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—— Abstract

The notion of treewidth, introduced by Robertson and Seymour in their seminal Graph Minors
series, turned out to have tremendous impact on graph algorithmics. Many hard computational
problems on graphs turn out to be efficiently solvable in graphs of bounded treewidth: graphs
that can be sweeped with separators of bounded size. These efficient algorithms usually follow
the dynamic programming paradigm.

In the recent years, we have seen a rapid and quite unexpected development of involved
techniques for solving various computational problems in graphs of bounded treewidth. One of
the most surprising directions is the development of algorithms for connectivity problems that
have only single-exponential dependency (i.e., ZO(t)) on the treewidth in the running time bound,
as opposed to slightly superexponential (i.e., 20189 stemming from more naive approaches.
In this work, we perform a thorough experimental evaluation of these approaches in the context
of one of the most classic connectivity problem, namely HAMILTONIAN CYCLE.
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1 Introduction

The problem of finding HAMILTONIAN CYCLE in graph is one of the oldest and best known
NP-complete problems. It was intensly studied together with its more generic optimization
version TRAVELING SALESMAN PROBLEM. Early and important result on this problem was
dynamic algorithm invented independently by Bellman [2] and Held and Karp [16], running
in time O(2"n?). The exponential factor of this running time bound remains the best known
for deterministic algorithms up to today, and a faster randomized Monte Carlo algorithm
has been shown only very recently by Bjorklund [3]. Faster algorithms were also obtained
for some special cases, like graphs with bounded degree [9, 4] or claw-free graphs [7].

An important class of graphs in which many combinatorial problems can be solved
more efficiently, are graphs of bounded treecwidth. Treewidth, introduced by Robertson and
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Figure 1 A separator S with two possible partial solutions on the left. Only the first one forms a
Hamiltonian cycle with the partial solution on the right, despite that in all of them the vertices on
the separator have degree 1.

Seymour in their Graph Minors project [20], measures how the input graph resembles a
tree, or how can be covered be a set of bounded-sized bags organized in tree like structure
which we call tree decomposition. It has proven to be very useful for dealing with A/P-hard
problems; for example, given an n-vertex graph G and its tree decomposition of width ¢, one
can solve the MAXIMUM INDEPENDENT SET problem in G in time 2! -t . n. We refer
to [8] for more examples of algorithms on graphs of bounded treewidth.

Essentially every algorithm for graphs of bounded treewidth follows the paradigm of
dynamic programming: it gradually (in a bottom-to-top fashion on the tree decomposition)
builds partial solutions in subgraphs of the input graph. Using the fact that a bag in a
tree decomposition is a separator, in many combinatorial problems it suffices to keep only
a bounded (in the width of the decomposition) number of partial solutions in each step of
the algorithm. To illustrate this concept, consider a separation (A4, B) in a graph G with
S=AnNB (ie., A, B CV(G) are two sets with AU B = V(G) and no edge between A\ B
and B\ A), and think of a dynamic programming algorithm that processed already the
graph G[A], but has not yet touched B\ A. Observe that a partial solution X C A to the
MAXIMUM INDEPENDENT SET problem interacts with B\ A only via the set S. Consequently,
it suffices to store, for every Xg C S, an independent set X C A of maximum possible size
satisfying X NS = Xg. If the separator S is of size at most ¢, it leads to 2! bound on the
size of the memoization table in the dynamic programming algorithm.

In the HAMILTONIAN CYCLE problem, the natural state space for the dynamic pro-
gramming algorithm is a bit more complex. A partial solution in G[A] would be a set of
vertex-disjoint paths P that all have endpoints in S and together visit every vertex of A\ B.
To complete the partial solution P to a Hamiltonian cycle H in G, it seems essential to
remember not only which vertices of S are visited by P and which are the endpoints of paths
in P, but also how the paths of P pair up their endpoints in .S (see Figure 1). This last piece
of information leads to 20(t1°81) gtates for separator S of size .

Up to late 2010, almost all known algorithms for combinatorial problems in graphs of
bounded treewidth follow the naive approach outlined above, and researchers’ effort focused
mostly on speeding up computations in the so-called join nodes of the decomposition (see
e.g. [22]).! In 2010, Lokshtanov, Marx, and Saurabh proved that many such algorithms have
optimal dependency on treewidth [17] (under strong complexity assumptions) and provided a
framework for proving similar lower bounds for complexities of the type 2¢(*1°8%) [18]. However,
providing such a tight lower bound for the connectivity problems such as HAMILTONIAN
CYCLE in graphs of bounded treewidth remained elusive.

