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Abstract
Feedback Vertex Set is a classic combinatorial optimization problem that asks for a minimum
set of vertices in a given graph whose deletion makes the graph acyclic. From the point of view
of parameterized algorithms and fixed-parameter tractability, Feedback Vertex Set is one of
the landmark problems: a long line of study resulted in multiple algorithmic approaches and deep
understanding of the combinatorics of the problem. Because of its central role in parameterized
complexity, the first edition of the Parameterized Algorithms and Computational Experiments
Challenge (PACE) in 2016 featured Feedback Vertex Set as the problem of choice in one of
its tracks. The results of PACE 2016 on one hand showed large discrepancy between performance
of different classic approaches to the problem, and on the other hand indicated a new approach
based on half-integral relaxations of the problem as probably the most efficient approach to the
problem. In this paper we provide an exhaustive experimental evaluation of fixed-parameter and
branching algorithms for Feedback Vertex Set.
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1 Introduction

The Feedback Vertex Set problem asks to delete from a given graph a minimum number
of vertices to make it acyclic. It is one of the classic graph optimization problems, appearing
already on Karp’s list of 21 NP-hard problems [24]. In this work, we are mostly focusing on
fixed-parameter algorithms for the problem, that is, exact (and thus exponential-time, as we
are dealing with an NP-hard problem) algorithms whose exponential blow-up in the running
time bound is confined by a proper parameterization. More formally, a fixed-parameter
algorithm on an instance of size n with parameter value k runs in time bounded by f(k) · nc

for some computable (usually exponential) function f and a constant c independent of k.
Feedback Vertex Set is one of the most-studied problems from the point of view

of parameterized algorithms. A long line of research [4, 15, 16, 29, 23, 12, 18, 9, 8, 3, 11]
lead to a very good understanding of the combinatorics of the problem, multiple known
algorithmic approaches, and a long “race” for the fastest parameterized algorithm under the
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12:2 Experimental Evaluation of Parameterized Algorithms for FVS

parameterization of the solution size (i.e., the parameter k equals the size of the solution we
are looking for). Among many approaches, one can find the following:
1. A classic randomized algorithm of Becker et al. [3] with expected running time 4knO(1).

This algorithm is based on the following observation: after performing a set of simple
reductions that reduce the graph to minimum degree at least 3, at least half of the edges
of the graph are incident with solution vertices, so a random endpoint of an edge choosen
uniformly at random is in the solution with probability at least 1/4.

2. A line of research of branching algorithms based on iterative compression and an intricate
measure to bound the size of the branching tree [9, 8, 26], leading to a simple 3.62knO(1)-
time deterministic algorithm [26].
These algorithms solve a “disjoint” version of the problem where, given a set U ⊆ V (G)
such that G− U is a forest, one seeks for a solution disjoint with U of size at most k. A
branching algorithm picks a vertex v ∈ V (G) \ U and includes it in the solution (deletes
and decreases k by one) or moves to U . The crucial observation is that here, apart from
k, the number of connected components of G[U ] is a useful potential to measure the
progress of a branching algorithm: if the branching pivot v has many neighbors in U ,
then moving it to U decreases the number of connected components significantly.

3. A polynomial-time algorithm for Feedback Vertex Set in subcubic graphs [8] (see
also [26] for a simpler proof), used heavily in other approaches as a subroutine.
The algorithm build on a reduction from Feedback Vertex Set in cubic graphs to the
matroid matching problem in graphic matroids, which is polynomial-time solvable.

4. A Monte Carlo algorithm running in time 3knO(1) via the Cut&Count technique [11].
The Cut&Count technique is a generic framework for turning algorithms with running
time 2O(t log t)nO(1) for connectivity problems in graphs of treewidth bounded by t into
Monte-Carlo algorithms with running time bounds ctnO(1) by changing the “connectivity”
requirement into a modulo-2 counting requirement. For Feedback Vertex Set, the
base of the exponent has been optimized to c = 3, and has been proven to be optimal
under the Strong Exponential Time Hypothesis.

