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Abstract
We study the parameterized complexity of the Bounded-Degree Vertex Deletion problem (BDD),
where the aim is to find a maximum induced subgraph whose maximum degree is below a given
degree bound. Our focus lies on parameters that measure the structural properties of the input
instance. We first show that the problem is W[1]-hard parameterized by a wide range of fairly
restrictive structural parameters such as the feedback vertex set number, pathwidth, treedepth,
and even the size of a minimum vertex deletion set into graphs of pathwidth and treedepth at
most three. We thereby resolve the main open question stated in Betzler, Bredereck, Niedermeier
and Uhlmann (2012) concerning the complexity of BDD parameterized by the feedback vertex
set number. On the positive side, we obtain fixed-parameter algorithms for the problem with
respect to the decompositional parameter treecut width and a novel problem-specific parameter
called the core fracture number.
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1 Introduction

This paper studies the Bounded-Degree Vertex Deletion problem (BDD): given an
undirected graph G, a degree bound d, and a limit `, determine whether it is possible to
delete at most ` vertices from G in order to obtain a graph of maximum degree at most d.
Aside from being a natural generalization of the classical Vertex Cover problem, BDD
has found applications in areas such as computational biology [17] and is the dual problem
of the so-called s-Plex Detection problem in social network analysis [30, 3, 31, 35].

It is not surprising that the complexity of BDD and several of its variants has been studied
extensively by the theory community in the past years [5, 4, 7, 6, 11, 26, 34, 35]. Since the
problem is NP-complete in general, it is natural to ask under which conditions does the
problem become tractable. In this direction, the parameterized complexity paradigm [13, 33,
9] allows a more refined analysis of the problem’s complexity than classical complexity. In the
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parameterized setting, we associate each instance with a numerical parameter k and are most
often interested in the existence of a fixed-parameter algorithm, i.e., an algorithm solving the
problem in time f(k) · |V (G)|O(1) for some computable function f . Parameterized problems
admitting such an algorithm belong to the class FPT; on the other hand, parameterized
problems that are hard for the complexity class W[1] or W[2] do not admit fixed-parameter
algorithms (under standard complexity assumptions).

In general, there exist two notable approaches for selecting parameters: a parameter
may either originate from the formulation of the problem itself (often called natural pa-
rameters), or rather from the structure of the input graph (so-called structural parameters,
most prominently represented by the decomposition-based parameter treewidth tw). The
parameterized complexity of BDD has already been studied extensively through the lens
of natural parameters (especially d and `). In particular, BDD is known to be FPT when
parameterized by d+ ` [34, 17, 31], W[2]-hard when parameterized only by ` [17], and NP-
complete when parameterized only by d (as witnessed by the case of d = 0, i.e., Vertex
Cover). The complexity of BDD is also fairly well understood when considering combina-
tions of natural and structural parameters: it is FPT when parameterized by tw + d due to
Courcelle’s Theorem [8] and has been shown to be FPT when parameterized by tw + ` [5].

Given the above, it is fairly surprising that the problem has remained fairly unexplored
when viewed through the lens of structural parameters only, i.e., in the case where we impose
no restrictions on the problem formulation itself but only on the structure of the graph. BDD
was shown not to be FPT when parameterized by treewidth [5], complementing the previous
O(ntw+1) algorithm of Dessmark et al. [11]. The only structural parameter which is known
to make the problem fixed-parameter tractable is the feedback edge set number, i.e., the
minimum number of edges whose deletion results in a forest [5].

Contribution

The goal of this paper is to provide new insight into the complexity of BDD parameterized
by the structure of the input graph. Our first main result shows that BDD is W[1]-hard
parameterized by the feedback vertex set number, i.e., the minimum number of vertices whose
deletion results in a forest. This resolves the main open question in [5]. Interestingly, our
result is significantly stronger since we show that hardness even applies in the case that
the remaining parts, after deleting the feedback vertex set, are trees of height three. This
rules out fixed-parameter algorithms w.r.t. most of the remaining “classical” decomposition-
based structural parameters such as pathwidth and treedepth [32] as well as w.r.t. the vertex
deletion distance [19, 32] to bounded pathwidth, treedepth, and treewidth. On the way to
our hardness result we show hardness for several multidimensional variants of the classical
subset sum problem parameterized by the number of dimensions, which we believe are
interesting on their own.

