
Fleet Management for Autonomous Vehicles
Using Multicommodity Coupled Flows in
Time-Expanded Networks

Sahar Bsaybes
Université Grenoble Alpes
Institute of Engineering (Grenoble INP), G-SCOP F-38000 Grenoble, France
sahar.bsaybes@grenoble-inp.fr

Alain Quilliot
Université Clermont Auvergne
Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes (LIMOS)
BP 10125, 63173 Aubière Cedex, France
alain.quilliot@uca.fr

Annegret K. Wagler
Université Clermont Auvergne
Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes (LIMOS)
BP 10125, 63173 Aubière Cedex, France
annegret.wagler@uca.fr

Abstract

VIPAFLEET is a framework to develop models and algorithms for managing a fleet of Individual
Public Autonomous Vehicles (VIPA). We consider a homogeneous fleet of such vehicles distributed
at specified stations in a closed site to supply internal transportation, where the vehicles can be
used in different modes of circulation (tram mode, elevator mode, taxi mode). We treat in this
paper a variant of the Online Pickup-and-Delivery Problem related to the taxi mode by means of
multicommodity coupled flows in a time-expanded network and propose a corresponding integer
linear programming formulation. This enables us to compute optimal offline solutions. However,
to apply the well-known meta-strategy Replan to the online situation by solving a sequence
of offline subproblems, the computation times turned out to be too long, so that we devise a
heuristic approach h-Replan based on the flow formulation. Finally, we evaluate the performance
of h-Replan in comparison with the optimal offline solution, both in terms of competitive analysis
and computational experiments, showing that h-Replan computes reasonable solutions, so that
it suits for the online situation.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics

Keywords and phrases fleet management, offline and online pickup and delivery problem, mul-
ticommodity flows

Digital Object Identifier 10.4230/LIPIcs.SEA.2018.25

Funding This work was founded by the French National Research Agency, the European Com-
mission (Feder funds) and the Région Auvergne in the Framework of the LabEx IMobS3.

© Sahar Bsaybes, Alain Quilliot, and Annegret K. Wagler;
licensed under Creative Commons License CC-BY

17th International Symposium on Experimental Algorithms (SEA 2018).
Editor: Gianlorenzo D’Angelo; Article No. 25; pp. 25:1–25:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sahar.bsaybes@grenoble-inp.fr
mailto:alain.quilliot@uca.fr
mailto:annegret.wagler@uca.fr
http://dx.doi.org/10.4230/LIPIcs.SEA.2018.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 Fleet Management for Autonomous Vehicles

1 Introduction

The project VIPAFLEET aims at contributing to sustainable mobility through the de-
velopment of innovative urban mobility solutions by means of fleets of Individual Public
Autonomous Vehicles (VIPA) allowing passenger transport in closed sites like industrial areas,
medical complexes, campuses, or airports. This innovative project involves different partners
in order to ensure the reliability of the transportation system [3]. A VIPA is an autonomous
vehicle that does not require a driver nor an infrastructure to operate. It is developed by
Easymile and Ligier [1, 2] thanks to innovative computer vision guidance technologies [21, 22],
whereas the fleet management aspect is studied in [9].

A fleet of VIPAs shall be used in a closed site to transport employees, customers and
visitors e.g. between parkings, buildings and from or to a restaurant at lunch breaks. To
supply internal transportation, a VIPA can operate in three different transportation modes:

Tram mode: VIPAs continuously run on predefined cycles in a predefined direction and
stop at a station if requested to let users enter or leave.
Elevator mode: VIPAs run on predefined lines and move to stations to let users enter or
leave, thereby changing their driving direction if needed.
Taxi mode: VIPAs run on a connected network to serve transport requests (from any
start to any destination station within given time windows).

This leads to a Pickup-and-Delivery Problem (PDP) in a metric space encoding the considered
closed site, where a fleet of servers shall transport goods or persons from a certain origin to a
certain destination. If persons have to be transported, we usually speak about a Dial-a-Ride
Problem. Many variants are studied in the literature, including the Dial-a-Ride Problem
with time windows [14, 15]. In our case, we are confronted with an online situation, where
transport requests are released over time [5, 8, 13]. Problems of this type are known to
be NP-hard, see e.g. [20], which also applies to the problem variant considered here, see
Section 2.

In [11], we focus on the economic aspect of the problem where the objective is to minimize
costs; several algorithms are presented and evaluated w.r.t. minimizing the total tour length
for tram and elevator mode.

The taxi mode is the most advanced circulation mode for VIPAs in the dynamic fleet
management system. The transport requests are released over time (from any start to any
destination station within a network G) and need to be served within a specified time window.
Due to the time windows, it is not always possible to serve all transport requests (e.g., if more
requests are specified for a same time window than VIPAs are available in the fleet). Hence,
the studied PDP is an admission problem as it includes firstly to accept/reject requests and
secondly to generate tours for the VIPAs to serve the accepted requests. We are confronted
with both the quality-of-service aspect of the problem (with the goal to accept as many
requests as possible) and the economic aspect (with the goal to serve the accepted requests
at minimum costs, expressed in terms of minimizing the total tour length of the constructed
tours), see Section 2.

