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Abstract

Let T = {41, . . . ,4n} be a set of of n pairwise-disjoint triangles in R3, and let B be a con-
vex polytope in R3 with a constant number of faces. For each i, let Ci = 4i ⊕ riB denote
the Minkowski sum of 4i with a copy of B scaled by ri > 0. We show that if the scaling fac-
tors r1, . . . , rn are chosen randomly then the expected complexity of the union of C1, . . . , Cn is
O(n2+ε), for any ε > 0; the constant of proportionality depends on ε and the complexity of B.
The worst-case bound can be Θ(n3).

We also consider a special case of this problem in which T is a set of points in R3 and
B is a unit cube in R3, i.e., each Ci is a cube of side-length 2ri. We show that if the scaling
factors are chosen randomly then the expected complexity of the union of the cubes is O(n log2 n),
and it improves to O(n logn) if the scaling factors are chosen randomly from a “well-behaved”
probability density function (pdf). We also extend the latter results to higher dimensions. For
any fixed odd value of d, we show that the expected complexity of the union of the hypercubes
is O(nbd/2c logn) and the bound improves to O(nbd/2c) if the scaling factors are chosen from a
“well-behaved” pdf. The worst-case bounds are Θ(n2) in R3, and Θ(ndd/2e) in higher dimensions.
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10:2 Union of Minkowski Sums with Random Sizes in Three Dimensions

1 Introduction

We advance the state of the art regarding the complexity of the union of combinatorial
objects in dimensions d ≥ 3 beyond worst-case analysis. To that end we study the union
complexity of Minkowski sums of pairwise disjoint triangles with a randomly scaled copies
of a fixed convex polytope, and Minkowski sums of points with cubes of random sizes. We
hope that our techniques will be useful in future studies of such stochastic arrangements.

Specifically, let T = {41, . . . ,4n} be a collection of n pairwise-disjoint triangles in R3,
and let B be a fixed convex polytope in R3 with a constant number of faces. We consider
the setup where we are given a sequence r = 〈r1, . . . , rn〉 of non-negative scaling factors (or
sizes), and we let Ci = 4i ⊕ riB denote the Minkowksi sum of 4i with a copy of B scaled
by ri, for i = 1, . . . , n. Each Ci is a convex polytope with a constant number of faces. Let
C = {C1, . . . , Cn}, and let U = U(T, r) =

⋃n
i=1 Ci denote their union. We also use U(C) to

denote U(T, r).
The combinatorial complexity of U is the total number of faces of all dimensions on the

boundary ∂U of U. Each vertex of ∂U is a vertex of some set Ci, an intersection point
between an edge of some Ci and a face of another Cj , or an intersection point of three faces
of three distinct Ci’s. By Euler’s formula, the overall complexity of ∂U is proportional to
the number of vetices on ∂U. Therefore we measure the combinatorial complexity of U by
the number of its vertices, and denote this quantity by ψ(T, r).

Our goal is to obtain an upper bound on the expected value of ψ(T, r), under a suitable
stochastic model for choosing the scaling factors r for the members of C. We refer to
this problem as the stochastic Minkowski-sum union problem. Our expected bounds are
significantly better than the worst case bounds (for any such union), indicating that inputs
which are not adversarial are likely to have lower union complexity.

Another motivation for our analysis is for an efficient computation of the most vulnerable
location of an attack in a three-dimensional scene. Concretely, we use the model where
we have a scene consisting of objects, modeled as a collection of pairwise disjoint triangles.
An attack occurs at some point, and the probability of a triangle to be hit decreases as its
distance from the attacking point increases (up to some threshold). We want to compute a
point of attack in which we maximize the expected number of triangles that we hit. The
same technique to approximately solve this problem, as done in the planar case [1, 2], leads
to questions about the complexity of the union of Minkowski sums of the input triangles
with balls of random radii. The case studied here replaces the ball by a convex polytope,
which we choose to approximate the Euclidean ball. The results obtained in this paper lead
to improved solution to the vulnerability problem, by roughly one factor of n.
We consider two stochastic models for choosing the sequence r = 〈r1, . . . , rn〉 of scaling
factors:

The density model. We are given an arbitrary probability density (or mass) function (pdf)
π over the non-negative reals; for each 1 ≤ i ≤ n, we take ri to be a random value drawn
independently from the distribution determined by π.