In light of the above, it is natural to ask whether there exist natural decomposition-based
parameters for which BDD is fixed-parameter tractable. Our main algorithmic result answers
this question affirmatively: we obtain a fixed-parameter algorithm utilizing the recently
introduced structural parameter called treecut width. The importance of treecut width is
that it plays a similar role with respect to the fundamental graph operation of immersion
as the graph parameter treewidth plays with respect to the minor operation [36, 29]. Up to
now, only a handful of problems are known to be FPT when parameterized by treecut width
but W[1]-hard when parameterized by treewidth [20]. Furthermore, unlike previously known
algorithms using treecut width, this is the first of its kind which does not use an Integer
Linear Programming formulation but instead relies purely on combinatorial arguments.
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Our second algorithmic result focuses on structural parameters which are not based on
any particular decomposition of the graph, but instead measure the “vertex-deletion dis-
tance” to a certain graph property. Such structural parameters have been successfully used
in the past for a plethora of other difficult problems [19, 22, 27, 15, 14, 21]. In this context
and taking into account the strong lower bounds obtained in Section 3, we introduce a struc-
tural parameter which is specifically tailored to BDD and which we call the core fracture
number. Roughly speaking, the core fracture number k is the vertex deletion distance to a
graph where each connected component only contains at most k vertices which exceed the
degree bound d. We show that computing the core fracture number is FPT which in turn
gives rise to a fixed-parameter algorithm for BDD; the latter is achieved by identifying and
formalizing a type-aggregation condition, allowing for an encoding of the problem into an
Integer Linear Program with a controlled number of integer variables. This also resolves the
question from [5] if BDD is FPT parametrized by vertex cover.

Finally, we exclude the existence of a polynomial kernel [13, 9] for BDD parameterized by
the treecut width and core fracture number, and compare the two parameters in Section 5.

2 Preliminaries

2.1 Basic Notation
We use standard terminology for graph theory, see for instance [12]. All graphs except for
those used to compute the torso-size in Subsection 2.3 are simple; the multigraphs used in
Subsection 2.3 have loops, and each loop increases the degree of the vertex by 2.

Let G be a graph. We denote by V (G) and E(G) its vertex and edge set, respectively.
For a vertex v ∈ V (G), let NG(v) = {y ∈ V (G) : vy ∈ E(G)}, NG[v] = NG(v) ∪ {v}, and
degG(v) denote its open neighborhood, closed neighborhood, and degree, respectively. For
a subset X ⊆ V (G), the (open) neighborhood NG(X) of X is defined as

⋃
x∈X N(x) \ X.

The set NG[X] refers to the closed neighborhood of X defined as NG(X) ∪X. We refer to
the set NG(V (G) \X) as ∂G(X); this is the set of vertices in X which have a neighbor in
V (G)\X. We omit the lower index G, if G is clear from the context. For a vertex set A, we
use G−A to denote the graph obtained from G by deleting all vertices in A. We use [i] to
denote the set {0, 1, . . . , i}. For completeness, we provide a formal definition of our problem
of interest below.

Bounded-Degree Vertex Deletion (BDD)

Input: An undirected graph G = (V,E) and integers d ≥ 0 and ` ≥ 0.
Question: Is there a subset V ′ ⊆ V with |V ′| ≤ ` whose removal from G yields

a graph in which each vertex has degree at most d?

2.2 Parameterized Complexity
A parameterized problem P is a subset of Σ∗×N for some finite alphabet Σ. Let L ⊆ Σ∗ be
a classical decision problem for a finite alphabet, and let p be a non-negative integer-valued
function defined on Σ∗. Then L parameterized by p denotes the parameterized problem
{ (x, p(x)) | x ∈ L } where x ∈ Σ∗. For a problem instance (x, k) ∈ Σ∗ × N we call x the
main part and k the parameter. A parameterized problem P is fixed-parameter tractable
(FPT in short) if a given instance (x, k) can be solved in time O(f(k) · p(|x|)) where f is
an arbitrary computable function of k and p is a polynomial function; we call algorithms
running in this time fixed-parameter algorithms. We refer the reader to [13] for more details
on parameterized complexity.

STACS 2018
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Parameterized complexity classes are defined with respect to fpt-reducibility. A parame-
terized problem P is fpt-reducible to Q if in time f(k) · |x|O(1), one can transform an instance
(x, k) of P into an instance (x′, k′) of Q such that (x, k) ∈ P if and only if (x′, k′) ∈ Q,
and k′ ≤ g(k), where f and g are computable functions depending only on k. Central to
parameterized complexity is the following hierarchy of complexity classes, defined by the
closure of canonical problems under fpt-reductions: FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP. All
inclusions are believed to be strict. In particular, FPT 6= W[1] under the Exponential Time
Hypothesis [23].

The class W[1] is the analog of NP in parameterized complexity. A major goal in pa-
rameterized complexity is to distinguish between parameterized problems which are in FPT
and those which are W[1]-hard, i.e., those to which every problem in W[1] is fpt-reducible.
There are many problems shown to be complete for W[1], or equivalently W[1]-complete,
including the Multi-Colored Clique (MCC) problem [13].

2.3 Treecut Width
The notion of treecut decompositions was first proposed by Wollan [36], see also [29]. A
family of subsets X1, . . . , Xk of X is a near-partition of X if they are pairwise disjoint and⋃k
i=1Xi = X, allowing the possibility of Xi = ∅.

I Definition 1. A treecut decomposition of G is a pair (T,X ) which consists of a rooted tree
T and a near-partition X = {Xt ⊆ V (G) : t ∈ V (T )} of V (G). A set in the family X is
called a bag of the treecut decomposition.