In [10, 12], a variant of the PDP is studied where the tours are supposed to be nonpree-
mptive and at each time, (at most) one customer can be transported by a VIPA (note: one
customer can be a group of people less than the capacity of the VIPA), and a VIPA cannot
serve other requests until the current one is delivered. This leads to a load nonpreemptive
DARP with time windows and server capacity 1, where the goal is to accept as many requests
as possible and to find tours of minimal length to serve all accepted requests.

S. Bsaybes, A. Quilliot, and A.K. Wagler 25:3

In order to solve this problem, three approaches are considered in [12]:

a simple Earliest Pickup Heuristic that incrementally constructs tours by always choosing
from the subsequence σ(t′) of currently waiting requests this request with smallest possible
start time and appending it to the tour with shortest distance from its current end to the
requested origin;

the two well-known meta-strategies Replan and Ignore (which have been analysed in
[4, 6, 7] for the Online Traveling Salesman Problem and can be applied to any online
problem in time-stamp model 1, see e.g. [4, 6, 18, 23]) that determine which requests from
σ(t′) can be accepted, and compute optimal (partial) tours to serve them, where Replan
performs these tours until new requests are released, but Ignore completely performs
these tours before it checks for newly released requests.

It turned out that Ignore is not suitable for the studied admission problem since the decision
to accept/reject a request may be taken late, even after the time window to serve the
request which does not comply to the quality-of-service aspect of the fleet management.
Computational results from [12] show that Replan beats the Earliest Pickup Heuristic in
terms of the number of accepted requests, but can only accept 64% of requests compared to
the optimal offline solution.

This motivates to study another variant of the PDP related to the taxi mode without the
requirement of constructing nonpreemptive tours and transporting, at each time, at most one
customer in a VIPA on a direct way along a shortest path from its origin to its destination
in the network G.

This problem variant is subject of the present paper. It leads to a more complex model
and also computing solutions is more involved, but the expectation is to achieve a higher rate
of accepted requests and, therefore, a better quality-of-service level for the fleet management.

It is natural to interprete the studied PDP by means of flows in a time-expanded version
GT of the original network G as, e.g., proposed by [17, 16, 19] for other variants of PDPs. In
Section 3, we formulate the offline version of the problem as multicommodity coupled flows
in the time-expanded network GT , using one commodity per request coupled to the flow of
VIPAs.

In order to solve the online version of the problem, we apply in Section 4 a Replan-like
strategy that solves the online problem by computing a sequence of offline subproblems on
certain subsequences of requests. (Recall that Ignore turned out to be not suitable for the
studied admission problem, hence we focus here on Replan only.)

Computational experiments revealed that computing optimal offline solutions for the
subproblems requires already long computation times, too long and thus not suitable for
the online situation. However, we observed that only a small percentage of arcs in the
time-expanded network GT is used in the optimal solutions, so the idea is to reduce GT to a
network containing only arcs which are taken in the optimal solution with high probability,
and then to compute the multicommodity coupled flows in the reduced network only. This
leads to the flow-based heuristic h-Replan for the offline version of the studied problem.

1 There are two common online paradigms, the sequence model and the time-stamp model, which differ in
the way how information becomes available to the online algorithm: in the sequence model, the requests
are given one by one and need to be served immediately and in this order, whereas in the time-stamp
model, the requests become known over time at their release dates which allows the online algorithm to
postpone and revoke decisions.

SEA 2018

25:4 Fleet Management for Autonomous Vehicles

In Section 5, we evaluate the performance of h-Replan in comparison with the optimal
offline solution both in theory (with the help of competitive analysis) and in practice (with
the help of some computational results). We close with some concluding remarks on our
approaches.

The results presented here were studied in [9].

2 Problem description and model

As proposed in [9, 11], we embed the VIPAFLEET management problem in the framework
of a metric task system.

We encode the closed site where the VIPAFLEET system is running as a metric space
M = (V, d) induced by a connected network G = (V,E), where the nodes correspond to
stations, edges to their physical links in the closed site, and the distance d between two nodes
vi, vj ∈ V to the length of a shortest path from vi to vj in G. In V , we have a distinguished
origin vo ∈ V , the depot of the system, where all VIPAs are parked when the system is not
running, i.e., outside a certain time horizon [0, T].

An operator manages a fleet of k VIPAs each with a capacity for Cap passengers. The
fleet management shall allow the operator to decide when and how to move the VIPAs in
the network, and to assign requests to VIPAs. Hereby, any request rj is defined as a 6-tuple
rj = (tj , xj , yj , pj , qj , zj) where

tj ∈ [0, T] is the release date (i.e., the time when rj becomes known),
xj ∈ V is the origin node,
yj ∈ V is the destination node,
pj ∈ [0, T] is the earliest possible start time,
qj ∈ [0, T] is the latest possible arrival time,
zj specifies the number of passengers,

where tj , pj , and qj are certain discrete time points within [0, T] that satisfy tj ≤ pj ,
pj + d(xj , yj) ≤ qj and where zj ≤ Cap needs to hold2. The operator monitors the evolution
of the requests over time and

decides which requests can be accepted (recall that some requests may have to be rejected
if, e.g., more requests are specified for a same time window than VIPAs are available in
the fleet), and
creates tasks to serve accepted requests by moving the VIPAs to go to some station and
to pickup, transport and deliver users.