5. A surprisingly simple branching algorithm by Cao [7] with a running time bound 8knO(1).
Cao [7] shown that the following algorithm has running time bounded by 8knO(1): after
applying simple reduction rules, one either branch on maximum-degree vertex or, if the
maximum degree is at most 3, solve the instance in polynomial time.

6. A branching algorithm based on intricate half-integral relaxation due to Imanishi and
Iwata [19, 20] with running time bound 4kkO(1)n.
The work of Iwata, Wahlström, and Yoshida [21] showed a generic framework for branching
algorithms for various graph separation problems. In the case of Feedback Vertex
Set, [21] shows that the following local problem has a polynomial-time solvable half-
integral relaxation: given a root vertex s ∈ V (G), find a minimum-size set X ⊆ V (G)\{s}
such that the connected component of G −X that contains s is a tree. Imanishi and
Iwata [19, 20] showed a linear-time combinatorial algorithm that solves this half-integral
relaxation. The final algorithm follows the framework of [21]: it branches on vertices for
which the half-integral relaxation solution was undecided (i.e., gave it the non-integral
value of 1/2).

Another line of research concerns so-called polynomial kernels for the problem [6, 5, 30, 20].
Parameterized Algorithms and Computational Experiments challenge is an annual pro-

gramming challenge started in 2016 that aims to “investigate the applicability of algorithmic
ideas studied and developed in the subfields of multivariate, fine-grained, parameterized, or
fixed-parameter tractable algorithms”. With two successful editions so far [13, 14] and the
third one currently being conducted, PACE continues to bring together theory and practice
in parameterized algorithms community.
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The first edition of PACE in 2016 featured Feedback Vertex Set as the problem of
choice in Track B. The winning entry by Imanishi and Iwata, implementing the aforementioned
algorithm based on half-integral relaxation, turned out to outperform the second entry by
the second author of this work [28], based on the algorithm of Cao [7]. The winning margin
has been substantial: out of 130 test cases, the winning entry solved 84, while the second
entry solved 66.

These results indicated the branching algorithms based on half-integral relaxation of
the problem as potentially most efficient approach to Feedback Vertex Set in practice.
Furthermore, experimental results of Akiba and Iwata [2] showed big potential in a branching
algorithm based on the same principle for the Vertex Cover problem.

In the light of the above, we see the need to rigorously experimentally evaluate different
approaches to Feedback Vertex Set. While the results of PACE 2016 indicate algorithms
based on half-integral relaxation as potentially fastest, a lot of differences may come from
the use of different preprocessing routines, different choice of lower bounding or prunning
techniques, or even simply different data structures handling basic graph operations.1

In this work, we offer such a comparison. We implement a number of branching strategies
mentioned above. Our implementations use the same data structures for handling graphs,
the same implementations of basic graph operations, the same basic reduction rules such
as suppressing degree-2 vertices, and the same branching framework. Most of the tested
approaches differ only at a small fraction of code: they usually differ by the choice of the
branching pivot, and some use one or more approach-specific reduction rules.

In our experiments, we follow up the set up of PACE 2016: we take their 230 instances
(100 public and 130 hidden, on which evaluation took place) as our benchmark set, allow
each algorithm to run for 30 minutes on each test instance.

The paper is organized as follows. In Section 2 we discuss the studied approaches and
some technical details of the implementations. Section 3 discusses the setup of the experiment.
Section 4 presents results, while Section 5 concludes the paper.

2 Studied algorithms

Most of the known branching algorithm for Feedback Vertex Set, in particular all
algorithms studied in our work, follow the following general framework.