For any node t of T other than the root r, let e(t) = ut be the unique edge incident
to t on the path to r. Let Tu and Tt be the two connected components in T − e(t) which
contain u and t, respectively. Note that (

⋃
q∈Tu

Xq,
⋃
q∈Tt

Xq) is a near-partition of V (G),
and we use cut(t) to denote the set of edges with one endpoint in each part. We define the
adhesion of t (adhT (t) or adh(t) in brief) as |cut(t)|; if t is the root, we set adhT (t) = 0
and cut(t) = ∅.

The torso of a treecut decomposition (T,X ) at a node t, written as Ht, is the graph
obtained from G as follows. If T consists of a single node t, then the torso of (T,X ) at t is
G. Otherwise let T1, . . . , T` be the connected components of T − t. For each i = 1, . . . , `, the
vertex set Zi ⊆ V (G) is defined as the set

⋃
b∈V (Ti)Xb. The torso Ht at t is obtained from

G by consolidating each vertex set Zi into a single vertex zi (this is also called shrinking in
the literature). Here, the operation of consolidating a vertex set Z into z is to substitute Z
by z in G, and for each edge e between Z and v ∈ V (G) \ Z, adding an edge zv in the new
graph. We note that this may create parallel edges.

The operation of suppressing (also called dissolving in the literature) a vertex v of degree
at most 2 consists of deleting v, and when the degree is two, adding an edge between the
neighbors of v. Given a connected graph G and X ⊆ V (G), let the 3-center of (G,X) be the
unique graph obtained from G by exhaustively suppressing vertices in V (G) \X of degree
at most two. Finally, for a node t of T , we denote by H̃t the 3-center of (Ht, Xt), where Ht

is the torso of (T,X ) at t. Let the torso-size tor(t) denote |H̃t|.

I Definition 2. The width of a treecut decomposition (T,X ) of G is max
t∈V (T )

{adh(t), tor(t)}.

The treecut width of G, or tcw(G) in short, is the minimum width of (T,X ) over all treecut
decompositions (T,X ) of G.

We conclude this subsection with some notation related to treecut decompositions. Given
a tree node t, let Tt be the subtree of T rooted at t. Let Yt =

⋃
b∈V (Tt)Xb, and let Gt denote
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Figure 1 A graph G and a width-3 treecut decomposition of G, including the torso-size (left
value) and adhesion (right value) of each node.

the induced subgraph G[Yt]. The depth of a node t in T is the distance of t from the root
r. The vertices of ∂t = ∂G(Yt) are called the border at node t. A node t 6= r in a rooted
treecut decomposition is thin if adh(t) ≤ 2 and bold otherwise. For a node t, we let Bt and
At denote the set of children of t which are thin and bold, respectively.

While it is not known how to compute optimal treecut decompositions efficiently, there
exists a fixed-parameter 2-approximation algorithm which fully suffices for our purposes.

I Theorem 3 ([24]). There exists an algorithm that takes as input an n-vertex graph G

and integer k, runs in time 2O(k2 log k)n2, and either outputs a treecut decomposition of G of
width at most 2k or correctly reports that tcw(G) > k.

A treecut decomposition (T,X ) is nice if it satisfies the following condition for every
thin node t ∈ V (T ): N(Yt) ∩

⋃
b is a sibling of t Yb = ∅. The intuition behind nice treecut

decompositions is that we restrict the neighborhood of thin nodes in a way which facilitates
dynamic programming.

I Lemma 4 ([20]). There exists a cubic-time algorithm which transforms any rooted treecut
decomposition (T,X ) of G into a nice treecut decomposition of the same graph, without
increasing its width or number of nodes.

The following property of nice treecut decompositions will be crucial for our algorithm.

I Lemma 5 ([20]). Let t be a node in a nice treecut decomposition of width k. Then
|At| ≤ 2k + 1.

We refer to previous work [20] for a comparison of treecut width to other parameters.

3 Hardness Results

In this section we show that BDD is W[1]-hard parameterized by a vertex deletion set to
trees of height at most three, i.e., a subset D of the vertices of the graph such that every
component in the graph, after removing D, is a tree of height at most three. On the
way towards this result, we provide hardness results for several interesting versions of the
multidimensional subset sum problem (parameterized by the number of dimensions) which
we believe are interesting in their own right. In particular, we note that the hardness results
also hold for the well-known and more general multidimensional knapsack problem [18].

Our first auxiliary result shows hardness for the following problem.

Multidimensional Subset Sum (MSS)

Input: An integer k, a set S = {s1, . . . , sn} of item-vectors with si ∈ Nk

for every i with 1 ≤ i ≤ n and a target vector t ∈ Nk.
Parameter: k

Question: Is there a subset S′ ⊆ S such that
∑

s∈S′ s = t?

STACS 2018
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I Lemma 6. MSS is W[1]-hard even if all integers in the input are given in unary.