More precisely, a task is defined by τj = (tj , xj , tpickj , yj , t
drop
j , zj). It is created by the

operator in order to serve request rj = (tj , xj , yj , pj , qj , zj) and is sent at time tj to a VIPA
indicating that zj passengers have to be picked up at station xj at time tpickj and delivered
at station yj at time tdropj , where pj ≤ tpickj ≤ qj − d(xj , yj) and pj + d(xj , yj) ≤ tdropj ≤ qj
must hold.

In order to fulfill the tasks, the operator creates tours for the VIPAs. Each tour consists
of moves from one station in G to another station in G and of actions to pickup and deliver
passengers. Hereby, we require only that each move carries at most Cap many passengers.
That means, we allow

to serve several requests simultaneously by the same VIPA (as long as the capacity is
respected),

2 Note that a request rj with zj > Cap can be replaced by d zj

Cap e many requests r′
j respecting the

constraint z′
j ≤ Cap.

S. Bsaybes, A. Quilliot, and A.K. Wagler 25:5

detours to stations not lying on a shortest path from the origin of one request to its
destination in order to pickup or deliver passengers from other requests,
vehicle preemption (i.e. that passengers have to change VIPAs on the way to their
destination).

A transportation schedule for (M, T) consists of a collection of tours {Γ1, . . . ,Γk} and is
feasible when

each of the k VIPAs has exactly one tour,
each accepted request rj is served within time window [pj , qj],
each tour starts and ends in the depot.

Our goal is to construct transportation schedules for the VIPAs operating in taxi mode
respecting all the above constraints:

I Problem 1 (Taxi Mode Problem (M,σ, p, T, k,Cap) (TMP)). Given a metric space M =
(V, d) induced by a connected network G = (V,E), a sequence of requests σ, profits p for
accepted requests, a time horizon [0, T] and k VIPAs of capacity Cap, determine a maximum
subset σA of accepted requests and find a feasible transportation schedule {Γ1, . . . ,Γk} of
minimum total tour length to serve all requests in σA.

Hereby, choosing sufficiently high profits and sufficiently small costs guarantees that
indeed as many requests as possible are accepted, while small but positive costs ensure that
unnecessary movements of VIPAs are avoided.

In order to solve the Offline TMP (Section 3), we propose to construct a time-expanded
network GT and compute multicommodity coupled flows in GT .

In order to solve the Online TMP (Section 4), we propose the strategy h-Replan that
considers at each moment in time t′ the subsequence σ(t′) of currently waiting requests (i.e.,
already released but not yet served requests), determines which requests from σ(t′) can be
accepted, and computes (partial) tours to serve them by multicommodity coupled flows in
the reduced network related to σ(t′), performs these tours until new requests are released
and recomputes σ(t′) and the tours (keeping already accepted requests).

3 Solving the Offline TMP

In order to solve the Offline TMP, we build a time-expanded network GT = (VT , AT)
based on σ and the original network G. The node set VT contains, for each station v ∈ V
and each discrete time point t ∈ [0, T], a node (v, t) ∈ VT which represents station v at
time t as a station where VIPAs can simply pass, pickup or deliver customers. The arc set
AT = AW ∪AM is composed of

wait arcs, from (v, t) ∈ VT to (v, t+ 1) with t ∈ {0, 1, . . . , T − 1} in AW ,
transport arcs, from (v, t) ∈ VT to (v′, t + d(v, v′)) for each edge (v, v′) of G and each
time point t ∈ T with t+ d(v, v′) ≤ T , in AM .

On GT , we define a VIPA flow F to encode the tour of the VIPAs through GT . To
correctly initialize the system, we use the nodes (v0, 0), (v0, T) ∈ VT as source and sink for
the flow F and set the balance of the source accordingly to the number k of available vehicles,
see (1b). For all internal nodes (v, t) ∈ VT \{(v0, 0), (v0, T)}, we use normal flow conservation
constraints, see (1c), which also automatically ensure that a flow of value k is entering the
sink (v0, T).

In order to encode the routing of each request rj ∈ σ we consider |σ| commodities
f1 · · · f|σ|. Each commodity fj has a single source (xj , pj) where xj is origin and pj earliest

SEA 2018

25:6 Fleet Management for Autonomous Vehicles

pickup time of the request rj , also referred to as the commodity’s origin, a single sink (yj , qj)
where yj is destination and qj latest possible delivery time of rj , also referred to as the
commodity’s destination, and a quantity zj which is the load of the request rj that must
be routed along a single path from its source to its sink. In order to avoid that a request is
partially served by a vehicle, we require that the quantity to be routed by each commodity
fj is equal to zj but fj ∈ {0, 1}.

To ensure that a request can be rejected and is not served more than once, we require
that for each fj at most one outgoing arc from the commodity’s origin is chosen, see (1d).
We use normal flow conservation constraints, see (1e), which also automatically ensure that
for each commodity fj the flow leaving the commodity’s origin equals the flow entering its
destination.

