0)) such that after running
SecondGD (Algorithm 2) on the regularized objective G(a, θ) for at most (d/ε)O(d) iterations,
there exists an i, j such that ‖θi − wj‖ < ε.

We start by stating a lemma concerning the construction of an almost λ-harmonic function
on Rd. The construction is given in Appendix B and uses a linear combination of realizable
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Algorithm 1 x = HD(L, x0, T, α)
Input: L :M→ R; x0 ∈M; T ∈ N; α ∈ R
Initialize x← x0
for i = 1 to T do

Find unit eigenvector vmin corresponding to λmin(∇2f(x))
β ← −αλmin(∇2f(x))sign(∇f(x)T vmin)
x← x+ βvmin

Algorithm 2 x = SecondGD(L, x0, T, α, η, γ)
Input: L :M→ R; x0 ∈M; T ∈ N; α, η, γ ∈ R
for i = 1 to T do

if ‖∇L(xi−1)‖ ≥ η then xi ← xi−1 − α∇L(xi−1)
else xi ← HD(L, xi−1, 1, α)
if L(xi) ≥ L(xi−1)−min(αη2/2, α2γ3/2) then return xi−1

potentials that correspond to an activation function of the indicator function of a n-sphere.
By using Fourier analysis and Theorem 3, we can finish the construction of our almost
λ-harmonic potential.

I Lemma 13. LetM = Rd for d ≡ 3 mod 4. Then, for any ε ∈ (0, 1), we can construct a
radial activation σε(r) such that the corresponding radial potential Φε(r) is λ-harmonic for
r ≥ ε.

Furthermore, we have Φε(d−1)(r) ≥ 0 for all r > 0, Φε(k)(r) ≥ 0, and Φε(k+1)(r) ≤ 0 for
all r > 0 and d− 3 ≥ k ≥ 0 even.

When λ = 1, |Φ(k)
ε (r)| ≤ O((d/ε)2d) for all 0 ≤ k ≤ d − 1. And when r ≥ ε,

Ω(e−rr2−d(d/ε)−2d) ≤ Φε(r) ≤ O((1 + r)de1−r(r)2−d) and Ω(e−rr1−d(d/ε)−2d) ≤ |Φ′ε(r)| ≤
O((d+ r)(1 + r)de1−rr1−d)

Our next lemma use the almost λ-harmonic properties to show that at an almost stationary
point of G, we must have converged close to some wj as long as our charges ai are not too
small. The proof is similar to Theorem 11. Then, the following lemma relates the magnitude
of the charges ai to the progress made in the objective function.

I Lemma 14. LetM = Rd for d ≡ 3 mod 4 and let G be the regularized loss corresponding
to the activation σε given by Lemma 13 with λ = 1. For any ε ∈ (0, 1) and δ ∈ (0, 1),
if (a, θ) ∈ MG,δ, then for all i, either 1) there exists j such that ‖θi − wj‖ < kε or 2)
a2
i < 2kdδ.

I Lemma 15. Assume the conditions of Lemma 14. If
√
G(a,θ) ≤

√
G(0, 0) − δ and

(a, θ) ∈MG,δ2/(2k3d), then there exists some i, j such that ‖θi − wj‖ < kε.

Finally, we guarantee that our initialization substantially decreases our objective function.
Together with our previous lemmas, it will imply that we must be close to some wj upon
convergence. This is the overview of the proof of Theorem 12, presented below.

I Lemma 16. Assume the conditions of Theorem 12 and Lemma 14. With high probability,
we can initialize (a(0), θ(0)) such that

√
G(a(0),θ(0)) ≤

√
G(0, 0)− δ with δ = (d/ε)−O(d).

Proof of Theorem 12. Let our potential Φε/k be the one as constructed in Lemma 13 that
is 1-harmonic for all r ≥ ε/k and as always, k = poly(d). First, by Lemma 16, we can

ITCS 2018



22:10 Convergence Results for Neural Networks via Electrodynamics

Algorithm 3 Node-wise Descent Algorithm
Input: (a, θ) = (a1, ..., ak, θ1, ..., θk), ai ∈ R, θi ∈M; T ∈ N; L; α, η, γ ∈ R;
for i = 1 to k do

Initialize (ai, θi)
(ai, θi) = SecondGD (Lai,θi

, (ai, θi), T, α, η, γ)
return a = (a1, ..., ak), θ = (θ1, ..., θk)

initialize (a(0), θ(0)) such that
√
G(a(0), θ(0)) ≤

√
G(0,0) − δ for δ = (d/ε)−O(d). If we

set α = (d/ε)−O(d) and η = γ = δ2/(2k3d), then running Algorithm 2 will terminate and
return some (a, θ) in at most (d/ε)O(d) iterations. This is because our algorithm ensures that
our objective function decreases by at least min(αη2/2, α2γ3/2) at each iteration, G(0,0) is
bounded by O(k), and G ≥ 0 is non-negative.