Proof sketch. The proof is by a parameterized reduction from the well-known W[1]-hard
Multicolored Clique (MCC) problem [13]: given a k-partite graph G with partition
V1, . . . , Vk, decide whether G contains a clique of size k. For an instance I = (G, k) of MCC
we construct an equivalent instance I ′ = (2

(
k
2
)

+ k, S, t) of MSS in polynomial time, as
follows. For every v ∈ V (G) we construct one item-vector sv in S and for every e ∈ E(G)
one item-vector se. Furthermore, we impose the following requirements on every solution
S′ ⊆ S of I ′: (1) exactly one vector sv with v ∈ Vi is contained in S′ for every i with
1 ≤ i ≤ k, (2) exactly one vector se, with e being an edge between Vi and Vj , is contained
in S′ for every i and j with 1 ≤ i < j ≤ k, and (3) for every edge e with se ∈ S′ and
endpoints vi ∈ Vi, vj ∈ Vj we find svi , svj ∈ S′. To ensure (1), the target vector has k
entries with value one and every vector sv with v ∈ Vi has value one at the i-th of those
entries. Property (2) is ensured in a similar way by using

(
k
2
)
entries with value one in the

target vector. To ensure Property (3), we assign to every vertex v of G a unique number
S(v) from a Sidon sequence S of length |V (G)| [16]. A Sidon sequence is a sequence of
natural numbers such that the sum of each pair of numbers is unique; it can be shown that
it is possible to construct such sequences whose maximum value is bounded by a polynomial
in its length [1, 16]. The target vector then contains one additional entry I(i, j) for every i
and j with 1 ≤ i < j ≤ k with value max2(S) + 1, where max2(S) is the maximum sum of
any two numbers in S. Moreover, every vector sv for v ∈ V (G) has value S(v) at every entry
I(l, r) with l = i or r = i and similarly every vector se for an edge e between Vi and Vj has
value (max2(S) + 1)− (S(u) + S(v)) at entry I(i, j). Then, because S is a Sidon sequence,
it holds that the I(i, j)-th entry of

∑
s∈S′ s for a solution S′ is equal to the I(i, j)-th entry

of t if and only if the endpoints of the unique edge chosen between Vi and Vj are equal to
the unique vertices vi and vj chosen in Vi and Vj , respectively. J

The proof of the above lemma also implies hardness for the following slightly adapted ver-
sion of MSS, which we call the Restricted Multidimensional Subset Sum (RMSS)
problem. For RMSS an additional integer k′ is given (which will be part of the parameter)
and we ask for a solution of the MSS problem of size exactly k′. Before presenting our
hardness result for BDD, we need to show hardness for the following more relaxed version of
RMSS, which we call the Multidimensional Relaxed Subset Sum (MRSS) problem.
For MRSS both the input as well as the parameters are the same as in the case of RMSS
however one now asks whether there is a subset S′ ⊆ S with |S′| ≤ k′ such that

∑
s∈S′ s ≥ t.

I Lemma 7. MRSS is W[1]-hard even if all integers in the input are given in unary.

We are now ready to show our main hardness result for BDD using a reduction from MRSS.

I Theorem 8. BDD is W[1]-hard parameterized by the size of a vertex deletion set into
trees of height at most 3.

Proof Sketch. We prove the theorem by a parameterized reduction from MRSS. Namely,
given an instance I = (k, S, t, k′) of MRSS we construct an equivalent instance I ′ = (G, d, `)
of BDD such that G has a FVS D of size k · k′. The core idea of the reduction relies on
transforming the decision of whether to select a vector into a solution S′ for I into the
decision of whether to resolve a tree gadget in G in one of two possible ways.

The set D consists of (k′+ 1) vertices d1
i , . . . , d

k′+1
i for every i with 1 ≤ i ≤ k. Moreover,

for every s ∈ S we introduce the gadget G(s) defined as follows. G(s) consists of max(s)
stars with centers cs1, . . . , csmax(s) and d+ 1 leaves. For every star with center csi , we denote
by lsi one of its leaves (chosen arbitrarily). Additionally, G(s) has a root vertex, denoted
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by rs, that has an edge to every center vertex csi . Finally, we add edges between the
leaves ls1, . . . , lsmax(s) and the vertices in D such that for every i and j with 1 ≤ i ≤ k and
1 ≤ j ≤ k′ + 1, it holds that dji has s[i] neighbors among the leaves ls1, . . . , lsmax(s) of G(s).
Clearly this is always possible and can be done in an arbitrary manner.

We set d to be the maximum degree of the part of G constructed so far (note that this
maximum is reached by one of the vertices in D). Moreover, we now ensure that for every
i and j with 1 ≤ i ≤ k and 1 ≤ j ≤ k′ + 1, the vertex dji has degree d + t[i] in G by
attaching a appropriate number of leaves to di. Finally, we set ` to be

(∑
s∈S max(s)

)
+ k′.

This completes the construction of I ′. Clearly, I ′ can be constructed in polynomial time.
Moreover, |D| ≤ k · k′ and each component of G − D is a tree with height at most 3. To
complete the proof, it suffices to establish the equivalence between I and I ′. J

Clearly trees of height at most three are trivially acyclic. Moreover, it is easy to verify that
such trees have pathwidth [25] and treedepth [32] at most three, which implies:

I Corollary 9. BDD is W[1]-hard parameterized by any of the following parameters:
the size of a feedback vertex set,
the pathwidth and treedepth of the input graph,
the size of a minimum set of vertices whose deletion results in components of path-
width/treedepth at most three.