The permutation model. We are given a sequence Θ = 〈θ1, . . . , θn〉 of n arbitrary non-
negative real numbers, with θ1 ≤ θ2 ≤ · · · ≤ θn. We draw a random permutation σ on [1 : n],
where all permutations are equally likely to be chosen, and assign ri := θσ(i) to 4i, for each
i = 1, . . . , n.
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For the density model, let ψ(T, π) denote the expected value of ψ(T, r), where the
expectation is taken over the random choices of r, drawn from π in the manner specified
above. Set ψ(n) = maxψ(T, π), where the maximum is taken over all probability density
(mass) functions and over all sets T of n pairwise-disjoint triangles in R3. For the permutation
model, in an analogous manner, we let ψ(T,Θ) denote the expected value of ψ(T, r), where
the expectation is taken over the choices of r, obtained by randomly shuffling the members
of Θ. Then, with a slight overloading of the notation, we define ψ(n) = maxψ(T,Θ),
where the maximum is over all possible choices of the multi-set Θ and over all sets T of n
pairwise-disjoint triangles in R3. Our goal is to prove sharp bounds on ψ(n) under these two
models.

As noted in [2], the permutation model is more general than the density model, in the
sense that an upper bound on ψ(n) in the permutation model immediately implies the same
bound on ψ(n) in the density model. Although we mostly focus on the permutation model,
we also show that some of our bounds can be improved, by a logarithmic factor, in the
density model if the underlying pdf is “well behaved,” in a sense to be made precise below.

Related work. There is extensive work on bounding the complexity of the union of a set
of geometric objects, especially in R2 and R3, and optimal or near-optimal bounds have
been obtained for many interesting cases. We refer the reader to the survey paper by
Agarwal et al. [18] for a comprehensive summary of most of the known results on this topic.

The complexity of the union of n arbitrary shapes of constant complexity in R2 is Θ(n2),
but the bound improves to near linear for a large class of well behaved planar objects; see [18].
Analogously, the complexity of the union of n arbitrary shapes of constant complexity
in R3 is Θ(n3). Over more than a decade, a series of papers have considered geometric
objects in R3 that have some special properties, and derived near-quadratic bounds on the
complexity of their union. These cases include: a family of arbitrary convex polytopes4 [8], a
family of cylinders (of arbitrary radii) [12], (arbitrarily aligned) congruent cubes in three
dimensions [19], a family of fat tetrahedra [13], a family of κ-round objects [4], and Minkowski
sums of a family of pairwise-disjoint convex polytopes with a fixed convex polytope [7] or
with a fixed ball [3]. Quadratic lower bounds are known for all these cases.

The case of the union of axis-parallel cubes is a highly-structured special instance. If
the cubes are isothetic (that is, they are all congruent), the complexity of their union is5
O(n). In dimension d, Boissonnat et al. [10] proved that the complexity of the union of n
isothetic hypercubes is Θ

(
nbd/2c

)
. If the hypercubes are (axis-parallel but) of arbitrary sizes,

the complexity of their union is Θ
(
ndd/2e

)
in Rd. These two bounds coincide for even values

of d, but there is a gap, by a factor of d, for odd values of d.
There is a rich literature on bounding the complexity of geometric structures under a

stochastic model in which the locations of points are drawn randomly from a distribution;
see [14, 20, 21] and references therein. The complexity of the union of a set of objects in a
semi-stochastic model, in which the locations of the objects were arbitrary but their scaling
factors were chosen randomly, was first studied by the authors (with Har-Peled) in [2]. They
investigated two planar variants of the stochastic Minkowski-sum union problem. In the first
variant, one is given a set S of n pairwise-disjoint line segments in R2, and one replaces each
e ∈ S by the Minkowski sum e⊕ riB, where B is the unit disk and the scaling factors ri are