Let θ = (θ1, ...θk). If there exists θi, wj such that ‖θi − wj‖ < ε, then we are done.
Otherwise, we claim that (a, θ) ∈ MG,δ2/(2k3d). For the sake of contradiction, assume
otherwise. By our algorithm termination conditions, then it must be that after one step of
gradient or Hessian descent from (a, θ), we reach some (a′, θ′) and G(a′, θ′) > G(a, θ)−
min(αη2/2, α2γ3/2).

Now, Lemma 13 ensures all first three derivatives of Φε/k are bounded by O((dk/ε)2d),
except at w1, ..., wk. Furthermore, since there do not exist θi, wj such that ‖θi − wj‖ < ε, G
is three-times continuously differentiable within a α(dk/ε)2d = (d/ε)−O(d) neighborhood of
θ. Therefore, by Lemma 18 and 19 in the appendix, we must have G(a′, θ′) ≤ G(a, θ)−
min(αη2/2, α2γ3/2), a contradiction. Lastly, since our algorithm maintains that our objective
function is decreasing, so

√
G(a, θ) ≤

√
G(0,0)− δ. Finally, we conclude by Lemma 15. J

4.1 Node-by-Node Analysis

We cannot easily analyze the convergence of gradient descent to the global minima when
all θi are simultaneously moving since the pairwise interaction terms between the θi present
complications, even with added regularization. Instead, we run a greedy node-wise descent
(Algorithm 3) to learn the hidden weights, i.e. we run a descent algorithm with respect to
(ai, θi) sequentially. The main idea is that after running SGD with respect to θ1, θ1 should
be close to some wj for some j. Then, we can carefully induct and show that θ2 must be
some other wk for k 6= j and so on.

Let L1(a1, θ1) be the objective L restricted to a1, θ1 being variable, and a2, ..., ak = 0 are
fixed. The tighter control on the movements of θ1 allows us to remove our regularization.
While our previous guarantees before allow us to reach a ε-neighborhood of wj when running
SGD on L1, we will strengthen our guarantees to reach a (d/ε)−O(d)-neighborhood of wj , by
reasoning about the first derivatives of our potential in an ε-neighborhood of wj . By similar
argumentation as before, we will be able to derive the following convergence guarantees for
node-wise training.

I Theorem 17. LetM = Rd and d ≡ 3 mod 4 and let L be as in 1 and k = poly(d). For
all ε ∈ (0, 1), we can construct an activation σε such that if w1, ..., wk ∈ Rd with wi randomly
chosen from wi ∼ N (0, O(d log d)Id×d) and b1, ..., bk be randomly chosen at uniform from
[−1, 1], then with high probability, after running nodewise descent (Algorithm 3) on the
objective L for at most (d/ε)O(d) iterations, (a, θ) is in a (d/ε)−O(d) neighborhood of the
global minima.
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Figure 2 Test Error of Varying-Depth Networks vs. Width

Table 2 Test Error of Learning Neural Networks of Various Depth and Width

Width 5 Width 10 Width 20 Width 40
Depth 2 0.0015 0.0017 0.0018 0.0019
Depth 3 0.0033 0.0264 0.1503 0.2362
Depth 5 0.0036 0.0579 0.2400 0.4397
Depth 9 0.0085 0.1662 0.4171 0.6071
Depth 17 0.0845 0.3862 0.4934 0.5777

5 Experiments

For our experiments, our training data is given by (xi, f(xi)), where xi are randomly chosen
from a standard Gaussian in Rd and f is a randomly generated neural network with weights
chosen from a standard Gaussian. We run gradient descent (Algorithm 4) on the empirical
loss, with stepsize around α = 10−5, for T = 106 iterations. The nonlinearity used at each
node is sigmoid from -1 to 1, including the output node, unlike the assumptions in the
theoretical analysis. A random guess for the network will result in a mean squared error of
around 1. Our experiments (see Fig 1) show that for depth-2 neural networks, even with
non-linear outputs, the training error diminishes quickly to under 0.002. This seems to hold
even when the width, the number of hidden nodes, is substantially increased (even up to 125
nodes), but depth is held constant; although as the number of nodes increases, the rate of
decrease is slower. This substantiates our claim that depth-2 neural networks are learnable.