To ensure that the capacity of the VIPA is respected on all arcs a ∈ AM , we couple the
flows by∑

rj∈σ
fj(a) · zj ≤ Cap · F (a) ∀a ∈ AM

such that the capacities for fj on the transportation arcs are not given by constants but by
a function. Note that due to these flow coupling constraints, the constraint matrix of the
network is not totally unimodular (as in the case of uncoupled flows) and therefore integrality
constraints for all flows are required (1h) and (1i), reflecting that solving the problem is
NP-hard.

Our objective function (1a) considers profits p(j) on arcs a ∈ δ−(xj , pj) for each commodity
fj to serve a request rj , whereas all other arcs have zero profits. The costs correspond to the
traveled distances c(a) := d(u, v) on all arcs. The corresponding integer linear program is as
follows:

max
∑
rj∈σ

∑
a∈δ−(xj ,pj)

p(j)fj(a)−
∑
a∈AT

c(a)F (a) (1a)

s.t.
∑

a∈δ+(v0,0)

F (a) = k (1b)

∑
a∈δ−(v,t)

F (a) =
∑

a∈δ+(v,t)

F (a) ∀(v, t) 6= (v0, 0), (v0, T) (1c)

∑
a∈δ−(xj ,pj)

fj(a) ≤ 1 ∀rj ∈ σ (1d)

∑
a∈δ−(v,t)

fj(a) =
∑

a∈δ+(v,t)

fj(a) ∀rj ∈ σ∀(v, t) 6= (xj , pj), (yj , qj) (1e)

∑
rj∈σ

fj(a) · zj ≤ CapF (a) ∀a ∈ AM (1f)

F (a) ≥ 0 ∀a ∈ AT (1g)
F (a) ∈ Z ∀a ∈ AT (1h)
fj(a) ∈ {0, 1} ∀a ∈ AT ,∀rj ∈ σ (1i)

where δ−(v, t) denotes the set of outgoing arcs of (v, t), and δ+(v, t) denotes the set of
incoming arcs of (v, t).

The integer linear program (1) solves the Offline TMP (where the whole sequence σ of
requests is known at time t = 0) to optimality:

S. Bsaybes, A. Quilliot, and A.K. Wagler 25:7

I Theorem 2. The integer linear program (1) provides an optimal solution of the Offline
TMP.

4 Solving the Online TMP

To handle the online situation, where the requests in σ are released over time during a time
horizon [0, T], we propose a heuristic to solve a sequence of offline subproblems for certain
time intervals [t′, T ′] within [0, T] on accordingly modified time-expanded networks. A usual
replan strategy is based on computing the optimal solution on the subsequence σ(t′) of
requests released in each replanning step. Computing an optimal solution by multicommodity
coupled flows is generally very slow and, thus, not applicable in online situations. In the
proposed algorithm h-Replan, we thus use a heuristic to compute offline solutions on σ(t′).
As experiments have shown that only a small percentage of arcs in GT is used in the
optimal solution while solving the Offline TMP, the idea is to reduce GT to a network
GR(t′) containing only arcs which are taken in the optimal solution with high probability.
Afterwards, we solve the flow problem on this reduced network GR(t′). This does not lead
to a globally optimal solution, but provides reasonable solutions in short time.

I Algorithm 3 (h-Replan).
Input: (M,σ, p, T, k,Cap)

Output: σA, and tours Γ1, . . . ,Γk

1: initialize t′ = 0, σA = ∅, σ(t′) = {rj ∈ σ : tj = 0}, Γi = (v0, 0) for 1 ≤ i ≤ k

2: WHILE t′ < T DO:
compute offline solution for σA, σ(t′), and Γ1, . . . ,Γk

perform the (modified) tours until new requests become known
update t′ and σ(t′)

3: return σA and Γ1, . . . ,Γk

To compute those offline solutions for the subsequences σ(t′), we build a reduced time-
expanded network GR(t′) based on σA, σ(t′) and the original network G that has the possible
start positions of the VIPAs as source nodes in V+, internal nodes (v, t) for time points
t ∈ [t′, T ′] relevant for the requests in σA ∪ σ(t′), but far less arcs than GT :

To determine the possible source nodes in V+ for the VIPAs from the current tours
Γ1, . . . ,Γk, we proceed as follows. At the beginning, i.e. at time t = 0, we clearly have
(v0, 0) as source for each VIPA. At any later time point t′, we have: If a VIPA is currently
serving a request rj , then (yj , tdropj) is its source; if a VIPA is currently idle and situated
at v, then (v, t′) is its source.
To determine the internal nodes and arcs in A′M ⊆ AM and A′W ⊆ AW which are taken
in the optimal solution with high probability, we compute classic multicommodity flows
with adjusted profits and costs taking only the request commodities into account, but not
coupled to a VIPA flow. The reason is that we intend to construct “interesting” paths
for the request commodities, starting from the commodity’s origin and ending at the
commodity’s destination, without taking the route of the VIPAs into consideration:

a min cost multicommodity flow in GT to determine a shortest path for the commodity
of each request rj from (xj , pj) to (yj , qj),
a max profit multicommodity flow in GT to determine for each request rj a path from
(xj , pj) to (yj , qj) that has the potential to partially share paths of other commodities.

In both cases, the constraint matrices are totally unimodular such that the computations
can be done in short time, see [9] for details. Besides using the arcs with positive flow

SEA 2018

25:8 Fleet Management for Autonomous Vehicles

from these two problems, we add further transport arcs from the destination of requests
to reachable origins of other requests to ensure that requests can be served sequentially
in one tour.