LA join node of a decomposition corresponds to a node of the underlying tree of the tree decomposition
of degree at least 3; intuitively, it corresponds to a bounded-size separator that splits the graph into
more than 2 pieces, and in the dynamic programming algorithm one needs to merge information from
at least two of such pieces.
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Quite unexpectedly, a year after it turned out that there is a reason for this lack of progress,
and a Monte Carlo algorithm with running time 4‘n®® for finding a Hamiltonian cycle in
a graph with a given tree decomposition of width ¢ has been reported [10]. The work [10]
introduced a framework called Cut&Count that provided randomized single-exponential
(i.e., with running time bound of the form 2°®n®M) algorithms for many connectivity
problems in graphs of bounded treewidth. The key idea of the Cut&Count method is to
replace the original connectivity requirement with a different counting-mod-2 task, and
ensure correctness via the Isolation Lemma [19].

In following years, a good understanding of the aforementioned improvement has been
obtained by Bodlaender et al [6]. In the language of HAMILTONIAN CYCLE, a linear algebra
argument shows that it suffices only to keep 4! partial solutions instead of the naive bound
of 20(tlogt). if the memoization table grows too large, an algorithm based on Gaussian
elimination is able to prune provably unnecessary states. Cygan et al. [9] provided a better
basis for the Gaussian elimination step and improved the bound for the number of states for
HAMILTONIAN CYCLE to (2 + v/2)*. Furthermore, in [9] a matching lower bound is shown.
Due to the linear algebraic nature of the argument, this approach has been dubbed in the
literature as the rank-based approach.

In [10], an involved fast convolution algorithm has been applied to obtain the 4‘n®()
running time bound even in computations at join nodes. The need to execute Gaussian
elimination in [6] and treat join nodes in a more direct fashion in both algorithms of [6, 9]
yield worse theoretical running time bounds. Thus, the algorithm [10] remains theoretically
fastest in graphs of bounded treewidth to this date.

Following a recent trend in multivariate algorithmics to experimentally evaluate pa-
rameterized algorithms (led by a growing popularity of the Parameterized Algorithms and
Computational Experiments Challenge [12, 11]), in this work we thoroughly evaluate the
aforementioned algorithms for HAMILTONIAN CYCLE. A direct inspiration for our work
is the work of Fafianie et al [13] that provided an experimental comparison of the naive
and rank-based approaches for STEINER TREE (i.e., without considering the Cut&Count
approach). That is, in this work we include Cut&Count and we compare the following four
approaches.
naive The aforementioned naive approach with 2019 hound on the number of states.
rank-based The approach of [6], that is, the naive approach with pruning of the state space

leading to 4! size bound.
rand-based with improved basis The approach of [9], that is, the rank-based approach with

the improved basis yielding the size bound (2 + v/2).

Cut&Count The Cut&Count algorithm of [10].

As observed in [10], the application of the Isolation Lemma in the Cut&Count method yields
a relatively high polynomial factor in the running time bound, but one can replace its usage
with computations over a field of characteristic 2 and randomization via the Schwartz-Zippel
lemma. This replacement leads again to linear dependency on the graph size in the running
time bound. We follow this path. However, as has been overlooked in [10], the fast convolution
algorithm at join nodes in the 4n®M-time algorithm does not support computations over
a field of characteristic 2, as it requires division by 2. Our theoretical contribution in this
paper is a method around this obstacle, essentially showing that it is sufficient to perform
the convolution over the ring of polynomials Z[z]. This is described in Section 2.4 and leads
to the following conclusion.

» Theorem 1.1. There exists a Monte Carlo algorithm that, given an n-vertex graph G
together with its tree decomposition of width t, solves HAMILTONIAN CYCLE on G in time
4 . n - (tlogn)®W.
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In Section 2 we discuss implementation details of the algorithms. Section 3 discuss
experiment setup and Section 4 discuss results. We conclude in Section 5.

2 Theory and implementation details

2.1 Tree decompositions

For more background on tree decompositions and dynamic programming algorithms using
them, we refer to [8]. Here, we recall only the basic notions.