Every instance to be solved by a recursive branching algorithm constists of a multigraph
G, a set U ⊆ V (G) of undeletable vertices and allowed budget k for solution size. The goal is
to find a set X ⊆ V (G) \ U of size at most k such that G−X is a forest. Each branching
step consists of picking a vertex v ∈ V (G) \ U and branching into two cases: either v gets
picked to a solution (and the algorithm recurses on the instance (G−{v}, U, k−1)) or moved
to set U (and the algorithm recurses on the instance (G, U ∪ {v}, k)).

The intuition of the progress of the algorithm is as follows. In the first branch, the budget
k gets decreased. For the second branch, note that the algorithm can safely terminate for
instances with G[U ] not being acyclic. Thus, if the branching pivot v has d neighbors in U ,

1 A good example here is as follows. In Feedback Vertex Set, it is natural to keep the graph in the
form of adjacency lists, as the considered graphs are usually of constant average degree. However, given
an edge uv, it is not clear whether the vertex u in its adjacency list should only store the vertex v, or
also a pointer to the position where v keeps u in its adjacency list. On one hand, such pointers greatly
simplify the operations of deleting a vertex or contracting an edge. On the other hand, they effectively
double the size of the graph data structure, increasing the cost of copying the graph in the branching
step.
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then the number of connected components of G[U ∪ {v}] decreases by (d− 1) as compared
to G[U ].

Between branching step, the algorithm is allowed to perform a number of reduction
(preprocessing) steps. In the literature, a number of simple reduction steps are known that
are performed by all our algorithms:
1. If k gets negative or G[U ] is not acyclic, stop.
2. Remove all vertices of degree at most 1.
3. If two vertices are connected by more than 2 parallel edges, reduce their multiplicity to 2.
4. If there exists a vertex v that has a self-loop, or there exists a single connected component

D of G[U ] more than one edge incident with v and a vertex of D (i.e., there exists a cycle
C in G with v being the only vertex of V (C) \U), then greedily include it in the solution
(i.e., delete it and decrease k by one).

5. Suppress vertices of degree 2. That is, if a vertex v is of degree 2 with incident edges vu

and vw is present, delete v and replace it with an edge uw.
6. If there exists a vertex v with two neighbors u and w, such that vu is a single edge and

vw is a double edge, greedily include w in the solution.
For efficiency, the above reduction rules are implemented in the form of a queue of vertices
to reduce: when the number of distinct neighbors of a vertex drop to two or less, or a vertex
gets a self-loop, it is enqueued, and preprocessing routines start by clearing up the queue.

Other preprocessing steps used by some of our algorithms are:
Split into connected components. If the instance becomes disconnected, solve each connec-

ted component independently.
Solving subcubic instances. As proven by [8], if every vertex v ∈ V (G) \ U is of degree at

most three, then the corresponding instance is polynomial-time solvable. Kociumaka and
Pilipczuk [26] provided a simpler proof of this result via a reduction to the matroid parity
problem in graphic matroids, which proceeds as follows. First, apply the known reduction
rules that reduce the problem to the case when every v ∈ V (G) \ U is of degree exactly
three. Second, subdivide every edge uv ∈ E(G− U) with a new vertex xuv ∈ U , so that
V (G) \U is an independent set. Third, for every v ∈ V (G) \U , pick two out of the three
edges incident to v as a pair Pv. Let Q = E(G) \

⋃
v∈V (G)\U Pv be the remaining edges;

note that every v ∈ V (G) \ U is of degree exactly 1 in the graph (V (G), Q). Then, it is
easy to observe that the Feedback Vertex Set problem is equivalent to picking a set
Y ⊆ V (G) \ U of maximum cardinality such that (V (G), Q ∪

⋃
v∈Y Pv) is a forest. This

condition is the same as requiring Y to me a maximum matching in the graphic matroid
of the graph G/Q (G with edges of Q contracted) with pairs (Pv)v∈V (G)\U .
In some of our algorithms, we use the approach of [26] to solve such instances. As
the underlying solver to the matroid matching problem, we use the augmenting path
algorithm of Gabow and Stallmann [17].