4 Here the bound is cubic in the number of polytopes but is only near linear in the number of facets.
5 In contrast, the complexity of the union of congruent balls in R3 is quadratic in the worst case; see,
e.g., [18].
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10:4 Union of Minkowski Sums with Random Sizes in Three Dimensions

randomly chosen under either of the above two models. It is shown in [2] that the expected
complexity of the union of these sums is O(n logn). In the second variant, S is a collection
of arbitrary pairwise-disjoint convex sets (of constant complexity) in the plane, and then the
expected complexity of the union of the corresponding random Minkowski sums (again, with
randomly scaled copies of the unit disk) is shown in [2] to be O(n1+ε), for any ε > 0. In
both cases, the bounds are a significant improvement over the worst case quadratic bound,
and almost match the linear upper bound when all scaling factors are equal—the Minkowski
sums then form a collection of pseudo-disks. Here we study related random arrangements in
higher dimensions, a situation that required some new ideas in order to apply some exisiting
techniques.

In a different, but closely related context, Har-Peled and Raichel [16] proved that the
expected complexity of the multiplicatively weighted Voronoi diagram of a set of points
or line segments in R2 is O(n polylog(n)) if the weights are randomly chosen under the
permutation model.6 Recall that if the weights are arbitrarily chosen, then the worst-case
complexity of the weighted Voronoi diagram is quadratic [9]. Chang et al. [11] studied various
generalizations of multiplicatively weighted Voronoi diagrams and proved sharp bounds on
their expected complexity.

Our results. We have two main results in this paper:
Union of hypercubes. We first study (in Section 2) the interesting special case of the
stochastic Minkowski-sum union problem in which each triangle is a point in R3 and B is
an axis-aligned cube in R3 of side-length 2. That is, we have a set P = {p1, . . . , pn} of n
points in R3, and B = {x ∈ R3 | ‖x‖∞ ≤ 1}, and for each i ≤ n, Ci = riB + pi is a cube of
side-length 2ri centered at pi. In other words, we study the complexity of the union of n
cubes Ci each having a random (according to each of our models) L∞ diameter and a fixed
center. In fact, we study this problem not only in R3 but in Rd for general d. The reader
should note that all our definitions (e.g. of ψ(P,Θ)) extend to Rd. Hypercubes in Rd arise in
many applications and the following result indicates that if their diameters are not chosen in
an adversarial manner then the complexity of their union is likely to be smaller than the
worst case, by nearly a factor of n. Specifically, we prove:

I Theorem 1.1. Let P be a set of n points in Rd, let B be the axis-aligned hypercube of
side-length 2 in Rd centered at the origin, and let Θ be a multi-set of scaling factors. Under
the permutation model, ψ(P,Θ) = O(n log2 n) for d = 3, and ψ(P,Θ) = O(nbd/2c logn) for
any fixed odd value of d > 3. The same bounds hold for the density model.

Tame distributions. We call a pdf π, with Π as its cdf (cumulative distribution function),
tame if for every x > 0 and for every integer k ≥ 0,

1−Π(kx) ≤ (1−Π(x))k. (1)

It is an easy exercise to verify that (1) is satisfied for a large class of pdfs, including uniform,
exponential, (one-sided) normal, and log-normal distributions. If the scaling factors are
chosen from a tame pdf, then the bounds can be improved by a logarithmic factor:

I Theorem 1.2. Let P be a set of n points in Rd, and let B be the hypercube of side-length
2 centered at the origin. If the scaling factors are drawn randomly from a tame pdf π, then
ψ(P, π) = O(n logn) for d = 3 and ψ(P, π) = O(nbd/2c) for any fixed odd value of d > 3.

6 Given a point set P = {p1, . . . , pn} and a weight wi > 0 for each point pi, the Voronoi cell of pi in the
multiplicatively weighted Voronoi diagram is {x ∈ Rd | wi‖x− pi‖ ≤ wj‖x− pj‖ ∀j ≤ n}.
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By Theorems 1.1 and 1.2, the expected complexity of the union of a set of axis-aligned
hypercubes, whose sizes are chosen randomly, is almost the same as when their sizes are
equal. The overall structure of the proof of both theorems is the same, and consists of two
stages. The first stage bounds the expected number of outer vertices on the union, i.e., the
vertices that lie on a (d− 2)-face or a lower-dimensional face of one of the hypercubes. This
is where we had to develop a new technique to exploit the randomness of the input. The
second stage then obtains a bound on the number of inner vertices, namely vertices formed
by the intersection of d facets of d distinct hypercubes, by adapting the argument in [10]
and using the bound, derived earlier, on the expected number of outer vertices.