For a graph G, a tree decomposition is a pair (T, ) where T is a tree and [ assigns to
every node t € V(T') a set 8(t) C V(G) called a bag with the following invariants: (i) for
every v € V(G), the set {t € V(T)|v € B(t)} is nonempty and connected in T, (ii) for every
uv € E(G) there exists t € V(T') with u,v € 5(t). The width of the tree decomposition is
the maximum size of a bag, minus one, and the treewidth of a graph is the minimum possible
width of its tree decomposition.

As in multiple previous results, it is convenient to describe dynamic programming
algorithms on a special type of decompositions, called nice. A nice tree decomposition is a
rooted tree decomposition for which the bag of the root is empty and every node is of one of
the following types:

Leaf node is a node ¢ with no children and §(t) = 0.
Introduce vertex node is a node ¢ with unique child ¢’ and a vertex v such that 5(t) =

B(t') w {v}.

Forget vertex node is a node t with unique child ¢ and a vertex v € B(t') such that

B(t) = A\ {o}.

Join node is a node ¢ with exactly two children ¢; and to with B(t) = 8(t1) = B(t2).

For a note t € V(T'), we define v (t) to be the union of 3(t) over ¢ being descendants of
t in T. Furthermore, let G; be the graph Gy, (t)] — E(G[5(t)]) (i-e., we exclude the edges
inside the bag 5(t)).

Additionally, in our case it is convenient to precede every forget vertex node with
a sequence of introduce edge nodes. That is, for a forget node ¢ with child ¢ and
forgotten vertex v, we take E} , to be the set of edges of G that connect v with vertices of
B(t) \ {v}, subdivide the edge tt’ in E(T) |E; | times, labelling the new nodes {t.|e € Ey .},
and set S(t.) = B(t'). The graphs G, are defined as follows: if t” is the unique child of ¢.,
then Gy, = Gy U {e}.

The intuition of this step is as follows: there is a significant difference between the graphs
Gy and Gy, namely E(G,) = E(Gy) U Ey,. We split this change into |E, ,| steps, adding
edges one by one.

All our implementations start with preparing a nice tree decomposition with the intro-
duce edge nodes.

2.2 Naive approach

Given a note ¢ in a nice tree decomposition (T, 3), a partial solution is a family P of vertex-

disjoint paths in Gy such that (i) every vertex of v, (¢) \ B(¢) is visited by some path in P,

and (ii) every path in P has both its endpoints in 5(¢). For a partial solution P at note ¢,

we define the following objects:

a bucket b is a function b: 5(t) — {0, 1,2} that assigns to every vertex v € 3(t) its degree
in the union of P;
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a pairing E is a family of disjoint two-element subsets of b=1(1) that pairs up the endpoints
of the same path in P.
The pair (b, E) is the state of P. The crucial observation is that among partial solutions
with the same state, it suffices to memoize only one. Note that for a given bucket b with
¢ = |b=1(1)|, there are (£ — 1) - (£ —3) -3 -1 possible pairings, giving a 20(8®I1g18" hound
on the number of different states.
With this observation, it is straightforward to design a dynamic programming algorithm
that finds a Hamiltonian cycle in time 2°(1°2%)n given a tree decomposition of the input
graph of width ¢. This is exactly the naive approach.

2.3 Rank based approach

The rank-based approach is strongly based on the naive one, with main change being a
pruning on the number of possible pairings.

» Theorem 2.1 ([6]). For a fized node t and bucket b, given a family £ of pairings, one can
find a subfamily E* C € of size at most 21® WI=1 with the following property: for every
Hamiltonian cycle H in G, if P is its intersection with Gy and (b, E) is the state of P, and
E € &, then there exists E* € £* such that for every partial solution P* with state (b, E*),
the graph (H — E(P)) U E(P*) is a Hamiltonian cycle as well.

Furthermore, given b and £, one can assign to every E € £ a 2‘b71(1)|_1-length 0-1 vector

v such that the family £* is defined as the indices of any mazimal independent (over Fs)
subfamily of {vg|E € E}.

In other words, for a fixed bucket b, it is sufficient to keep only 2/~ (D=1

pruning unnecessary pairings can be done via Gaussian elimination on a matrix with |£]
"MW1= columns over the field Fy (the two-element field modulo 2).

pairings, and

rows and 2/°”

In [9], Theorem 2.1 is improved with a different construction of vectors vg that are of
length 2/*”"(WI/2=1 Furthermore, [9] showed how to use the special structure of the vectors
vg to avoid Gaussian elimination at introduce/forget vertex/edge nodes, yielding
(2 + v/2)Pp®Wn-time algorithms for graphs with a given path decomposition of width p (i.e.,
without any join nodes).