4 Solving BDD using Treecut-width

The goal of this section is to provide a fixed-parameter algorithm for BDD parameterized by
treecut-width. The core of the algorithm is a dynamic programming procedure which runs on
a nice treecut decomposition of the input graph. First we define the data table the algorithm
is going to dynamically compute for individual nodes of the treecut decomposition. For each
node t ∈ T , the table is going to contain two components, which we will call the universal
cost ut and the specific cost st. Informally, the universal cost captures the minimum number
of vertices which need to be deleted from Yt to satisfy the degree bound in Gt. The specific
cost captures how many more vertices (than the universal cost) we need to delete in order
to satisfy the degree bound in Gt when we also place restrictions on how Gt will interact
with the rest of the graph. We formalize these notions below.

Let us fix an instance (G, d, `) of BDD and a treecut decomposition (T,X ) of G of width
at most k and rooted at r. A configuration δ of a graph H with a designated vertex-subset
Z is a mapping Z 7→ [k] ∪ del. Intuitively, configurations are going to be used to place
additional restrictions on the deletion sets we are interested in. We let bdd(H,Z, δ) denote
the minimum size of a vertex set W ⊆ V (H) such that:

v ∈W ∩ Z if and only if δ(v) = del, and
for each v ∈ Z \W , the degree of v in H −W is at most d− δ(v),
for each v ∈ V (H) \ (Z ∪W ), the degree of v in H −W is at most d.

Figure 2 depicts an illustration of bdd(H,Z, δ). Informally, bdd captures the size of a
minimum deletion set which intersects the designated subset precisely in the vertices specified
by δ, and for the remainder of the designated subset it overshoots the degree bound by a
buffer specified by δ. If bdd(H,Y, δ) is not defined (which may happen, e.g., if d < |Y |), we
formally set bdd(H,Y, δ) =∞. For each node t ∈ V (T ), we can now define:

ut = bdd(Gt, ∅, ∅), and
for each δ : ∂t → [k] ∪ del such that each v ∈ ∂t is mapped to del or to an integer
i ≤ |N(v) \ Yt|, we let s′t(δ) = bdd(Gt, ∂t, δ)− ut.

STACS 2018
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V (H)

W

Z

δ(v) = del deg(v) ≤ d− δ(v)

deg(v) ≤ dW = bdd(H,Z, δ)

Figure 2 Illustration of the set bdd(H,Z, δ).
The dotted edges are not considered for the de-
gree of a node v.

At

∂t

t

Bounded number of equivalence classes

Bt

Bt

Figure 3 The three branching sets for a node
t ∈ T , first branch on ∂t (green), then on the
boundaries of the bold nodes At together with
the “interior” of t (orange) and finally on the
equivalence classes of Bt (gray).

We proceed with a few observations. Naturally, the value of ut can be much larger than
k (as an example, consider a collection of disjoint stars), and this is not an issue for our
algorithm. Furthermore, for every δ it holds that 0 ≤ s′t(δ), since ut ≤ bdd(Gt, ∂t, δ); notice
that ut attains the value of the smallest deletion set for Gt, while bdd(Gt, ∂t, δ) attains the
value of a smallest deletion set for Gt which satisfies certain additional restrictions.

Crucially, the value of s′t(δ) can be much larger than k, and this represents a significant
obstacle for our algorithm. The role of the specific cost in the dynamic programming pro-
cedure is to capture how a node may interact with the solution and how such interactions
affect the size of a deletion set. The algorithm relies heavily on having only a bounded
number of possible interactions in order to achieve its run-time bounds. Luckily, we will
prove that any value of s′t(δ) exceeding k must lead to a dead end and can be disregarded.

I Lemma 10. Let S be a minimum-size bounded degree deletion set in G. Let δtS be defined
over ∂t as follows: δtS(v) = del if v ∈ S, and otherwise δtS(v) = |(N(v) \ Yt) \ S|. Then
s′t(δtS) ≤ |N(Yt)| ≤ k.

Proof. For brevity, let q = N(Yt). The fact that q ≤ k follows immediately from the
bound on the adhesion of t, hence we only need to prove that s′t(δtS) ≤ q. So, assume for
a contradiction that s′t(δtS) > q. Let P be a witness for the value of ut, i.e., let P be a
minimum-cardinality vertex subset of Gt such that the maximum degree in Gt − P is at
most d. Observe that |P ∪N(Yt)| = ut + q. Now consider the set S′ = (S \ Yt)∪P ∪N(Yt).
First of all, note that |S′| < |S|, since we obtained S′ from S by removing more than ut + q

vertices (recall that, by our assumption, s′t(δtS) > q) and then adding back at most ut + q

vertices. Second, we claim that S′ is also a bounded degree deletion set in G. Indeed,
consider for a contradiction that G−S′ contains a vertex v of degree higher than d. Such a
v cannot lie in Yt since P was a solution in Gt and N(Yt) separates Gt from the rest of G.
On the other hand, v cannot lie outside of Yt due to the fact that S itself was a solution in
G[V (G)− Yt]. So the claim holds, and S′ contradicts the optimality of S. J

Thanks to Lemma 10, we can safely focus our attention on those configurations δ where
s′t(δ) ≤ |N(Yt)|. Hence we define st(δ) = s′t(δ) if s′t(δ) ≤ |N(Yt)| and s′t(δ) = ∞ otherwise.
Observe that, unlike s′t, the number of distinct possibilities of what a special cost st may
look like is bounded by a function of k. The high-level strategy for the algorithm is now the
following:
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1. Compute (ut, st) when t is a leaf,
2. Compute (ut, st) when t is not a leaf, but the universal and specific costs are known for

all of its children, and
3. Use the values (ur, sr) at the root node r ∈ T .