The stochastic Minkowski-sum union problem. Next, we study (in Section 3) the
general case in which T is a set of pairwise disjoint triangles in R3 and B is a convex polytope
in R3 with O(1) faces, and prove the following near-quadratic upper bound:

I Theorem 1.3. Let T be a collection of n pairwise-disjoint triangles in R3, let Θ be a
multi-set of scaling factors, and let B be a convex polytope with O(1) vertices. Then the
value of ψ(T,Θ) under the permutation model is O(n2+ε), for any fixed constant ε > 0; the
constant of proportionality depends on ε and the complexity of B. The same bound holds for
the density model.

If all sizes ri are equal, the complexity of U is O(n2 logn) [7], where the constant of
proportionality depends on the complexity of B. On the other hand, for a bad layout of the
triangles of T and a bad (non-random) choice of sizes, the complexity of U can be Θ(n3); see
Section 3 for a lower-bound construction. (The bound in Theorem 1.3 is coarse enough so
that drawing the scaling factors from a tame pdf does not seem to affect it.

2 Union of Hypercubes

In this section we prove Theorems 1.1 and 1.2. For a point x ∈ Rd, we use ‖x‖∞ to denote the
L∞-norm of x. For a compact set S ⊂ Rd, let d∞(x, S) = miny∈S ‖x− y‖∞. A hypercube C
of L∞-radius (or radius for brevity) r centered at c is the set C = {x ∈ Rd | ‖x− c‖∞ ≤ r};
the side-length of this hypercube is 2r. Let P = {p1, . . . , pn} be a set of n points in Rd, and
let B be the (axis-aligned) hypercube of radius 1 centered at the origin. Given a sequence
r = 〈r1, . . . , rn〉 of non-negative scaling factors, we define, for each i ≤ n, Ci = riB+ pi to be
a hypercube of radius ri centered at pi. Let C = {C1, . . . , Cn}, and let U = U(C) =

⋃n
i=1 Ci

denote the union of the hypercubes.
For simplicity, we assume that the hypercubes of C are in general position, in the sense

that no two facets of any pair of hypercubes lie in a common hyperplane. This assumption is
made only to simplify the analysis, and the general, possibly degenerate case can be reduced
to the general-position setup by means of a suitable small perturbation.

A vertex v in the arrangement A(C) of C is the intersection of d facets of the hypercubes in
C and each of these facets is orthogonal to a different coordinate axis. These facets need not
belong to distinct hypercubes. We refer to v as an inner vertex if the d facets on which it lies
belong to d distinct hypercubes, and as an outer vertex if at least two of these facets belong
to the same hypercube. The level of v is j if it lies in the interior of exactly j hypercubes of
C; the level of every vertex on ∂U is 0. For j ≥ 0, let Ij(C) (resp. Oj(C)) denote the number
of inner (resp. outer) vertices at level j in A(C).

If the sequence r of scaling factors is chosen randomly, using either the permutation
model or the density model, Ij(C) and Oj(C) are random variables. For a sequence Θ of
scaling factors, let Īj(P,Θ) = E[Ij(C)] denote the expected value of Ij(C) in the permutation
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10:6 Union of Minkowski Sums with Random Sizes in Three Dimensions

model, over a random permutation of Θ. For any n > 0 and for any j ≤ n − d, let
Īj(n) = max Īj(P,Θ) denote the expected number of inner vertices of level j under the
permutation model, where the maximum is taken over all point sets of size n. We define
Ōj(P,Θ) and Ōj(n) similarly. By definition (recall the terminology introduced earlier),
ψ(P,Θ) = Ī0(P,Θ) + Ō0(P,Θ) and ψ(n) ≤ Ī0(n) + Ō0(n).