We implement the rank-based approach both with the vector construction of [6] and the
improved one of [9]. Both implementations use Gaussian elimination, as it is not known how
to avoid it at join nodes.

In the implementation, the core of the naive and rank-based approaches is the same. We
use two variants of the implementations: keep track of partial solutions (so that the entire
Hamiltonian cycle can be returned in the end) or, in order to save space, just remember a
flag and a Hamiltonian cycle is found via self-reducibility. All implementations perform the
same computations specific to the node type, which are straightforward in all cases. At join
nodes, the algorithm first sorts the partial solutions by buckets and then tries to match the
partial solutions only for buckets that fit each other (e.g., do not exceed the bound of 2 on a
degree of a vertex).

After succesfully computing the set of partial solutions for a current node the algorithm
runs a reduce function. In the naive approach, it only deletes the duplicates by sorting set of
partial solutions and checking if the two consecutive are same or not. In rank-based approach
it divides all partial solutions into buckets (same as during processing the join node). For
each bucket it computes the necessary matrix and performs Gaussian elimination on it to
get a representative set of partial solutions.
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To limit the effect of self-reducibility in case of the decision-only variant, we employ a
problem-specific strategy. That is, we discover the Hamiltonian cycle edge-by-edge. For a
path P in G with at least two edges, we can discover if G contains a Hamiltonian cycle
containing P by deleting from G all edges of E(G) \ E(P) that are incident to internal
vertices of P, and run the decision algorithm on the obtained subgraph. Given a path P, we
extend it one by one by doing a binary search over the next edge incident to an endpoint
of P. This gives O(nlog A) calls to the decision version of the problem for graphs with n
vertices and maximum degree A.

2.4 Cut&Count approach

The main idea of the Cut&Count approach [10] is to replace search for a Hamiltonian cycle
with counting the following objects: a cycle cover of the graph (i.e., a subset of edges where
every vertex is of degree exactly two) with an assignment of every cycle to either left or right.
In this manner, a fixed cycle cover with ¢ cycles is counted 2¢ times; if we additionally force
one fixed vertex to be always on the left side, we get 2¢~! instead. That is, every Hamiltonian
cycle is counted once, and every other cycle cover is counted an even number of times.

In [10], the Isolation Lemma [19] is employed to essentially reduce to the case when we
solve instances with a unique Hamiltonian cycle. Then, the parity of the count described
above indicates whether the graph contains a Hamiltonian cycle. However, this approach
introduces a large polynomial overhead in the running time bound: first, because of the need
for self-reducibility to discover the cycle (which we handle as in the previous section) and,
second, because of the use of Isolation Lemma that adds an additional “weight” dimension
to the dynamic programming memoization tables.

For the second overhead, as discussed [10], it can be remedied by, instead of using the
Isolation Lemma, pick a field F of characteristic 2 (i.e., a field of size 2P for some integer p),
associate with each edge e € E(G) a variable ., associate with each cycle cover a monomial
being a product of the variables associated with the edges used in the cycle cover, and
compute the sum of the monomials over all cycle covers and all left /right assignment, using
a random assignment of values from F to variables z.. Then, if F is large enough (larger
than the maximum degree of the monomial, which is n), the Schwarz-Zippel lemma ensures
that with good probability the result is nonzero if and only if the graph has a Hamiltonian
cycle (i.e., there is a small probability of a false negative).

In our implementation, we follow this path, using a field of size 264. This size is large
enough so that the failure probability is neglible. On the other hand, there exists an efficient
implementation of operations on this field using the PCLMULQDQ processor instruction for
multiplication. Our implementation of the field operations follow [5].

Furthermore, as discussed in the introduction, the choice of computations over GF(254)
rather than arguably simpler counting algorithms via the Isolation Lemma resulted also
in technical problems in handling join nodes. As observed in [10], a natural and direct
approach to a join node with bag of size t runs in time 9%¢°("). In [10], this is speeded
up by an involved fast convolution approach, reducing the 9% factor to 4*. At heart of this
approach lies an algorithm to quickly compute the following convolution.

Let f,g:Z}]* — R for some ring R and integer m. We define f*x g : Z}]* — R as

(fxg9)@) = > fg(z—y).

yeLY

Here, the addition in Z}* is done coordinatewise. [10] developed a FFT-like approach to
computing the above convolution, yielding the following.
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» Lemma 2.2 ([10]). Given f,g: Z§* — 7Z, the convolution f*g can be computed in 4™m®™)
operations on 7 on values of the order of 2°0™) times larger than the mazimum absolute
value of the input functions.