However, it seems that for depth greater than 2, the test error becomes significant when
width is high (see Fig 2). Even for depth 3 networks, the increase in depth impedes the
learnability of the neural network and the training error does not get close enough to 0. It
seems that for neural networks with greater depth, positive convergence results in practice
are elusive. We note that we are using training error as a measure of success, so it’s possible
that the true underlying parameters are not learned.
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A Electron-Proton Dynamics

I Theorem 5. Let Φ be a symmetric potential and L be as in (1). Running continuous
gradient descent on 1

2L with respect to θ, initialized at (θ1, ..., θk) produces the same dynamics
as Electron-Proton Dynamics under 2Φ with fixed particles at w1, ..., wk with respective
charges b1, .., bk and moving particles at θ1, ..., θk with respective charges a1, ..., ak.

Proof. The initial values are the same. Notice that continuous gradient descent on L(a, θ)
with respect to θ produces dynamics given by dθi(t)

dt = −∇θi
L(a, θ). Therefore,

dθi(t)
dt

= −2
∑
j 6=i

aiaj∇θiΦ(θi, θj)− 2
k∑
j=1

aibj∇θiΦ(θi, wj)

And gradient descent does not move wi. By definition, the dynamics corresponds to Electron-
Proton Dynamics as claimed. J

B Realizable Potentials

This section can be found in the full version of this paper on ArXiv [25].

C Earnshaw’s Theorem

I Theorem 9. (Earnshaw’s Theorem. See [2]) LetM = Rd and let Φ be harmonic and L
be as in (2). Then, L admits no differentiable strict local minima.

Proof. If (a, θ) is a differentiable strict local minima, then for any i, we must have

∇θi
L = 0, and Tr(∇2

θi
L) > 0.
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Algorithm 4 x = GD(L, x0, T, α)
Input: L :M→ R; x0 ∈M; T ∈ N; α ∈ R
Initialize x = x0
for i = 1 to T do

x = x− α∇L(x)
x = ΠMx

Since Φ is harmonic, we also have

Tr(∇2
θi
L(θ1, ..., θn)) = ∆θi

L = 2
∑
j 6=i

aiaj∆θi
Φ(θi, θj) + 2

k∑
j=1

aibj∆θi
Φ(θi, wj) = 0,

which is a contradiction. In the first line, there is a factor of 2 by symmetry. J

D Descent Lemmas and Iteration Bounds

I Lemma 18. Let f : Ω → R be a thrice differentiable function such that |f(y)| ≤
B0, ‖∇f(y)‖ ≤ B1, ‖∇2f(y)‖ ≤ B2, ‖∇2f(z) − ∇2L(y)‖ ≤ B3‖z − y‖ for all y, z in a
(αB1)-neighborhood of x. If ‖∇f(x)‖ ≥ η and x′ is reached after one iteration of gradient
descent (Algorithm 4) with stepsize α ≤ 1

B2
, then ‖x′ − x‖ ≤ αB1 and f(x′) ≤ f(x)− αη2/2.

Proof. The gradient descent step is given by x′ = x− α∇f(x). The bound on ‖x′ − x‖ is
clear since ‖∇f(x)‖ ≤ B1.

f(x′) ≤ f(x)− α∇f(x)T∇f(x)T + α2B2

2 ‖∇f(x)‖2

≤ f(x)− (α− α2B2

2 )η2

For 0 ≤ α ≤ 1
B2

, we have α− α2B2/2 ≥ α/2, and our lemma follows. J

I Lemma 19. Let f : Ω → R be a thrice differentiable function such that |f(y)| ≤
B0, ‖∇f(y)‖ ≤ B1, ‖∇2f(y)‖ ≤ B2, ‖∇2f(z)−∇2L(y)‖ ≤ B3‖z− y‖ for all y, z in a (αB2)-
neighborhood of x. If λmin(∇2f(x)) ≤ −γ and x′ is reached after one iteration of Hessian
descent (Algorithm 1) with stepsize α ≤ 1

B3
, then ‖x′−x‖ ≤ αB2 and f(x′) ≤ f(x)−α2γ3/2.