Finally, in the density model, which we use explicitly only when the scaling factors are
chosen randomly from a tame pdf π, we define Īj(P, π) and Ōj(P, π) as the expected number
of inner and outer level-j vertices, respectively, and we also define Īj(n) and Ōj(n) as the
maximum value of these respective quantities, where the maximum is taken over all sets P
of n points and all tame pdf’s.7

Our goal is to bound Ī0(n) and Ō0(n). Our strategy is first to derive an upper bound
for Ō0(n), either for the permutation model or for the density model for a tame pdf, and
then use either of these bounds in a charging scheme that leads to a corresponding bound on
Ī0(n). The following lemma will be crucial in proving the bound on Ī0(n).

I Lemma 2.1. Ō1(n) = O(Ō0(n)).

To keep the presentation simple, we first bound Ō0(n) in R3 (Section 2.1) and then extend
the argument to higher dimensions (Section 2.2). Finally, we prove an upper bound on Ī0(n)
in Rd, for any odd dimension d ≥ 3 (Section 2.3).

2.1 Outer vertices in 3D
An outer vertex of U(C) in R3 is either a vertex of a cube in C or the intersection point of an
edge of a cube Ci with a face of another cube Cj . There are O(n) vertices of the first type,
so it suffices to bound the expected number of the second type of outer vertices.

We fix a point, say p1, of P and an edge e of the cube C1 = p1 + r1B centered at p1.
We bound the expected number of outer vertices of U lying on e. Note that e is not a fixed
segment in R3—its physical location in R3 as well as its length depend on the value of r1.
Nevertheless, we can combinatorially define e so that it refers to a fixed edge (one of the 12
possible edges) of C1. For simplicity, we assume that e is parallel to the z-axis. We bound
the expected number of vertices lying on e, first for the permutation model, and then for the
density model for a tame pdf.

The permutation model. We are given a sequence Θ = 〈0 ≤ θ1 ≤ · · · ≤ θn〉 of n arbitrary
non-negative scaling factors. We choose a random permutation σ on [1 : n], and assign
ri := θσ(i).

Let µ(e, P,Θ) denote the expected number of connected components of ∂U ∩ e. The
expected number of outer vertices on e is at most 2µ(e, P,Θ). For a fixed value θi ∈ Θ for
r1, let µ(e, P,Θ | r1 = θi) denote the conditional expected number of connected components
of ∂U ∩ e assuming that r1 = θi. With this fixed choice of r1, e is a segment of length 2θi,
lying at a fixed location in R3. Observe that

µ(e, P,Θ) = 1
n

n∑
i=1

µ(e, P,Θ | r1 = θi). (2)

The following probabilistic lemma is the main technical tool used in the analysis in R3.

7 One can also take the maximum over all pdfs, but then the various expectations are at most the
corresponding quantities under the permutation model, and no better bounds are known so far. We will
therefore be interested only in tame pdfs.
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I Lemma 2.2. For any 1 ≤ k ≤ n, µ(e, P,Θ | r1 = θn−k+1) ≤ 4n
k .

Proof. Let r = θn−k+1. Let e+ (resp. e−) denote the top (resp. bottom) half of e, i.e., the
portion lying above (resp. below) p1. Further partition e+ into two parts e+

1 and e+
2 , each

of length r/2, and similarly partition e−. We bound the expected number of connected
components of U lying on e+

1 , e
+
2 , e

−
1 and e−2 separately. Let e′ = e+

1 , the bounds for the
other parts of e are derived analogously.

Let P (e∗) = 〈pi1 , pi2 , . . . , pin−1〉 denote the sorted sequence of the points of P \ {p1} by
increasing values of δi = d∞(pi, e′). We fix an assignment r2, . . . , rn of scaling factors (which
is a permutation of Θ \ {r}) to the points of P \ {p1}, so that pi is assigned the scaling factor
ri, for i = 2, . . . , n. Let pij be the first point in the sequence P (e∗) for which rij ≥ r. If
δij ≤ r/2 then, since |e′| = r/2, it follows by the triangle inequality that e′ ⊆ Cij and there
are no connected components of U on e′.

So assume that δij > r/2. Then, since the sequence P (e∗) is sorted by distance to e′, it
follows that δi` > r/2 for every ` ≥ j. Hence, any cube Ci` , for ` ≥ j, will intersect e′ only if
ri` ≥ r/2. But then e′ ∩Ci` must contain an endpoint of e′. It follows that all the cubes Ci` ,
for ` ≥ j, can contribute at most one connected component to ∂U ∩ e′. The cubes Ci` , for
` < j, can increase the number of components by at most j − 1, so in total we get at most j
connected components of U on e′.