However, the proof of the above lemma involves division by a factor of 4™, making it
inapplicable directly to R = GF(2%%). To circumvent this obstacle, we developed a new
variant of Lemma 2.2, building on the internal structure of the field GF(2°%). Recall that
a field GF(2P) can be defined as the ring Z[z] divided by the ideal generated by 2 and an
irreducible (in Fa[z]) polynomial @ of degree p.

» Lemma 2.3. Let p > 1 and assume that the elements of field GF(2P) are given as
polynomials from Folx] of degree less than p, and multiplication in GF(2P) is done modulo a
known polynomial Q of degree p. Given two function f,qg: Z]* — GF(2P), the convolution
f * g can be computed in time 4™ (pm)©D),

Proof. We follow the same algorithm as in the proof of Lemma 2.2 from [10], but treating the
values of f and g as elements of Z[x], not GF(2%%). This allows the necessary division steps
in the algorithm, and an inspection of the proof of [10] shows that the algorithm operates on
O(m)-bit integers and polynomials of degree O(p). Then, at the very end, we reduce every
resulting polynomial modulo 2 and modulo @ to obtain elements of G F(2%4). <

However, in the above we need to depart from the efficient implementation of operations in
GF(2%%), and explicitly operate on polynomials in Z[z] of larger degree. While theoretically
sound, this is expected to give a large overhead in experiments. Consequently, we test two
variants of the Cut&Count algorithm: the one using a naive approach to the join nodes in
time 94490
To conclude the proof of Theorem 1.1, we observe that to ensure correctness with constant
probability, the Cut&Count algorithm of [10] requires field GF(2P) with p = Q(logn).

) and the one using Lemma, 2.3.

3 Setup

3.1 Hardware and code

All of the computations were performed on a PC with an Intel Core i5-6500 processor and
16 GB of random-access memory. The operating system used during the experiments was
Arch Linux. All implementations has been done in C++, the code is available at [1, 23].

3.2 Data sets

To evaluate our algorithms we decided to use well known set of HAMILTONIAN CYCLE
instances from Flinders Hamiltonian Cycle Project [15] consisting of 1001 instances. To find
tree decompositions of small with, we first applied our implementation of the minimum fill-in
heuristic (cf. [14]). The heuristic returned tree decompositions of width at most 8 for 623
instances, and indicated that 30 more instances may have treewidth within ranges allowing
usage of our HAMILTONIAN CYCLE algorithms.

We took the aforementioned 623 instances as our main benchmark. For sake of optimizing
hyperparameters of our algorithms, we sampled a subset of 30 elements.

To the aforementioned 30 instances with larger but potentially tractable treewidth,
we applied the heuristic of Ben Strasser [21] that won the second place in 2017 PACE
Challenge [12]. This resulted in another 19 instances with tree decompositions of width
between 17 and 29. Out of these instances, 15 turned out to be tractable by our algorithms.
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Furthermore, we also sampled 7 random instances in the following way: starting from a
Hamiltonian cycle C, we added a number of random edges with endpoints close on the cycle
C' (so that the treewidth is bounded). These instances are meant to generate many partial
solutions at separator, and are expected to give large advantage to rank-based approaches.

To sum up, we operate on five data sets, all but the last being subsets of the Flinders
Hamiltonian Cycle Project [15]:
set A is the whole set of graphs with small treewidth recognized by our heuristic (623

instances, treewidth at most 8),
set B is a subsample of A (30 instances, treewidth at most 8),
set C is the set of larger treewidth graphs with decompositions found by [21] (19 instances,

treewidth beetwen 17 and 29).
set D is the subset of the set C' that turned out to be tractable by our implementations (15

instances, treewidth beetwen 17 and 29).
set F is a set of 7 random graphs sampled as described above.

All instances from [15] are available through their webpage. At [1] we provide a list of the
used instances in each set, the set F, and the used tree decompositions for sets C and D.

3.3 Fine-tuning the frequency of Gaussian elimination

As discussed in the introduction, in the rank-based approach the theoretical running time
bound is worse than the one of Cut&Count approach partially due to the need of applying
Gaussian elimination on the set of partial solutions. It is expected that the Gaussian
elimination would also take substantial part of time resources in experiments.