Solution lower bound. Consider an instance (G, U, k) and let v1, v2, . . . be the vertices of
V (G) \ U in the nonincreasing order of degrees in G. If (G, U, k) admits a solution X

of size j, then G−X has at least |E(G)| −
∑j

i=1 degG(vi) edges. On the other hand, if
G−X is a forest, it has less than |V (G)| − j edges. Consequently, we can safely stop if
for all 0 ≤ j ≤ k we have that

|E(G)| −
j∑

i=1
degG(vi) ≥ |V (G)| − j.

The above prunning strategy has been used in the entry of Imanishi and Iwata [19].
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Unless otherwise noted, all our implementations split instances into connected components.
We also compare a number of selected approaches without this preprocessing step to see its
impact on performance.

The algorithm of Cao [7] uses all aforementioned simple reduction rules as well as the
solver of subcubic instances. On a branching step, it simply chooses the vertex of highest
degree. As shown by Cao, such an algorithm has running time bound 8knO(1). We also test
a variant of the algorithm of Cao that first branches on vertices incident with double edges, a
variant that does not use the subcubic instance solver, and a variant that prunes the search
tree via the aforementioned lower bound.

2.1 Approximation and iterative compression
The algorithms of [9, 8, 26] operate in the framework of iterative compression. That is, their
central subroutine solves a seemingly simpler problem, where additionally a slightly too large
solution Y is given, and the algorithm first branches on the vertices of Y (putting each y ∈ Y

into the solution or into set U). Since at the beginning G− Y is a forest, and every vertex
of Y is either deleted or put into U , we obtain the property that G − U is a forest. This
greatly helps in the analysis.

In the literature, the set Y is traditionally taken from the iterative compression step. One
picks an order V (G) = {v1, v2, . . . , vn} and solves iteratively Feedback Vertex Set on
graphs Gi = G[{v1, v2, . . . , vi}]. Given a solution Xi−1 to Gi−1, one can set Y = Xi−1 ∪{vi}
for Gi.

However, such an approach leads to multiple invocation of the same algorithm, and a
substantial multiplicative overhead in the running time bound. In our algorithms, we instead
find Y via a simple heuristic: reduce the graph via simple reductions as long as possible and,
when impossible, delete the vertex of highest degree. In Section 4 we discuss the performance
of this heuristic on our test data.

Our branching framework keeps a queue of branching hints and, if nonempty, the
algorithm always branches on a vertex from the queue. For algorithms based on iterative
compression, the queue is initiated by an approximate solution found by our heuristic. This
corresponds to passing the set Y to the algorithms based on iterative compression, but allows
to reduce some of the vertices of the set Y by reductions after a number of branching steps.
If an algorithm does not use iterative compression, the queue is empty through the entire
run of the algorithm.

The algorithm of [9] implements the iterative compression framework and branches on a
vertex of V (G) \ U that is incident to maximum number of edges leading to U . As shown
in [9], such an algorithm has 5knO(1) time bound guarantee.

The algorithm of [26] is arguably a simplification of the arguments of [8], so we implement
only the first one. It modifies the algorithm of [9] in the following way:

It leaves alone vertices v ∈ V (G) \ U that are of degree 3 and all their incident edges
lead to U (such vertices are called henceforth tents). The crux is that if every vertex
v ∈ V (G) \U is a tent, then we can apply the polynomial-time algorithm of [8, 26] to the
instance. In other words, tents form a “polynomial-time solvable” part of the instance.
Given a vertex v ∈ V (G) \ U of degree 3 with exactly one neighbor u in V (G) \ U (and
other 2 neighbors in U), it proceeds as follows:

subdivide the edge uv with a new vertex w ∈ U ; note that this does not change the
set of feasible solutions to the Feedback Vertex Set problem;
marks w irreducible for the reduction suppressing degree-2 vertices.
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Note that this operation turns v into a tent, while reducing the number of vertices of
V (G) \ U that are not tents.