As we will see below, points 1. and 3. are straightforward.

I Observation 11. (ut, st) can be computed in time at most 2O(k) if t is a leaf.

Proof. To compute ut it suffices to exhaustively loop through all vertex subsets L ⊆ Xt

and check whether Gt − L has degree at most d. Then ut is equal to the minimum size of
such a subset. To compute st, we proceed similarly: for each configuration δ such that each
v ∈ ∂t is mapped to del or to an integer i ≤ |N(v) \ Yt|, we exhaustively loop through all
L ⊆ Xt \ ∂t in order to determine the value of bdd(Gt, ∂t, δ), and we then use that value
and ut to determine st(δ). J

I Observation 12. (G, d, `) is a YES-instance of BDD if and only if ur ≤ `.

Given the above, the last remaining obstacle is handling point (2), i.e., the dynamic
propagation of information from leaves to the root. This is also the by far most challenging
part of the algorithm. Let us fix a node t ∈ T and for all its children p we assume (up, sp)
to be already computed.

Our strategy is to apply a 2-step approach. Figure 3 shows an illustration of the upcoming
branching sets for a node t. Recall that At and Bt denote the set of all children of t which are
bold and thin, respectively. First, we exhaustively loop over all options of how a deletion set
candidate intersects with Xt and the borders of nodes in At, resulting in a set of “templates”
which provide us with additional information about a potential solution. Here the bound
on |At| provided in Lemma 5 will be crucial. Second, we use branching and network flows
to find an optimal way of extending such a template to a solution which deals with Bt. In
this step, we overcome the fact that there may be an unbounded number of children p in Bt
by “aggregating” them into types based on their sp component. Lemma 10 along with our
definition of specific costs then guarantees that the number of aggregated types will depend
only on k. Informally, if two nodes p1, p2 in Bt have the same specific cost, then their
behavior (“contribution”) to any solution is fully interchangeable. In particular, even if p1,
p2 have different universal costs, both of these costs will need to be “paid” by every solution
regardless of how the solution handles the borders of these nodes. When formalizing the
above sketched algorithm we obtain.

I Lemma 13. Point 2. can be solved in time 2O(k2) · |Bt|2, where |Bt| is upper-bounded by
the number of children of t.

I Theorem 14. BDD can be solved in time n3 + 2O(k2·log k) · n2, where k and n are the
treecut-width and number of vertices of the input graph, respectively.

Proof. We begin by applying Theorem 3 followed by Lemma 4 to obtain a nice treecut
decomposition (T,X ) of width at most 2k. We then use a dynamic programming algorithm
to compute the values ut and st at every node t ∈ T . For leaves, this is carried out by
Observation 11, while for non-leaves we invoke Lemma 13. Finally, once we compute ur for
the root r, we can determine the answer to a BDD instance using Observation 12. J

Finally, using standard techniques it is not difficult to show that BDD parameterized by
treecut width does not admit a polynomial kernel.

I Theorem 15. BDD parameterized by treecut width has no polynomial kernel unless
coNP ⊆ NP/poly.

STACS 2018
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5 Core Fracture Number

In this section we introduce the new structural parameter core fracture number and pro-
vide a fixed-parameter algorithm for BDD parameterized by this parameter. An important
prerequisite for the introduction of this parameter is the following simple preprocessing pro-
cedure that can be applied to any BDD instance. Given an instance I = (G, d, `) of BDD,
the core of I, denoted by c(I) = (c(G), d, `), is the BDD instance obtained from I after
removing all edges whose both endpoints have degree at most d from G.

I Observation 16. Let I = (G, d, `) be a BDD instance. Then I and c(I) are equivalent
instances of BDD in the sense that any solution for I is also a solution for c(I) and vice
versa. Moreover, c(I) can be computed in linear time w.r.t. the number of edges of G.

In the following we will assume that we have already applied the above preprocessing proce-
dure to any BDD instance and hence the graph of the instance does not contain any edges
between vertices whose degree is already below the given degree bound. The core fracture
number of a BDD instance I = (G, d, `), denoted by cfn(I), is the minimum integer k such
that there is a deletion set D ⊆ V (G) with |D| ≤ k and the number of vertices in any
component C of G \ D of degree larger than d in G is at most k. In other words, each
connected component of G−D may contain only at most k vertices of degree greater than
d. We start by showing that this parameter is orthogonal to treecut width.