In theory, the Gaussian elimination step is applied whenever the size of the set of partial
solutions exceeds theoretical guarantees. However, in practice it seems reasonable that
sometimes it pays off to apply this computationally expensive step less often; that is, allow
the set of partial solutions to grow significantly beyond the theoretical bounds, and once
in a while trim it at bulk with a single Gaussian elimination step. This intuition has been
supported by the results of Fafianie et al [13] for the case of STEINER TREE.

Consequently, we start our experiments with fine-tuning the frequency of Gaussian
elimination in both rank-based approaches we study. Since the width of the tree decomposition
can play substantial role in deciding the optimal frequency, we do it separatedly for sets B
and sets C.

In the next experiments, we use the optimum found frequencies for the algorithms based on
both rank-based approaches. Note that the frequencies may differ between the low-treewidth
regime (sets A and B) and the medium-treewidth regime (set C).

3.4 Comparison of the approaches

Having found the optimal frequency of the Gaussian elimination in the rank-based approaches,
we run all four algorithms on every test in sets A, B, and C' and compare results. In set C,
every run has a timeout of 30 minutes. In set A, the timeout equals 10 minutes.

4 Results

In our experiments, it quickly became apparent that the variant of the naive and rank-based
approach that stores all partial solutions (i.e., no self-reducibility) is significantly faster for
small treewidth (sets A and B), while the self-reducibility one is faster for larger treewidth
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Table 1 Fine-tuning results for test set B. Note that the second and third columns correspond
to compression guarantees of the two studied algorithms, respectively.

o | 9t-1 | g2 Total running time on set B (SS.ms)
-
rank-based 4'  rank-based (2 + v/2)°
4ls 9 3 1910.968 1318.385
4 1827.949 1569.542
5 1901.457 1264.803
7 1915.583 1286.522
9 1960.515 1298.849
6 | 32 4 11 1890.034 1316.813
13 1876.483 1339.439
15 1889.843 1401.620
17 1923.244 1425.338
9 1896.748 1269.761
18 1899.633 1290.696
8 | 128 8 36 1996.629 1274.545
72 1925.507 1268.261
144 | 1863.837 1283.934

(sets C, D, and E). Thus, in what follows, we used the first one for experiments on small
treewidth graph and the latter for larger treewidth graphs.

4.1 Fine-tuning the frequency of Gaussian elimination
4.1.1 Small treewidth

Recall that in sets A and B, the maximum size of the bag in the decomposition is 9.
Consequently, in every state (b, E) the size of b=1(1) is at most 8 (as it must be even).
The treatment of the states with [b=1(1)| € {0,2} does not use any of the involved rank-
based techniques. Thus, we decided to separatedly fine-tune the frequency of applying the
Gaussian elimination step to buckets with |[b=1(1)| of size 4, 6, and 8 each. More formally, for
¢ € {4,6,8} we fix a threshold 7 and, for fixed bucket b with [b=1(1)| = ¢ apply the Gaussian
elimination step to the states (b, F) only if the number of these states is at least 7. While
experimenting with one ¢, the threshold for another sizes remains fixed. We perform tests on
set B and report the total time used to find Hamiltonian cycles in all instances. The results
are presented in Table 1.

From the results, it seems that lowering the frequency of Gaussian elimination does
not help neither of the approaches, and evidently worsened the case for the improved base
algorithm and ¢ = 4,6. The only exception seemed to be the case £ = 6 and 7 = 13 for the
worse base algorithm.

We see a number of good explanations for that. First, we think that case ¢ = 8 appeared
very rarely in the computations, and thus the impact of fine-tuning it has neglible effect in
the overall result.

For the remaining cases, note that the matrices passed to the Gaussian elimination have
at most 32 columns in the case of the first algorithm, and only 4 columns in the second.
Thus, the Gaussian elimination step is very cheap in this regime of £. Consequently, one does
not gain much from lowering the frequency, while evidently losing by needing to maintain
bigger memoization tables. This explains the worsening of the second algorithm for ¢ = 4,6
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Table 2 Fine-tuning results for test set D. The Gaussian elimination step is applied to buckets b
with £ = [b71(1)| and at least a - 24271 states (b, E).