It applies the solver for subcubic instances if every vertex of V (G) \ U is a tent.
As shown in [26], such an algorithm has 3.62knO(1) time bound guarantee.

Inspired by the methods of choice of branching pivots of the algorithms [9, 8, 26], we also
test a variant of Cao’s algorithm where the choice of the branching pivot is as in [9]: vertex
with maximum number of neighbors in U (but, contrary to [9], no iterative compression).

Additionally, we check how much the algorithms can be sped up by adding prunning
via the aforementioned lower bound and if the Cao’s algorithm can benefit from the use of
iterative compression.

2.2 Branching based on half-integral relaxation

Iwata, Wahlström, and Yoshida showed a generic approach to numerous transversal problems
via half-integral relaxations [21]. They are all based on the following principle: a half-integral
relaxation of a variant of the problem is defined and shown to be polynomial-time solvable.
Furthermore, the solution to the half-integral relaxation has some persistency property: it
either indicates some greedy choice for the integral problem, or indicates a good branching
pivot. In this approach, the time needed to find a solution of the half-integral relaxation is
critical.

The algorithms of [21] run in linear time for edge deletion problems, but unfortunately
for vertex-deletion problems the subroutine that finds the half-integral relaxation requires
solving linear programs. The main contribution of Iwata [20] (implemented in the PACE 2016
entry by Iminishi and Iwata [19]) is a combinatorial linear-time solver for the half-integral
relaxation in the special case of Feedback Vertex Set. We reimplement this solver in our
branching framework.

Iwata [20] also observed that the half-integral relaxation can be used to find a polynomial
kernel for the problem, improving the previous seminal kernel of Thomassé [30]. Apart
from the reduction rules mentioned before, this kernel employs another involved reduction
rule, applicable on vertices of degree more than 2k. All our implementations based on a
half-integral relaxation implement this preprocessing step as well.

The half-integral relaxation of [21, 20] does not solve Feedback Vertex Set directly, but
rather given an undeletable vertex u ∈ U , tries to separate an acyclic connected component
(i.e., a tree) containing u from the rest of the graph. On high level, the branching strategy
of the algorithm is as follows. If U = ∅, we branch on any vertex; we choose one of highest
degree here for efficiency. Otherwise, we use a vertex u ∈ U as a root for the half-integral
relaxation. The persistence properties of the relaxation ensure that we can perform a greedy
step unless the relaxation put values 0.5 on all neighbors of u. If this is the case, we branch
on a neighbor of u; we choose highest-degree neighbor here for efficiency. Note that once a
tree component with u gets separated, simple reduction rules delete it from the graph.

Since the kernelization routine of [20] is computationally expensive, it is not obvious
if one should apply it at every step. We experiment with two variants: when we run the
kernelization step at every step, or only at steps with U = ∅. Furthermore, we also check
how much prunning with the lower bound heuristic or solver of subcubic instances helps.
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Table 1 Comparison of the size of the approximate and exact solution found on 127 instances.

difference approximation minus optimum 0 1 2 >2 > 10% · optimum
number of instances 89 30 4 4 5

3 Experiment setup

3.1 Hardware and code

The experiments have been performed on a cluster of 16 computers at the Institute of
Informatics, University of Warsaw. Each machine was equipped with Intel Xeon E3-1240v6
3.70GHz processor and 16 GB RAM. All machines shared the same NFS drive. Since the
size of the inputs and outputs to the programs is small, the network communication was
negligible during the process.

The code has been writen in C++ and is available at [25] or at project’s webpage [1].

3.2 Test cases

As discussed in the introduction, we repeat the setup of the PACE 2016 challenge [13]. At
PACE 2016, the organizers gathered 230 graphs from different sources [27]. A subset of 100
of them has been made public prior to the competition deadline, and the final evaluation has
been made on the hidden 130 instances. We run every tested algorithm on each of the 230
instances with 30 minutes timeout.