I Theorem 17. There is a class of BDD instances with bounded treecut width and unbounded
core fracture number. Similarly, there is a class of BDD instances with bounded core fracture
number and unbounded treecut width. Moreover, both classes only contain BDD instances I
with c(I) = I.

We are now ready to present our fixed-parameter algorithm for BDD parameterized by the
core fracture number. The algorithm consists of two steps: (1) it computes a deletion set D
of size at most k, witnessing that cfn(I) ≤ k and (2) it solves I with the help of the deletion
set D. Namely, our algorithm will consists of fixed-parameter algorithms for the following
two parameterized problems. Given an instance I = (G, d, `) of BDD and an integer k (which
also serves as the parameter of the problem), the Core Fracture Number Detection
(CFND) problem, asks whether cfn(I) ≤ k and if so outputs a set D ⊆ V (G) witnessing
this. On the other hand the Core Fracture Number Evaluation (CFNE) problem
asks whether I has a solution for a given BDD instance I = (G, d, `) and a set D ⊆ V (G)
witnessing that cfn(I) ≤ |D| and is parameterized by |D|.

I Theorem 18. CFND can be solved in time O((2k+1)k|E(G)|) and is hence fixed-parameter
tractable. Moreover, CFND can be approximated in polynomial time within a factor of 2k+1.

Let I = (G, d, `,D) be an instance of CFNE and assume w.l.o.g. that c(G) = G. We start
by showing that we do not need to consider solutions V ′ ⊆ V (G) for I that contain more
than 2k − 1 vertices from any component C of G−D.

I Lemma 19. If I has a solution, then it has a solution V ′ such that |V ′ ∩ V (C)| < 2k for
every component C of G−D.

Proof. Let V ′ be a solution for I and C be a component of G−D with |V ′ ∩ V (C)| ≥ 2k;
if no such component exists, then we are done. Let M be the set of all vertices in C, whose
degree is larger than d in G. Then (V ′ \V (C))∪M ∪D is also a solution for I and moreover
|(V ′ \ V (C)) ∪M ∪D| ≤ |V ′| − 2k + k + k ≤ |V ′|. By iterating the same process for every
component C with |V ′ ∩ V (C)| ≥ 2k, one obtains the desired solution for I. J
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Let C be a component of G − D and let M ⊆ V (C) be the set of all vertices with degree
larger than d in G. Then the signature of C, denoted by S(C), contains all pairs (D′,Γ)
such that D′ ⊆ D, and Γ is the set of all pairs (o, γ) such that:

o is an integer with 0 ≤ o < 2k, and
γ : D \ D′ → {0, . . . , 2k − 1} is a mapping such that there is a set V ′ ⊆ V (C) with
|V ′| = o satisfying the following conditions:
(S1) every vertex in M \ V ′ has degree at most d in G− (V ′ ∪D′) and
(S2) for every vertex v in D \D′, V ′ contains exactly γ(v) neighbors of v.

Informally, for every subset D′ of vertices that we decide to delete from D, the signature
tells us how many vertices in C we need to delete and how their deletion affects the degrees
of the remaining vertices in D −D′. Because we only need to consider solutions containing
less than 2k vertices from C (Lemma 19), the number of ways in which different solutions
effect the degrees of vertices in D is bounded, which allows us to compute the signatures.

I Lemma 20. The signature S(C) can be computed in time O(|V (C)|+ |E(C)|+ 2k(2k)22k )
for any component C of G−D.

Let D′ ⊆ D and C and C ′ be two distinct components of G−D. We say that C and C ′ are
equivalent w.r.t. D′ if (D′,Γ) ∈ S(C) ∩ S(C ′) for some Γ. Let P(D′) be the partition of all
components of G−D into equivalence classes and for an equivalence class C ∈ P(D′) let Γ(C)
denote the set Γ such that (D′,Γ) ∈ S(C) for every C ∈ C. Note that |P(D′)| ≤ 2k(2k)k .

I Lemma 21. An instance I = (G, d, `,D) has a solution if and only if there is a subset D′
of D and a mapping α that assigns to every C ∈ P(D′) and every (o, γ) ∈ Γ(C) a natural
number satisfying the following conditions:
(C1) (

∑
C∈P(D′)∧(o,γ)∈Γ(C) o · α(C, (o, γ))) + |D′| ≤ `, i.e., the budget ` is not exceeded,

(C2)
∑

(o,γ)∈Γ(C) α(C, (o, γ)) = |C| for every C ∈ P(D′), i.e., all components are considered,
(C3)

∑
C∈P(D′)∧(o,γ)∈Γ(C) γ(v) · α(C, (o, γ) ≥ |NG−D′(v)| − d for every v ∈ D \D′, i.e., the

degree conditions for the vertices in D \D′ are satisfied.