Proof. The gradient descent step is given by x′ = x + βvmin, where vmin is the unit
eigenvector corresponding to λmin(∇2f(x)) and β = −αλmin(∇2f(x))sgn(∇f(x)T vmin).
Our bound on ‖x′ − x‖ is clear since |λmin(∇2f(x))| ≤ B2.

f(x′) ≤ f(x) + β∇f(x)T vmin + β2vTmin∇2f(x)vmin + B3

6 |β|
3‖vmin‖3

≤ f(x)− |β|2γ + B3

6 |β|
3

The last inequality holds since the sign of β is chosen so that β∇f(x)T vmin ≤ 0. Now, since
|β| = αγ ≤ γ

B3
, −|β|2γ + B3

6 |β|
3 ≤ −α2γ3/2. J

E Convergence of Almost λ-Harmonic Potentials

I Lemma 20. LetM = Rd for d ≡ 3 mod 4 and let G be the regularized loss corresponding
to the activation σε given by Lemma 13 with λ = 1. For any ε ∈ (0, 1) and δ ∈ (0, 1),
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if (a, θ) ∈ MG,δ, then for all i, either 1) there exists j such that ‖θi − wj‖ < kε or 2)
a2
i < 2kdδ.

Proof. The proof is similar to Theorem 11. Let Φε be the realizable potential in 13 such
that Φε(r) is λ-harmonic when r ≥ ε with λ = 1. Note that Φε(0) = 1 is normalized. And let
(a, θ) ∈MG,δ.

WLOG, consider θ1 and a initial set S0 = {θ1} containing it. For a finite set of points S
and a point x, define d(x, S) = miny∈S ‖x− y‖. Then, we consider the following set growing
process. If there exists θi, wi 6∈ Sj such that d(θi, Sj) < ε or d(wi, Sj) < ε, add θi, wi to Sj
to form Sj+1. Otherwise, we stop the process. We grow S0 to until the process terminates
and we have the grown set S.

If there is some wj ∈ S, then it must be the case that there exists j1, · · · jq such that
‖θ1− θj1‖ < ε and ‖θji − θji+1‖ < ε, and ‖θjq −wj‖ < ε for some wj . So, there exists j, such
that ‖θ1 − wj‖ < kε.

Otherwise, notice that for each θi ∈ S, ‖wj − θi‖ ≥ ε for all j, and ‖θi − θj‖ ≥ ε for all
θj 6∈ S. WLOG, let S = {θ1, . . . , θl}.

We consider changing all θ1, . . . , θl by the same v and define

H(a, v) = G(a, θ1 + v, ..., θl + v, θl+1 . . . , θk).

The optimality conditions on a are∣∣∣∣∂H∂ai
∣∣∣∣ = |4ai + 2

∑
j 6=i

ajΦε(θi, θj) + 2
k∑
j=1

bjΦε(θi, wj)| ≤ δ

Next, since Φε(r) is λ-harmonic for r ≥ ε, we may calculate the Laplacian of H as

∆vH =
l∑
i=1

λ

2
k∑
j=1

aibjΦε(θi, wj) + 2
k∑

j=l+1
aiajΦε(θi, θj)


≤

l∑
i=1

λ

−4a2
i − 2

l∑
j=1,j 6=i

aiajΦε(θi, θj)

+ δ

l∑
i=1

λ|ai|

= −2λE

( l∑
i=1

aiσ(θi, X)
)2− 2λ

l∑
i=1

a2
i + δλ

l∑
i=1
|ai|

The second line follows from our optimality conditions and the third line follows from
completing the square. Since (a, θ) ∈ MG,δ, we have ∆vH ≥ −2kdδ. Let S =

∑l
i=1 a

2
i .

Then, by Cauchy-Schwarz, we have −2λS + δλ
√
k
√
S ≥ −2kdδ. When S ≥ δ2k, we see that

−λS ≥ −2λS + δλ
√
k
√
S ≥ −2kdδ. Therefore, S ≤ 2kdδ/λ.