Our of the test instances, we gathered two subsets to compare actual running times of
the algorithm. The first set, A, consists of test cases solved by all algorithms, but with
substantial running time of some of them. The second set, B, is defined similarly, but with
regards only to the algorithms that use prunning via the lower bound. More precisely, set A

consists of the following 14 tests:
hidden_001 hidden_007 hidden_012 hidden_056 hidden_065 hidden_083 hidden_099
hidden_106 public_011 public_014 public_037 public_069 public_076 public_086

The set B consists of the following 7 tests:
hidden_022 hidden_041 hidden_068 hidden_088 public_035 public_066 public_067

We also gather sizes of approximate solution found by our heuristic and compare it with the
optimal size found by the algorithm.

4 Results

A full table with running times of each program at each test can be found at project’s
website [1].

4.1 Performance of the approximation heuristic

We compared the performance of the approximation heuristic discussed in Section 2.1 (i.e.,
greedily take the largest-degree vertex after applying the simple reduction rules) with the
size of the optimum solution that was known to us on 127 instances. The results are in
Table 1. On only 8 instances, the approximate solution was more than one vertex larger
than the optimum one. Consequently, the approximate solution can serve well as the basis
for iterative compression.
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Table 2 Comparison of different algorithms. The first column indicates the base of the algorithm:
Cao’s [7], CFLLV for Chen et al. [9], KP for Kociumaka and Pilipczuk [26], and II for Imanishi
and Iwata [19, 20]. II/kernel stands for the algorithm of [19, 20] that runs the kernelization step
more often, namely at every branching step. Cao/double stands for the algorithm of [7] that first
branches on double edges. Cao/undel stands for the algorithm of [7] that chooses branching pivot
with regards to maximum degree to undeletable vertices. In the optimizations columns, CC stands
for splitting into connected components, deg3 for the use of solver of subcubic instances, LB for the
use of prunning with the lower bound, and IC stands for iterative compression.

algorithm optimizations solved instances total time (MM:SS.ms)
CC deg3 LB IC all public hidden set A set B

Cao + 100 48 52 35:17.21 -
CFLLV + 91 44 47 35:16.06 -
KP + + 101 49 52 36:22.48 -
Cao + + 101 48 53 37:31.83 -
CFLLV + + 91 44 47 31:23.63 -
KP + + + 101 49 52 32:00.49 -
Cao + 91 43 48 38:00.78 -
II + 92 46 46 34:51.17 -
II/kernel + 90 45 45 75:11.16 -
Cao + + + 123 62 61 0:19.28 10:38.88
Cao/double + + + 122 62 60 3:22.52 21:31.54
Cao/undel + + + 118 58 60 0:35.67 8:39.05
Cao + + + + 123 62 61 0:19.99 10:37.88
Cao/double + + + + 122 62 60 3:13.71 14:31.66
Cao/undel + + + + 118 58 60 0:36.88 8:12.80
CFLLV + + + 117 57 60 0:37.61 8:12.88
KP + + + + 118 58 60 0:38.95 8:28.46
Cao + + 122 61 61 0:22.94 10:28.32
II + + 117 58 59 1:36.79 25:31.95
II + + + 118 59 59 1:37.08 25:33.76
II/kernel + + 109 55 54 7:24.42 -

4.2 Comparison

We have run 21 different algorithms on the whole test data. A CSV file with full results is
available at the project’s webpage [1]. Table 2 contains aggregated values: number of solved
test instances within the time limit (30 minutes per instance) and the total running time on
sets A and B. Please see the caption of Table 2 for description of the notation used in the
table.

The first nine algorithms do not use prunning via the lower bounding technique, and
the first three do not use splitting into connected components. They are mostly meant to
compare basic approaches.

Without the lower bound prunning, the best approaches are Cao’s [7] and Kociumaka-
Pilipczuk [26], and they seem to be rather incomparable. The other algorithm based on
iterative compression of Chen et al. [9] is clearly outperformed by the other two, and the
same holds for the branching algorithm based on half-integral relaxation [19, 20].