Thus, compared to the original time-expanded network GT = (VT , AT), we reduce in
GR = (V ′T , A′T) both the total number of nodes as well as of wait and transport arcs. We
compute a transportation schedule by solving the max profit flow problem in GR(t′) detailed
in (2). Hereby, to keep previously accepted requests, we partition σ(t′) into the subsequences

σA(t′) of previously accepted but until time t′ not yet served requests and
σN (t′) = {rj ∈ σ : tj = t′} of requests that are newly released at time t′.

max
∑

rj∈σ(t′)

∑
a∈δ−(xj ,pj)

p(a)f ′j(a) −
∑
a∈A′

T

c(a)F ′(a) (2a)

s.t.
∑

a∈δ+(v,t)

F ′(a) = k(v) ∀(v, t) ∈ V+ (2b)

∑
a∈δ−(v,t)

F ′(a) =
∑

a∈δ+(v,t)

F ′(a) ∀(v, t) 6= V+, t < T ′ (2c)

∑
a∈δ−(xj ,pj)

f ′j(a) ≤ 1 ∀rj ∈ σN (t′) (2d)

∑
a∈δ−(xj ,pj)

f ′j(a) = 1 ∀rj ∈ σA(t′) (2e)

∑
a∈δ−(v,t)

f ′j(a) =
∑

a∈δ+(v,t)

f ′j(a) ∀rj ∈ σ, ∀(v, t) 6= (xj , pj), (yj , qj) (2f)

∑
rj∈σ(t′)

f ′j(a) · zj ≤ CapF ′(a) ∀a ∈ A′M (2g)

F ′(a) ≥ 0 ∀a ∈ A′T (2h)
F ′(a) ∈ Z ∀a ∈ A′T (2i)
f ′j(a) ∈ {0, 1} ∀a ∈ A′T ,∀rj ∈ σ(t′) (2j)

where A′T = A′W ∪ A′M and k(v) denotes the number of VIPAs initially situated in v.
Constraints (2e) ensure that previously accepted requests are served whereas constraints (2d)
allow to reject newly released requests.

From the computed flows F ′ and f ′j in the reduced network GR(t′), it is again straight-
forward to determine newly accepted requests and to construct (partial) tours Γ1, . . . ,Γk for
the VIPAs in the same way as for the offline situation.

5 Evaluation of online algorithms for the Online TMP

5.1 Competitive Analysis
It is standard to evaluate the quality of online algorithms with the help of competitive
analysis. This can be viewed as a game between an online algorithm ALG and a malicious
adversary who tries to generate a worst-case request sequence σ which maximizes the ratio
between the online cost ALG(σ) and the optimal offline cost OPT(σ) knowing the entire
request sequence σ in advance. ALG is called c-competitive for an online maximization
problem if ALG produces for any request sequence σ a feasible solution with OPT(σ) ≤ c
ALG(σ) for some given c ≤ 1. The competitive ratio of ALG is the infimum over all c such
that ALG is c-competitive.

S. Bsaybes, A. Quilliot, and A.K. Wagler 25:9

In [12], we consider an oblivious adversary who knows the complete behavior of a
(deterministic) online algorithm ALG and chooses a worst-case sequence for ALG. Hereby,
an oblivious adversary is allowed to move VIPAs towards the origins xj of not yet released
requests rj (but also has to respect the time windows [pj , qj] to serve accepted requests rj).

In [12], we showed that an oblivious adversary can force any (deterministic) online
algorithm ALG for the Online TMP to reject all requests of a sequence while the adversary
can accept and serve all requests, implying that ALG is not competitive.

Here, we consider a weaker adversary, called non-abusive adversary, who also knows the
complete behavior of ALG and chooses a worst-case sequence for ALG, but is only allowed
to move VIPAs towards origins (or destinations) of already released requests (and has also
to respect the time windows).

We show that no (deterministic or non-deterministic) online algorithm ALG for the
Online TMP is competitive against a non-abusive adversary, since the adversary can force
ALG to accept at most one request and to reject all other requests of a sequence while the
adversary can accept and serve all requests but one of the sequence.

I Theorem 4. There is no competitive online algorithm for the Online TMP against a
non-abusive adversary.

Since the worst-case request sequence used to show the non-competitivity result is only
based on the reachability of requests, but not on a particular strategy of an online algorithm,
we conclude:

I Corollary 5. The online algorithm h-Replan is not competitive for the Online TMP against
an oblivious or non-abusive adversary.

5.2 Computational Results
This section deals with computational experiments for the optimal offline solutions of the
(non-preemptive and preemptive) TMP and the two replan strategies, Replan studied for the
non-preemptive case in [10, 12] and h-Replan proposed here for the preemptive case of the
Online TMP. In fact, due to the very special request structures of the worst-case instances
to prove the non-competitivity of any online algorithm for the Online TMP, we can expect a
better behavior of the proposed replan strategies for the Online TMP in average.