As argued in [2, Lemma 3.3] (see also [15]), the expected value of the index j of the first
appearance of one of k− 1 distinguished elements in a random permutation of n− 1 elements
is n/k, so the expected value of j is n/k. This gives an average of at most n/k connected
components of ∂U ∩ e′. From this the lemma follows. J

Plugging Lemma 2.2 into (2), we obtain µ(e, P,Θ) = O(logn). Summing this bound over
all O(n) edges of cubes in C and using Lemma 2.1, we obtain the following.

I Corollary 2.3. Let P be a set of n points in R3, and let Θ be a multi-set of n non-negative
scaling factors. Then Ō0(P,Θ), Ō1(P,Θ) = O(n logn).

The density model for tame distributions. Next, we show that if the scaling factors of
the cubes in C are chosen randomly and independently from a tame pdf then the expected
number of outer vertices on a fixed edge g of any cube, say for concreteness the cube C1
centered at p1, is only O(1). For simplicity, we assume that p1 is at the origin. Let π be
a tame pdf and Π its cdf. By definition, 1 − Π(kx) ≤ (1 − Π(x))k for all x > 0 and for
each k ≥ 1. Adapting the previous notation, let µ(g, P, π) denote the expected number of
connected components on ∂U ∩ g.

I Lemma 2.4. µ(g, P, π) ≤ 2e3/(e− 1).

Proof. Assume, as before, that g is parallel to the z-axis, and let g+ (resp. g−) denote the
top (resp. bottom) half of g, i.e., the portion of g lying above (resp. below) p1. Recall that g+

is a random segment whose length and location depend on the value of r1, the scaling factor
assigned to p1. We bound µ(g+, P, π), the expected number of connected components of
∂U∩ g+. A symmetric argument will bound µ(g−, P, π), and the sum of these two quantities
will bound µ(g, P, π).

Set α = Π−1 (1− 1/e) and let Ik = [kα, (k + 1)α), for k = 0, 1, . . .. For a fixed value of
r1 we partition g+ into `+ 1 intervals, ∆0, . . . ,∆`, such that, for k < `, the projection of ∆k

on the z-axis is Ik and the projection of ∆` is contained in I`. For convenience we define ∆k,
for k > `, to be an empty interval. Note that ` is a random variable whose value depends
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10:8 Union of Minkowski Sums with Random Sizes in Three Dimensions

on r1. Let µ(∆k) := µ(∆k, P, π) denote the expected number of connected components of
∂U ∩∆k. Then

µ(g+, P, π) ≤
∞∑
k=0

µ(∆k). (3)

The probability that ∆k is not empty is equal to Pr[r1 ≥ kα], which is

Pr[r1 ≥ kα] = 1−Π(kα) ≤ (1−Π(α))k = e−k. (4)

Fix a value of r1 for which ∆k is not empty. Let P (∆k) = 〈pi1 , pi2 , . . . , pin−1〉 denote the
sorted sequence of the points of P \ {p1} by increasing values of δi = d∞(pi,∆k). Fix an
assignment r2, . . . , rn of scaling factors to the points of P \ {p1}, so that pi is assigned the
scaling factor ri, drawn from π, for i = 2, . . . , n.

Let pij be the first point in the sequence P (∆k) for which rij ≥ 2α. If δij ≤ α then since
|∆k| ≤ α it follows by the triangle inequality that ∆k ⊆ Cij , and there are no connected
components of U on ∆k.

So let us assume that δij > α. Then, since the sequence P (∆k) is sorted by distance
to ∆k, it follows that δi` ≥ α for every ` ≥ j. Thus, for a cube Ci` , for ` ≥ j, to intersect
∆k, we must have that ri` ≥ α. But then ∆k ∩ Ci` must contain an endpoint of ∆k. It
follows that all the cubes Ci` , for ` ≥ j, can contribute at most one connected component to
∂U∩∆k. The cubes Ci` , for ` < j, can increase the number of components by at most j − 1,
so in total we get at most j connected components of U on ∆k.