The first three rows differ from rows 4-6 by the usage of splitting into connected com-
ponents. They show that the effect of this improvement is small, and even hurt a bit Cao’s
algorithm [7].
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The 7th row treats Cao’s algorithm [7] without the solver of the subcubic instances. It
indicates that this solver is essential for the performance of Cao’s algorithm.

The 9th row treats the Imanishi-Iwata algorithm [19, 20] with more often application of
the kernelization step, namely at every branching step (not only at the ones with U = ∅). It
shows that the step is too expensive to execute it that often.

Let us now discuss the algorithms with the lower bound prunning step. First, the results
show that the prunning step greatly improves performance for all algorithms.

With regards to the variants of Cao’s algorithm [7], the results show that any mutation of
the branching pivot rule here is undesirable. Also, adding the iterative compression step does
not seem to have any particular impact on the performace. Interestingly, the negative effect
of dropping the solver of the subcubic instances mostly disapper if one adds the prunning
step.

For the branching algorithm based on the half-integral relaxation [19, 20], the last three
rows of Table 2 again confirm the corollary that more often application of the kernelization
step is undesirable. There is little difference with addition of the solver of subcubic instances
(the main difference comes from the fact that the test set contains one huge cubic graph,
public_84, which is not amenable to any branching technique we tested).

Finally, in our experiments the best variant of Cao’s algorithm [7] with the prunning
slightly outperforms the best variant of the branching algorithm based on half-integral
relaxations [19, 20]. However, the difference (5 tests more and roughly 3× speed-up on sets
A and B) is not big enough to decisively conjecture its advantage.

First, it is possible that a 3× speed-up can be gained by low-level optimizations of the
solver of the half-integral relaxations. Arguably, Cao’s algorithm [7] is much simpler and
thus easier to optimize. Second, it may be also an artifact of the chosen test data: there are
5 tests in the data set that were solved by the penultimate algorithm in Table 2, but not by
the 10th (and 10 tests vice-versa). That is, there are types of instances solved significantly
faster by one of the approaches but not by another.

We conclude with a remark about comparison with PACE’16 results [13], where the
entry of Imanishi and Iwata [19] solved 84 hidden instances while the entry of the second
author [28], based on Cao’s algorithm [7], solved 66. While this data seemingly stands
in contradiction with the results in Table 2, one should note that the two entries differ
significantly in other internals. Most importantly, the first entry used prunning with the
lower bound, while the second one did not. Other difference includes: removal of bridges
in the first entry vs splitting into 2-connected components in the second, and the use of
bounded treewidth subroutine in the second entry. In other words, our results indicate that
the big difference in the performance of the first two entries at PACE 2016 were mainly
caused by the difference in preprocessing routines and prunning heuristics (and possibly
low-level optimizations) rather than in the underlying base branching algorithm.

5 Conclusions

We have conducted a thorough experimental evaluation of various parameterized algorithms
for the Feedback Vertex Set problem, following the setup of Parameterized Algorithms
and Computational Experiments Challenge from 2016 [13]. Our results does not confirm
greater advantage of the approach based on half-integral relaxations that was suggested
by PACE’16 results, but rather suggest that lower bounding techniques and low-level
optimizations were decisive at PACE’16.
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On the other hand, the approach via half-integral relaxation turned out to be almost on
par with the best variant of Cao’s algorithm [7]. This still indicates big potential in this
approach, in particular in the light of the recent (theoretical) generalization of this approach
to other problems [22]. In particular, it would be interesting to see an experimental evaluation
of parameterized algorithms for Multiway Cut with the comparison of the approach of [22]
with the more classic ones via so-called important separators (see Chapter 8 of [10]). Other
interesting problem to study is Odd Cycle Transversal and its edge-deletion variant
Edge Bipartization, where again both classic and half-integral relaxation-based approaches
are known.
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