The computational results presented in this section support this expectation. They
compare the total number of accepted (and thus served) requests by Replan and h-Replan
with the optimal offline solutions OPT-NP for the non-preemptive case and OPT-P for the
preemptive case. The computations use randomly generated instances with 20 stations, 5 to
10 VIPAs, time-horizons between 180 and 240 time units, and between 90 and 300 customer
requests. These instances are based on the network from the industrial site of Michelin at
Clermont-Ferrand and randomly generated request sequences resembling typical instances
that occurred during an experimentation in Clermont-Ferrand performed from October 2015
until February 2016 [21].

The operating system for all tests is Linux CentOS with kernel version 2.6.32 clocked at
2.40GHz, with 1TB RAM. The approaches are implemented in Python and Gurobi 8.21 is
used for solving the ILPs.

In the first resp. second set of 180 instances each, the requests have a random load
between

4 and 10 (with 72% of the requests with a load above 5),
1 and 10 (with only 21% of the requests with a load above 5),

SEA 2018

25:10 Fleet Management for Autonomous Vehicles

Table 1 This table shows the percentage of improvement of the average number of accepted
requests between the non-preemptive and preemptive optimal solutions and between Replan and
h-Replan for the first set of instances.

req T k OPT-NP UB(OPT-P) Imp (%) Replan h-Replan Imp (%)
94 180 10 77 82,8 7,53 39 41,8 7,18
188 180 10 112 121,08 8,11 55 59,12 7,49
295 180 10 146,86 160,54 9,31 75,85 90,8 19,71
97 240 5 62,04 66,48 7,16 25,19 29,7 17,90
194 240 5 93,76 104,34 11,28 45,84 51,2 11,69
290 240 5 115,94 129,22 11,45 47,64 54,4 14,19

Table 2 This table shows the percentage of improvement of the average number of accepted
requests between OPT-NP and OPT-P and between Replan and h-Replan for the second set of
instances.

req T k OPT-NP UB(OPT-P) Imp (%) Replan h-Replan Imp (%)
94 180 10 65,31 86,70 32,75 36,54 47,54 30,10
180 180 10 107,48 158,65 47,61 47,16 77,80 64,97
295 180 10 153,20 283,50 85,05 79,14 124,10 56,81
97 240 5 61,76 84,40 36,66 24,10 32,50 34,85
194 240 5 100,32 154,23 53,74 45,38 72,67 60,14
290 240 5 123,67 275,47 122,74 46,21 88,50 91,52

and in both cases VIPAs of capacity 10. The two replan strategies compute solutions within
a reasonablely short time (even for hReplan in less than 60 seconds in average for each
replanning step).

As already reported in [10, 12], Replan achieves in average an acceptance rate of about
64% compared with OPT-NP for the first set of instances, and about 45% for the second. Our
interest is whether or not allowing preemptive tours can significantly improve this acceptance
rate.

Unfortunately, due to the long computation time for OPT-P, only an upper bound UB
can be presented for most cases, obtained by computing an uncapacitated preemptive TMP
with a time limit of four hours. Thus, we can mainly compare the improvements of the
acceptance rate for OPT-NP and h-Replan only with this upper bound.

In the first set of instances, we observe that the percentage of improvement between
OPT-NP and the upper bound of OPT-P is high (in average around 41% compared to UB),
but it is not the case for the percentage of improvement between Replan and h-Replan (in
average around 13%), see Table 1. The reason why there is no remarkable improvement in
the acceptance rate is that in 72% of the requests, the load is greater than Cap/2 such that,
in most of the times, the requests cannot be accumulated together to be served in one VIPA
(recall that we allow vehicle preemption but not load preemption).

This changes in the second set of instances with in general smaller loads that allow us to
serve more than one request simultaneously in one VIPA. Accordingly, we observe that the
percentage of improvement between OPT-NP and OPT-P/UB increases to in average around
43% and between Replan and h-Replan to in average around 57%, (see Table 2). Detailed
computational results are summarized in Table 3 and Table 4.

Note that computational results presented in Table 3 and Table 4 show only an upper
bound for OPT-P. Therefore, this upper bound is sometimes far from the optimal solution

S. Bsaybes, A. Quilliot, and A.K. Wagler 25:11

Table 3 This table shows the computational results for the first set of 180 test instances of Replan
respectively h-Replan in comparison to OPT-NP respectively to the upper bound of the optimal
preemptive offline solution UB(OPT-P). The instances are grouped by the number of requests (1st
column), the time horizon (2nd column) and the number of VIPAs (3rd column) with 30 instances
per parameter set. Average values are shown for the total number |σA| of accepted requests and for
the total tour length TTL needed to serve the accepted requests. Finally, we provide the average
runtime of Replan respectively h-Replan per recomputation step and the maximum runtime of the
recomputation steps of Replan respectively h-Replan.