Proof. Towards showing the forward direction let V ′ be a solution for I. We start by setting
D′ = D∩V ′. Consider a component C of G−D and let Γ be the set such that (D′,Γ) ∈ S(C).
Because of Lemma 19, we can assume that |V ′ ∩ V (C)| < 2k. Hence Γ contains a pair
(|V ′ ∩ V (C)|, γ), which we denote by A(C), such that for every v ∈ D \D′, it holds that v
has exactly γ(v) neighbors in V ′ ∩ V (C). For every C ∈ P(D′) and (o, γ) ∈ Γ(C), we now
set α(C, (o, γ)) to be the number of components C in C with A(C) = (o, γ) and claim that α
satisfies the conditions (C1)–(C3). Because (

∑
C∈P(D′)∧(o,γ)∈Γ(C) o·α(C, (o, γ)))+|D′| = |V ′|

and |V ′| ≤ `, we obtain that α satisfies (C1). Condition (C2) follows immediately from the
definition of α. Finally, Condition (C3) follows because for every v ∈ D \D′ it holds that∑
C∈P(D′)∧(o,γ)∈Γ(C) γ(v) ·α(C, (o, γ)) is equal to the number of neighbors of v in V ′ \D and

the fact that v can have at most d neighbors in G− V ′.
Towards showing the reverse direction let D′ ⊆ D and α be a mapping satisfying (C1)–

(C3). For a component C ∈ C and (o, γ) ∈ Γ, where C ∈ P(D′) and (D′,Γ) ∈ S(C), we
denote by V (C, (o, γ)) a subset of V (C) of size o satisfying the conditions (S1) and (S2)
in the definition of a signature. Then a solution V ′ for I is obtained as follows. For any
C ∈ P(D′) we take the union of V (C, (o, γ)) for exactly α(C, (o, γ)) components C ∈ C.
Condition (C2) ensures that there are enough components in C and moreover that this way
we use every component exactly once. Finally, we add D′ to V ′. Because of Condition (C1),
we have that |V ′| ≤ `. Moreover, because of Condition (C3), we obtain that every vertex in
D \D′ has degree at most d in G− V ′. The same holds for every vertex in any component
C of G−D, because of Property (S1). Hence V ′ is a solution for I of size at most `. J
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With the help of the above lemma, we can express the existence of a solution in terms
of the solution of an integer linear program with a bounded number of variables, which in
turn can be solved in fpt-time w.r.t. the number of variables [28].

I Theorem 22. CFNE is fixed-parameter tractable.

Proof sketch. Let I = (G, d, `,D) be the given instance of CFNE. The algorithm first
computes the signature S(C) for every component C of G − D according to Lemma 20.
It then uses the characterization given in Lemma 21 to decide whether I has a solution.
Namely, for every D′ ⊆ D the algorithm constructs an ILP instance I ′ whose optimum is
at most ` − |D′| if and only if the BDD instance I has a solution V ′ with V ′ ∩ D = D′.
In accordance with Lemma 21 the ILP instance I ′ has one variable, denote by xC,(o,γ), for
every C ∈ P(D′) and (o, γ) ∈ Γ(C) and consists of the following constraints:

minimize
∑

C∈P(D′),(o,γ)∈Γ(C)

o · xC,(o,γ)

subject to
∑

(o,γ)∈Γ(C)

xC,(o,γ) = |C| ∀C ∈ P(D′)∑
C∈P(D′)∧(o,γ)∈Γ(C)

γ(v) · xC,(o,γ) ≥ |NG−D′(v)| − d∀v ∈ D \D′

Observe that there is a one-to-one correspondence between assignments β for the variables
in I ′ and the assignment α defined in Lemma 21. Moreover, the constraints of I ′ ensure
Condition (C2) and (C3) and Condition (C1) can be satisfied if and only if the optimum
value of I ′ is at most `− |D′|. This completes the description of the algorithm. J

As our final result, we show a kernel lower bound for CFNE.

I Theorem 23. CFNE has no polynomial kernel unless coNP ⊆ NP/poly.

Proof sketch. We give a polynomial parameter transformation [2, Proposition 1] from the
well-known Set Cover problem parameterized by the size of the universe. It is known that
Set Cover does not admit a polynomial kernel unless coNP ⊆ NP/poly [10]. Given an
instance I = (U,F , k) of Set Cover, we construct an instance I ′ = (G, d, `,D) of CFNE
as follows. G has one vertex vu for every u ∈ U as well as one vertex wF for every F ∈ F .
Moreover, G has an edge between a vertex vu and a vertex wF if and only if u ∈ F . We set
D = { vu | u ∈ U }. Let ∆ be the maximum degree of any vertex in G. Then we attach to
every vertex in D new leaf vertices such that the degree of every vertex in D becomes ∆+1.
This completes the construction of G. Finally, we set d = ∆ and ` = k. Because G −D is
an independent set, this shows that cfn(G) ≤ k. To complete the proof, it remains to show
that I has a solution if and only if so does I ′. J

6 Concluding Notes

Our results close a wide gap in the understanding of the complexity landscape of BDD
parameterized by structural parameters. In particular, they not only resolve the main open
question from previous work in the area [5], but push the lower bounds significantly further,
specifically to deletion distance to trees of bounded depth. Moreover, we identified structural
parameterizations which are better suited for the problem at hand and used these to obtain
two novel fixed-parameter algorithms for BDD.
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