We conclude that S ≤ max(δ2k, 2kdδ/λ) ≤ 2kdδ/λ since δ ≤ 1 ≤ 2d/λ and λ = 1.
Therefore, a2

i ≤ 2kdδ. J

I Lemma 21. Assume the conditions of Lemma 14. If
√
G(a,θ) ≤

√
G(0, 0) − δ and

(a, θ) ∈MG,δ2/(2k3d), then there exists some i, j such that ‖θi − wj‖ < kε.

Proof. If there does not exists i, j such that ‖θi −wj‖ < kε, then by Lemma 14, this implies
a2
i < δ2/k2 for all i. Now, for a integrable function f(x), ‖f‖X =

√
EX [f(X)2] is a norm.

Therefore, if f(x) =
∑
i biσ(wi, x) be our true target function, we conclude that by triangle

ITCS 2018
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inequality√
G(a, θ) ≥

∥∥∥∥∥
k∑
i=1

aiσ(θi, x)− f(x)

∥∥∥∥∥
X

≥ ‖f(x)‖X −
k∑
i=1
‖aiσ(θi, x)‖X ≥

√
G(0, 0)− δ

This gives a contradiction, so we conclude that there must exist i, j such that θi is in a kε
neighborhood of wj . J

I Lemma 22. Assume the conditions of Theorem 12 and Lemma 14. With high probability,
we can initialize (a(0), θ(0)) such that

√
G(a(0),θ(0)) ≤

√
G(0, 0)− δ with δ = (d/ε)−O(d).

Proof. Consider choosing θ1 = 0 and then optimizing a1. Given θ1, the loss decrease is:

G(a1,0)−G(0,0) = min
a1

2a2
1 + 2

k∑
j=1

a1bjΦε(0, wj) = −1
2

 k∑
j=1

bjΦε(0, wj)

2

Because wj are random Gaussians with variance O(d log d), we have ‖wj‖ ≤ O(d log d)
with high probability for all j. By Lemma 13, our potential satisfies Φε(0, wj) ≥ (d/ε)−O(d).
And since bj are uniformly chosen in [−1, 1], we conclude that with high probability over the

choices of bj , − 1
2

(∑k
j=1 bjΦ(θ1, wj)

)2
≥ (d/ε)−O(d) by appealing to Chebyshev’s inequality

on the squared term.
Therefore, we conclude that with high probability, G(a1,0) ≤ G(0, 0)− 1

2 (d/ε)−O(d). Let√
G(a1,0) =

√
G(0, 0)−∆ ≥ 0. Squaring and rearranging gives ∆ ≥ 1

4
√
G(0,0)

(d/ε)−O(d).
Since G(0, 0) ≤ O(k) = O(poly(d)), we are done. J

E.1 Node by Node Analysis
The proofs in this section can be found in the full version of this paper on ArXiv [25].

I Lemma 23. Let M = Rd for d ≡ 3 mod 4 and let L1 be the loss restricted to (a1, θ1)
corresponding to the activation function σε given by Lemma 13 with λ = 1. For any ε ∈ (0, 1)
and δ ∈ (0, 1), we can construct σε such that if (a1, θ1) ∈ ML1,δ, then for all i, either 1)
there exists j such that ‖θ1 − wj‖ < ε or 2) a2

1 < 2dδ.

I Lemma 24. Assume the conditions of Lemma 23. If
√
L1(a1, θ1) ≤

√
L1(0, 0) − δ and

(a1, θ1) ∈MG,δ2/(2d), then there exists some j such that ‖θ1 − wj‖ < ε.

I Lemma 25. Assume the conditions of Theorem 27 and Lemma 23. If ‖θ1 − wj‖ ≤ d and
|bj | ≥ 1/poly(d) and |a1 − a∗1(θ1)| ≤ (d/ε)−O(d) is almost optimal and for i, ‖wi − wj‖ ≥
Ω(d log d), then −∇θ1L1 = ζ

wj−θ1
‖θ1−wj‖ + ξ with ζ ≥ 1

poly(d) (d/ε)−8d and ξ ≤ (d/ε)−O(d).

I Lemma 26 (Node-wise Initialization). Assume the conditions of Theorem 27 and Lemma 23.