Total running time on set D (SS.ms) Total running time on set D (SS.ms)
“ rank-based 4"  rank-based (2 + v/2)° “ rank-based 4"  rank-based (2 + v/2)°
0.5 | 7363.078 2021.516 32 1802.851 1778.647

2704.165 1801.278 64 1797.416 1807.470
2 1925.618 1768.000 128 1794.877 1801.913
4 1813.478 1779.293 256 1801.104 1822.113
8 1792.872 1788.217 512 1795.312 1818.508
16 | 1806.994 1783.919 1024 | 1800.863 1800.698

and increasing 7.

However, one would expect that the first algorithm would also worsen with the increase of
7, but this is not supported by data. To explain this behavior, note that the values of 7 used
here are lower than the theoretical guarantees of the algorithm. Consequently, the pruning
of the memoization tables in the first algorithm seem to give very little in these cases.

In other words, the pruning capabilities of the vectors vy used by the first algorithm are
much weaker for low values of ¢ than the capabilities of the second algorithm. This is most
striking in the case ¢ = 4: there are 3 pairings of a 4-element set; the first algorithm keeps
all of them if present, while the second one notices that one is redundant and deletes it.

To sum up, the data indicates that decreasing the frequency of the Gaussian elimination
step does not help for small values of ¢, while the first algorithm with the worse pruning
capabilities does not offer much pruning in this regime of values of /.

4.1.2 Larger treewidth

For fine-tuning in graphs of larger treewidth, we use set D. Here, we propose slightly different
threshold behavior: we fix a parameter a and, for fixed bucket b with ¢ = [b=1(1)|, we apply
the Gaussian elimination step if the number of states (b, E) exceed o - 2¢/271 (ie., o is a
multiplicative parameter relative to the pruning size guarantee of the second algorithm). The
results are gathered in Table 2.

The results indicate that a mild increase of the threshold (i.e., & = 2) increases the speed
of the second algorithm, while further increase of the threshold slowly worsenes the bounds.
For the first algorith, the sweet spot seems to be slightly later, and further increase of the
threshold does not necessarily worsen the algorithm.

The gain from mild increase in the case of both algorithms can be explained by the fact
that for larger values of ¢, the Gaussian elimination step starts to be costly. In the case of
the first algorithm, we think that its pruning capabilities are limited for the Hamiltonian
cycle problem, and thus further increase of the threshold does not change much.

To sum up, both algorithms definitely slow down if the Gaussian elimination step is done
too frequently. The data showed optimum values o = 8 for the first algorithm and a = 2 for
the second.

4.2 Comparison

As discussed in Section 2.4, we have implemented two variants of the Cut&Count algorithm:
the one that uses the fast convolution at join nodes (Lemma 2.3) and the one that does it
more naively in time bounded by 949,
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Table 3 Total running times for test set A (timeout 10 minutes per instance). The Cut&Count
program did not finish within alloted time on 124 instances, the remainder solved all test cases. In
the first row, we show total running time on all 499 tests solved by all programs.

naive rank-based 4" rank-based (2 ++/2)" Cut&Count
499 tests finished by all | 5993.633 7383.249 5919.392 46650.101
all 623 tests 11532.153  13675.58 10278.827 -

Table 4 Running times for test sets C' and E. Hyphen means timeout (30 minues). For the set
C, the “tw” column indicates the width of the used tree decomposition (found by the algorithm of
Strasser [21]). Tests where all algorithms were timeouted are not presented here.

test [V(G)| |E(G)] tw | naive rank-based 4° rank-based (2 ++/2)" Cut&Count
0074 462 756 28 | 38.737 109.655 110.040 -

0109 606 933 17 | .063 .086 .085 .611
0110 606 925 17 | .066 .089 .090 AT1
0144 804 1256 21 | .190 .253 231 205.128
0145 804 1252 21 | .137 187 .186 3.549
0172 1002 1575 25 | 1.156 1.298 554 -

0173 1002 1579 25 | .459 .598 A75 215.115
0199 1200 1902 29 | 13.513 15.419 3.369 -

0200 1200 1902 26 | 3.673 6.900 1.544 -

0253 1578 2688 29 | 93.343 167.458 167.440 -

0268 1644 2767 25 | 36.449 70.157 69.111 -

0271 1662 2770 29 | 28.149 33.145 33.208 -

0272 1662 2863 25 | 554.271 1260.329 1230.722 -

0290 1770 3020 25 | 57.901 83.781 82.386 -

0298 1806 3071 23 | 10.035 18.611 18.492 -
EO0001 | 360 566 371.775 - 64.390 -
E0002 | 600 886 204.197 - 28.882 -
E0003 | 700 1139 - - 711.778 -
E0007 | 360 655 1575475 - 328.191 -

We found out that the one with the fast convolution behaves very slowly even on small
tests. This can be easily explained by the hidden complexity of ring computations inside
Lemma 2.3. Consequently, while theoretically sound, we dropped it from further experiments
and considered only the Cut&Count algorithm without the fast convolution.