Notice that j is a geometric random variable, where the success probability of each trial
is p = 1− Π(2α) ≤ (1− Π(α))2 = 1/e2. The expectation of j is thus 1/p = e2. Therefore
µ(∆k | ∆k 6= ∅) ≤ e2.

Combining this with the bound on the probability that ∆k is not empty, in Equation (4),
we get that µ(∆k) = Pr[∆k 6= ∅] · µ(∆k | ∆k 6= ∅) ≤ e−k+2. Substituting these bounds into
Equation (3), the lemma follows. J

Putting everything together and using Lemma 2.1, we obtain the following:

I Lemma 2.5. Let P be a set of n points in R3 and π a tame pdf. Then Ō0(P, π), Ō1(P, π) =
O(n).

2.2 Outer vertices in higher odd dimensions
We now bound Ō0(n) in Rd, for any fixed odd value d > 3. We fix a point of P , say, p1, and
a (d− 2)-dimensional face f of C1. We bound the expected number of outer vertices lying on
f. As in the previous case, we first obtain the bound for the permutation model and then for
the density model (with a tame pdf).

The permutation model. Let Θ denote a fixed set of scaling factors, and let µ(f, P,Θ)
denote the expected number of vertices of U lying on f. We bound the conditional expectation
µ(f, P,Θ | r1 = θi), assuming that the scaling factor of p1 is θi, and then use (2) to bound
µ(f, P,Θ).

Recall that once the value r1 is fixed to θi, the hypercube C1 = p1 + r1B is also fixed,
and so is its face f. The problem is therefore to bound the expected number of outer vertices
lying on a fixed (d− 2)-dimensional hypercube f. A naive approach, based on induction on d
within f does not work. We use instead a different approach.

The following lemma is analogous to Lemma 2.2.
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I Lemma 2.6. For any 1 ≤ k ≤ n, µ(f, P,Θ | r1 = θn−k+1) = O
(
nbd/2c

k

)
.

Proof. The proof is similar to that of Lemma 2.2. Let r = θn−k+1. We partition f into
4d−2 hypercubes (subfaces) each of radius r/4. Fix such a smaller hypercube g. Let
µ(g, P,Θ | r1 = r) be the expected number of outer vertices of U incident to g, conditioned
on the choice of r1.

Let δi = d∞(pi, f) and let P (g) = 〈pi1 , pi2 , . . . , pin−1〉 denote the sorted sequence of the
points of P \ {p1} by increasing values of δi = d∞(pi, g). We fix an assignment r2, . . . , rn
of scaling factors from Θ \ {r} to the points of P \ {p1}, so that pi is assigned the scaling
factor ri, for i = 2, . . . , n. Let Ĉ = {Ci := pi + riB | pi ∈ P \ {p1}} be the resulting set of
hypercubes. Let Ug = U(Ĉ) ∩ g. Our goal is to bound the number of vertices of Ug. Let F
be the (d− 2)-dimensional flat spanned by g. For a hypercube Ci ∈ Ĉ, let Ki = Ci ∩ F . If
nonempty, Ki is a (d− 2)-dimensional hypercube of radius ri.

Let pij be the first point in the sequence P (g) for which rij ≥ r. Set K< = {Ki` |
` < j ∧ Ki` 6= ∅} and K≥ = {Ki` | ` ≥ j ∧ Ki` 6= ∅}. By definition, |K<| < j and
Ug = U(K< ∪K≥) ∩ g.

If δij ≤ r/2 then, since the side-length of g is r/2, it follows by the triangle inequality
that f ⊆ Cij and the number of vertices in Ug is 0. So assume that δij > r/2. Then, since
the pi’s are sorted by their distance to g, it follows that δi` > r/2 for every ` ≥ j. Hence, for
a cube Ci` with ` ≥ j to intersect g we must have ri` > r/2.

I Lemma 2.7. Let g be a (d − 2)-dimensional hypercube of radius r/4. For any (d − 2)-
dimensional hypercube K of radius at least r/4, there is another hypercube K̃ of radius exactly
r/4 such that K ∩ g = K̃ ∩ g.