With high probability, we can initialize (a(0)
1 , θ

(0)
1 ) such that

√
L(a(0)

1 , θ
(0)
1 ) ≤

√
L(0, 0) − δ

with δ = 1
poly(d) (d/ε)−18d in time log(d)O(d).

I Lemma 27. Assume the conditions of Lemma 23. Also, assume b1, ..., bk are any numbers
in [−1, 1] and w1, ..., wk ∈ Rd satisfy ‖wi‖ ≤ O(d log d) for all i and there exists some
|bj | ≥ 1/poly(d) with ‖wi − wj‖ ≥ Ω(d log d) for all i.

Then with high probability, we can choose an initial point (a(0)
1 , θ

(0)
1 ) such that after

running SecondGD (Algorithm 2) on the restricted regularized objective L1(a1, θ1) for at
most (d/ε)O(d) iterations, there exists some wj such that ‖θ1 − wj‖ < ε. Furthermore, if
|bj | ≥ 1/poly(d) and ‖wi − wj‖ ≥ Ω(d log d) for all i, then ‖θ1 − wj‖ < (d/ε)−O(d) and
|a+ bj | < (d/ε)−O(d).
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I Theorem 17. LetM = Rd and d ≡ 3 mod 4 and let L be as in 1 and k = poly(d). For
all ε ∈ (0, 1), we can construct an activation σε such that if w1, ..., wk ∈ Rd with wi randomly
chosen from wi ∼ N (0, O(d log d)Id×d) and b1, ..., bk be randomly chosen at uniform from
[−1, 1], then with high probability, after running nodewise descent (Algorithm 3) on the
objective L for at most (d/ε)O(d) iterations, (a, θ) is in a (d/ε)−O(d) neighborhood of the
global minima.

F Common Activations

First, we consider the sign activation function. Under restrictions on the size of the input
dimension or the number of hidden units, we can prove convergence results under the sign
activation function, as it gives rise to a harmonic potential.

I Assumption 1. All output weights bi = 1 and therefore the output weights ai = −bi = −1
are fixed throughout the learning algorithm.

I Lemma 28. LetM = S1 and let Assumption 1 hold. Let L be as in (2) and σ is the sign
activation function. Then L admits no strict local minima, except at the global minima.

We cannot simply analyze the convergence of GD on all θi simultaneously since as before,
the pairwise interaction terms between the θi present complications. Therefore, we now only
consider the convergence guarantee of gradient descent on the first node, θ1, to some wj ,
while the other nodes are inactive (i.e. a2, ..., ak = 0). In essence, we are working with the
following simplified loss function.

L(a1, θ1) = a2
1Φ(θ1, θ1) + 2

k∑
j=1

a1bjΦ(θ1, wj) (3)

I Lemma 29. LetM = S1 and L be as in (3) and σ is the sign activation function. Then,
almost surely over random choices of b1, ..., bk, all local minima of L are at ±wj.

For the polynomial activation and potential functions, we also can show convergence
under orthogonality assumptions on wj . Note that the realizability of polynomial potentials
is guaranteed in Section B.

I Theorem 30. LetM = Sd−1. Let w1, ..., wk be orthonormal vectors in Rd and Φ is of the
form Φ(θ, w) = (θTw)l for some fixed integer l ≥ 3. Let L be as in (3). Then, all critical
points of L are not local minima, except when θ1 = wj for some j.

F.1 Convergence of Sign Activation
I Lemma 31. LetM = S1 and let Assumption 1 hold. Let L be as in (2) and σ is the sign
activation function. Then L admits no strict local minima, except at the global minima.

Proof. We will first argue that unless all the electrons and protons have matched up as a
permutation it cannot be a strict local minimum and then argue that the global minimum is
a strict local minimum.

First note that if some electron and proton have merged, we can remove such pairs and
argue about the remaining configuration of charges. So WLOG we assume there are no such
overlapping electron and proton.

ITCS 2018
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First consider the case when there is an isolated electron e and there is no charge diagonally
opposite to it. In this case look at the two semicircles on the left and the right half of the
circle around the isolated electron – let q1 and q2 be the net charges in the left and the right
semi-circles. Note that q1 6= q2 since they are integers and q1 + q2 = +1 which is odd. So by
moving the electron slightly to the side with the larger charge you decrease the potential.