non-preemptive TMP
|σA| TTL runtime (s)

req T k OPT-NP Replan ratio % OPT-NP Replan AVG MAX

94 180 10 77 52,13 67,7 667,5 424 0,49 1,6
188 180 10 112 70,45 62,9 831 580 3 10,83
295 180 10 146,86 97,2 66,19 1005 750,57 13,56 45,54
97 240 5 62,04 39,19 63,17 527,16 298,82 0,29 1,23
194 240 5 93,76 55,84 59,56 680,44 490 1,8 7,85
290 240 5 115,94 80,64 69,55 759,94 500,6 7,18 29,8

preemptive TMP
|σA| TTL runtime (s)

req T k UB(OPT-P) h-Replan ratio % OPT-P h-Replan AVG MAX

94 180 10 83,72 62,21 74,31 678,1 456,54 2,18 9,76
188 180 10 150,08 76,17 50,75 875,43 600,62 6,29 38,77
295 180 10 232 110,54 47,65 1167,54 748,8 21,82 68,54
97 240 5 73,34 42,4 57,81 574,65 322,75 1,34 13,06
194 240 5 134,74 63,83 47,37 885,48 515,5 3,91 24,54
290 240 5 210,63 90,23 42,84 998,75 496,6 19,62 58,39

especially in the first set of instances, where the improvement between OPT-NP and the
upper bound of OPT-P is high 41% due to the upper bound calculated by computing an
uncapacitated preemptive TMP. Thus, the requests can be accumulated together, without
consireding their loads. This cannot be the case in the optimal solution. Note that in the
first set of instance, the average acceptance ratio between Replan and OPT-NP is 65% while
the average acceptance ratio between h-Replan and OPT-P/UB is 54% while in the second
set of instance the average acceptance ratio between Replan and OPT-NP is 46% while the
average acceptance ratio between h-Replan and OPT-P/UB is 43%. While Replan is not
competitive in not competitve in theory, in practice it achieves a ratio about 2 compared to
the optimal offline solution or the upper bound which is an acceptable ratio from a business
point of view.

The computations in Table 5 use randomly generated instances with 10 stations, 2 to
3 VIPAs with capacity 10, time-horizon of 60 time units, and between 20 and 30 customer
requests. In this set of 120 instances, the requests have a random load between

1 and 10 (with only 28% of the requests with a load above 5),
The two replan strategies compute solutions within a short time (less than 5 seconds in
average) for each replanning step, therefore the average runtime is not shown in Table 5.

SEA 2018

25:12 Fleet Management for Autonomous Vehicles

Table 4 This table shows the computational results for the second set of instances.

non-preemptive TMP
|σA| TTL runtime (s)

req T k OPT-NP Replan ratio % OPT-NP Replan OPT-NP AVG MAX

94 180 10 65,31 36,54 55,95 667,5 416,7 12,6 0,68 5,32
188 180 10 107,48 47,16 43,888 831 596,35 181,23 2,69 12,45
295 180 10 153,2 79,14 51,66 1005 726,86 73456,5 12,67 27,42
97 240 5 61,76 24,1 39,02 527,16 279,15 697,75 0,86 6,45
194 240 5 100,32 45,38 45,24 680,44 504,7 846,5 3,7 14,6
290 240 5 123,67 46,21 37,37 759,94 527,45 116875,85 14,1 22,46

preemptive TMP
|σA| TTL runtime (s)

req T k UB h-Replan ratio % UB h-Replan UB AVG MAX

94 180 10 86,70 47,54 54,83 727,56 460,16 43824,50 2,58 11,58
188 180 10 158,65 77,80 49,04 930,75 649,67 125849,75 7,42 45,45
295 180 10 283(UB) 124,10 43,77 1175,25 878,25 97849(UB) 26,45 82,42
97 240 5 84,40 32,50 38,51 558,45 358,75 90470,67 1,36 14,36
194 240 5 154,23 72,67 47,12 825,74 609,40 156752,58 4,26 27,42
290 240 5 275(UB) 88,50 32,13 957,52 630,86 128417(UB) 21,78 65,80

In this set of instances, Replan achieves in average an acceptance rate of about 54%
compared with OPT-NP, and h-Replan achieves in average an acceptance rate of about 70%
compared with OPT-P (see Table 5).

6 Conclusion

Regarding the quality of the solutions obtained by the here proposed h-Replan strategy for
the Online TMP, we summarize that

in theory, h-Replan is (as any other online algorithm for the problem) not competitive
since there is no finite c s.t. for all instances σ we have that OPT(σ) ≤ c h-Replan(σ),
but
in practice, h-Replan leads to a higher rate of accepted requests and, therefore, to a higher
quality-of-service level for the fleet management than Replan constructing non-preemptive
tours.

However, sometimes the transportation schedule returned by h-Replan contains preemptive
tours which causes inconveniences for the users. Therefore, in order to handle the Online
Taxi Mode Problem in the studied VIPAFLEET management system it is up to the operator
to decide whether it is worth to have preemptive tours in order to increase the number
of accepted requests, taking the ratio of request loads and VIPA capacities and, thus, the
expected increase of the acceptance rate into account.

S. Bsaybes, A. Quilliot, and A.K. Wagler 25:13

Table 5 This table shows the computational results for the first set of 120 test instances of
Replan respectively h-Replan in comparison to OPT-NP respectively to the optimal preemptive
offline solution OPT-P. The instances are grouped by the number of requests (1st column), the
time horizon (2nd column) and the number of VIPAs (3rd column) with 30 instances per parameter
set. Average values are shown for the total number |σA| of accepted requests and for the total tour
length TTL needed to serve the accepted requests.