For test set A, we have used a timeout of 10 minutes per instance. A CSV file with full
results can be found on the project website [1]. Table 3 presents summary; the Cut&Count
algorithm did not finish in time for 124 tests, and thus we compare its running time on
the other 499 tests. For sets C and E, full results are in Table 4 (for set E only naive and
improved rank-based algorithms were executed).

The first corollary from the results is that the Cut&Count approach does not turn
out to be practical, and is heavily outperformed by other approaches. We see some good
explanations for that. First, all other approaches are “positive-driven”: they keep only values
in their memoization tables that correspond to found partial solutions, and in many cases
there can be much fewer such partial solutions that the worse-case theoretical bound. In
particular, these approaches can implicitly use some hidden structure of the input graph, such
as planarity. The Cut&Count approach, on the other hand, relies on computing coefficients
for partial cycle covers, and — even with our positive-driven implementation that keeps only

nonzero elements — keeps track of much more partial solutions that the other approaches.
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This effect is even stronger if one tries to use fast convolution at join nodes: the convolution
fills up the entire table of 4! values being polynomials, even if the input functions were sparse.

Second, the Cut&Count approach solves only a decision version of the problem, yielding
large overhead from some self-reducibility application, while all other algorithms return the
Hamiltonian cycle in question straight away.

For the other approaches, it is noticeable that the first rank-based approach (with 4°
guarantee on the size of the memoization tables) is clearly outperformed by the naive
approach. That is, the cost of the Gaussian elimination step does not pay back in savings of
the size of memoization tables. This can be explained as already discussed in the previous
section: the vectors used in this algorithm are too weak to effectively prune the memoization
tables, which is particularly visible on buckets b with small ¢ = [b=1(1)].

Results from small treewidth graphs (set A) show also that the improved rank-based
approach outperforms the naive one by roughly 10%. For larger treewidth (set C), the
situation is more complicated: on some tests the rank-based approach outperforms the naive
one by significant factor (0172, 0199, 0200), while sometimes it is opposite (0074, 0272). As
expected, the artificially generated random instances gave big advantage to the rank-based
approach.

A natural question is why we see only 10% increase despite significant asymptotic gain
in the analysis (2°0(1°8%) vs (2 4+ /2)!). Apart from the obvious answers to this questions
(the values of t we are studying are low for asymptotic analysis), we would like to point
out another, problem-specific reason. The difference between the naive approach and the
rank-based one is only within handling states for one fixed bucket b, and there are up to 3*
different buckets. Iterating over all non-empty buckets is a common part of both approaches,
and can be responsible for most of their running time.

To sum up, the only approach competitive with the naive approach is the improved
rank-based approach with the (24+/2)! guarantee on the size of memoization tables. However,
its gain is limited, and there are multiple cases where the use of Gaussian elimination steps
is not helpful at all.

5 Conclusions

We have experimentally evaluated multiple known approaches to solve HAMILTONIAN CYCLE
in graphs of bounded treewidth. The results show that the Cut&Count approach is impractical,
while the improved rank-based approach of [9] consistently outperforms the more generic one
of [6]. Furthermore, the latter seem to help little and is outperformed by the naive solution.

The comparison between the naive solution and the improved rank-based one of [9] is
more intricate. On graphs of small treewidth, the second one outperforms the first one by
10% margin. For larger treewidth, the results are rather indecisive.

The results indicate potential in the improved rank-based algorithm of [9] and point
to the need of further theoretical study of this approach. In [9], the authors show how to
perform pruning without the need of Gaussian elimination at introduce/forget nodes.
The question of matching the (2 + ﬂ)tto(l) running time bound for join nodes remains
open, and a positive answer to this question may lead to significantly faster implementation.
Also, we did not try to mix the Gaussian elimination steps at join nodes with the other
steps at introduce/forget nodes.

Finally, we found it quite remarkable that 638 out of 1001 instances of Flinders Hamiltonian
Cycle Challenge [15] (i.e., our sets A and D) could be solved with the naive bounded treewidth
routine on a personal computer, while 623 out of them (our set A) have one-digit treewidth.
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