If there is a proton opposite the isolated electron the argument becomes simpler as the
proton benefits the motion of the electron in either the left or right direction. So the only
way the electron does not benefit by moving in either direction is that q1 = −1 and q2 = −1
which is impossible.

If there is an electron opposite the isolated electron then the combination of these two
diagonally opposing electrons have a zero effect on every other charge. So it is possible rotate
this pair jointly keeping them opposed in any way and not change the potential. So this is
not a strict local minimum.

Next if there is a clump of isolated electrons with no charge on the diagonally opposite
point then again as before if q1 6= q2 we are done. If q1 = q2 then the the electrons in the
clump locally are unaffected by the remaining charges. So now by splitting the clump into
two groups and moving them apart infinitesimally we will decrease the potential.

Now if there is only protons in the diagonally opposite position an isolated electron again
we are done as in the case when there is one electron diagonally opposite one proton.

Finally if there is only electrons diagonally opposite a clump of electrons again we are
done as we have found at least one pair of opposing electrons that can be jointly rotated in
any way.

Next we will argue that a permutation matching up is a strict local minumum. For
this we will assume that no two protons are diagonally opposite each other (as they can be
removed without affecting the function). Now given a perfect matching up of electrons and
protons, if we perturb the electrons in any way infinitesimally, then any isolated clump of
electrons can be moved slightly to the left or right to improve the potential. J

I Lemma 32. LetM = S1 and L be as in (3) and σ is the sign activation function. Then,
almost surely over random choices of b1, ..., bk, all local minima of L are at ±wj.

Proof. In S1, notice that the pairwise potential function is Φ(θ, w) = 1− 2 cos−1(θTw)/π =
1− 2α/π, where α is the angle between θ, w. So, let us parameterize in polar coordinates,
calling our true parameters as w̃1, ..., w̃k ∈ [0, 2π] and rewriting our loss as a function of
θ̃ ∈ [0, 2π].

Since Φ is a linear function of the angle between θ, wj , each wj exerts a constant gradient
on θ̃ towards w̃j , with discontinuities at w̃j , π+ w̃j . Almost surely over b1, .., bk, the gradient
is non-zero almost everywhere, except at the discontinuities, which are at w̃j , π+ w̃j for some
j. J

F.2 Convergence of Polynomial Potentials

I Theorem 30. LetM = Sd−1. Let w1, ..., wk be orthonormal vectors in Rd and Φ is of the
form Φ(θ, w) = (θTw)l for some fixed integer l ≥ 3. Let L be as in (3). Then, all critical
points of L are not local minima, except when θ1 = wj for some j.

Proof. WLOG, we can consider w1, ..., wd to be the basis vectors e1, ..., ed. Note that this is
a manifold optimization problem, so our optimality conditions are given by introducing a
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Lagrange multiplier λ, as in [12].

∂L

∂a
= 2

d∑
i=1

abi(θi)l + 2a = 0

(∇θL)i = 2abil(θi)l−1 − 2λθi = 0

where λ is chosen that minimizes

λ = arg min
λ

∑
i

(abil(θi)l−1 − λθi)2 =
∑

abil(θi)l

Therefore, either θi = 0 or bi(θi)l−2 = λ/(al). From [12], we consider the constrained Hessian,
which is a diagonal matrix with diagonal entry:

(∇2L)ii = 2abil(l − 1)(θi)l−2 − 2λ

Assume that there exists θi, θj 6= 0, then we claim that θ is not a local minima. First, our
optimality conditions imply bi(θi)l−2 = bj(θj)l−2 = λ/(al). So,

(∇2L)ii = (∇2L)jj = 2abil(l − 1)(θi)l−2 − 2λ

= 2(l − 2)λ = −2(l − 2)la2

Now, there must exist a vector v ∈ Sd−1 such that vk = 0 for k 6= i, j and vT θ = 0, so v is
in the tangent space at θ. Finally, vT (∇2L)v = −2(l − 2)la2 < 0, implying θ is not a local
minima when a 6= 0. Note that a = 0 occurs with probability 0 since our objective function
is non-increasing throughout the gradient descent algorithm and is almost surely initialized
to be negative with a optimized upon initialization, as by observed before. J

Under a node-wise descent algorithm, we can show polynomial-time convergence to global
minima under orthogonality assumptions on wj for these polynomial activations/potentials.
We will not include the proof but it follows from similar techniques presented for nodewise
convergence in Section E.
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