NP-TaxiMP

|σA| TTL

req T k OPT-NP Replan-NP ratio % OPT-NP R-NP

18 60 2 11,23 6,58 58,59 95,7 52,85

26 60 2 16,42 8,43 51,34 118,46 65,17

17 60 3 13,57 8,1 59,69 124,78 71,63

28 60 3 20,32 9,74 47,93 138,6 76,25

P-TaxiMP

|σA| TTL

req T k OPT-P hReplan-P ratio % OPT-P hReplan-P

18 60 2 14,43 9,64 66,81 90,37 85,83

26 60 2 22,73 16,61 73,08 103,54 91,37

17 60 3 15,72 10,95 69,66 111,35 92,61

28 60 3 25,43 18,13 71,29 123,74 105,75

References

1 Easymile, 2015. URL: http://www.easymile.com.
2 Ligier group, 2015. URL: http://www.ligier.fr.
3 Viaméca, 2015. URL: http://www.viameca.fr/.
4 Norbert Ascheuer, Sven O Krumke, and Jörg Rambau. The online transportation problem:

competitive scheduling of elevators. ZIB, 1998.
5 Norbert Ascheuer, Sven O Krumke, and Jörg Rambau. Online dial-a-ride problems: Min-

imizing the completion time. In STACS 2000, pages 639–650. Springer, 2000.
6 Giorgio Ausiello, Esteban Feuerstein, Stefano Leonardi, Leen Stougie, and Maurizio Talamo.

Competitive algorithms for the on-line traveling salesman. In Workshop on Algorithms and
Data Structures, pages 206–217. Springer, 1995.

7 Giorgio Ausiello, Esteban Feuerstein, Stefano Leonardi, Leen Stougie, and Maurizio Talamo.
Algorithms for the on-line travelling salesman 1. Algorithmica, 29(4):560–581, 2001.

8 Gerardo Berbeglia, Jean-François Cordeau, and Gilbert Laporte. Dynamic pickup and
delivery problems. European journal of operational research, 202(1):8–15, 2010.

9 Sahar Bsaybes. Modèles et algorithmes de gestion de flottes de véhicules VIPA. PhD thesis,
Université Clermont Auvergne, 2017.

10 Sahar Bsaybes, Alain Quilliot, and Annegret K Wagler. Fleet management for autonomous
vehicles using flows in time-expanded networks. Electronic Notes in Discrete Mathematics,
62:255–260, 2017.

11 Sahar Bsaybes, Alain Quilliot, and Annegret K Wagler. Fleet management for autonomous
vehicles: Online PDP under special constraints. to appear on RAIRO - Operations Research,
2018.

SEA 2018

http://www.easymile.com
http://www.ligier.fr
http://www.viameca.fr/

25:14 Fleet Management for Autonomous Vehicles

12 Sahar Bsaybes, Alain Quilliot, and Annegret K Wagler. Fleet management for autonom-
ous vehicles using flows in time-expanded networks. to appear on Journal of Advanced
Transportation, 2018.

13 Jean-François Cordeau and Gilbert Laporte. The dial-a-ride problem: models and al-
gorithms. Annals of Operations Research, 153(1):29–46, 2007.

14 Samuel Deleplanque and Alain Quilliot. Transfers in the on-demand transportation: the
DARPT Dial-a-Ride Problem with transfers allowed. In Multidisciplinary International
Scheduling Conference: Theory and Applications (MISTA), pages 185–205, 2013.

15 Anke Fabri and Peter Recht. Online dial-a-ride problem with time windows: an exact
algorithm using status vectors. In Operations Research Proceedings 2006, pages 445–450.
Springer, 2007.

16 Lester R Ford Jr and Delbert Ray Fulkerson. Constructing maximal dynamic flows from
static flows. Operations research, 6(3):419–433, 1958.

17 Martin Groß and Martin Skutella. Generalized maximum flows over time. In International
Workshop on Approximation and Online Algorithms, pages 247–260. Springer, 2011.

18 Martin Grötschel, Sven O Krumke, Jörg Rambau, Thomas Winter, and Uwe T Zimmer-
mann. Combinatorial online optimization in real time. In Online optimization of large scale
systems, pages 679–704. Springer, 2001.

19 Ronald Koch, Ebrahim Nasrabadi, and Martin Skutella. Continuous and discrete flows
over time. Mathematical Methods of Operations Research, 73(3):301, 2011.

20 Jan Karel Lenstra and AHG Kan. Complexity of vehicle routing and scheduling problems.
Networks, 11(2):221–227, 1981.

21 E Royer, F Marmoiton, S Alizon, D Ramadasan, M Slade, A Nizard, M Dhome, B Thuilot,
and F Bonjean. Retour d’expérience après plus de 1000 km en navette sans conducteur
guidée par vision.

22 Eric Royer, Jonathan Bom, Michel Dhome, Benoit Thuilot, Maxime Lhuillier, and François
Marmoiton. Outdoor autonomous navigation using monocular vision. In Intelligent Robots
and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on, pages 1253–
1258. IEEE, 2005.

23 Jian Yang, Patrick Jaillet, and Hani Mahmassani. Real-time multivehicle truckload pickup
and delivery problems. Transportation Science, 38(2):135–148, 2004.

	Introduction
	Problem description and model
	Solving the Offline TMP
	Solving the Online TMP
	Evaluation of online algorithms for the Online TMP
	Competitive Analysis
	Computational Results

	Conclusion