Since all hypercubes in K≥ have radius at least r/4, we obtain, by applying Lemma 2.7
to all of them, a collection K̃≥ = {K̃i | Ki ∈ K≥} such that U(K≥) ∩ g = U(K̃≥) ∩ g. It
follows that Ug = U(K< ∪ K̃≥) ∩ g. It therefore suffices to bound the number of vertices of
Ũg = U(K< ∪ K̃≥), and also the number of vertices of Ũg ∪ g (in order to upper bound the
number of vertices in Ug which are on the boundary of g). We bound the number of vertices
of Ũg, the analysis for Ũg ∪ g is similar.

We call a vertex v of Ũg pure if it does not lie on the boundary of any hypercube
in K<, otherwise we call it mixed. A pure vertex is also a vertex of U(K̃≥). Since K̃≥
is a set of at most n congruent hypercubes in Rd−2, the number of vertices in U(K̃≥) is
O(nb(d−2)/2c) = O(nbd/2c−1).

Each mixed vertex of Ũf is incident to at least one facet of a hypercube in K<. Fix
such a facet φ, and let Φ be the (d− 3)-dimensional flat spanned by φ. For each hypercube
K ∈ K< ∪ K̃≥, let K∗ = K ∩ Φ be the (possibly empty) (d − 3)-dimensional hypercube
contained in Φ. Set K∗ = {K∗ | K ∈ K< ∪ K̃≥}. A mixed vertex incident on φ is also a
vertex of U(K∗). Since d− 3 is even, the result in [10] implies the number of such vertices
is (always) O

(
n(d−3)/2) = O

(
nbd/2c−1). Multiplying the bound by the number of facets

in the hypercubes of K<, the total number of mixed vertices is O(|K<|nbd/2c−1). Hence,
the total number of vertices in Ug is O(|K<|nbd/2c−1 + nbd/2c−1) = O(jnbd/2c−1). As in the
proof of Lemma 2.2, the expected value of j (assuming that r1 = θn−k+1) is O(n/k). Hence,
µ(g, P,Θ | r1 = θn−k+1) = O

(
nbd/2c

k

)
. The lemma follows by summing this over all 4d−2

subfaces g in the subdivision of f. J

Plugging Lemma 2.6 in (2), we obtain that µ(f, P,Θ) = 1
n

∑n
k=1O

(
nbd/2c

k

)
=

O
(
nbd/2c−1 logn

)
. Finally, summing this bound over all points of P and using Lemma 2.1,

we obtain the main result of this section:
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I Lemma 2.8. Let P be a set of n points in Rd for some fixed odd value of d > 3, and let Θ
be a multi-set of scaling factors. Then Ō0(P,Θ), Ō1(P,Θ) = O

(
nbd/2c logn

)
.

The density model for tame distributions. Next, we show (see the full version for details)
that if the scaling factors of the cubes in C are chosen randomly and independently from a
tame pdf π (whose cdf is denoted by Π) then the expected number of outer vertices on a
fixed (d− 2)-dimensional face f of any cube, say of C1, is O

(
nbd/2c−1). That is,

I Lemma 2.9. µ(f, P, π) = O(nbd/2c−1).

Putting everything together, using Lemma 2.1, we obtain the following:

I Lemma 2.10. Let P be a set of n points in Rd for some fixed odd value of d > 3, and let
π be a tame pdf. Then Ō0(P,Θ), Ō1(P,Θ) = O

(
nbd/2c

)
.

2.3 Inner vertices
We now bound the expected number of inner vertices in U(C) in Rd under both the permutation
model and the density model for tame distributions. We first consider a fixed assignment of
scaling factors to the points of P , so C = {C1, . . . , Cn} is a fixed set of n hypercubes in Rd.
We obtain a recurrence for I0(C) for this fixed C, by closely following the charging scheme
proposed in Boissonnat et al. [10], which shows that there are many distinct outer vertices of
level 0 plus vertices (inner or outer) of level 1 in the neighborhood of any inner vertex of
U(C). This gives an upper bound on I0(C) in terms of I1(C), O0(C), and O1(C). Next, we
consider a random assignment of scaling factors and obtain a recurrence for Ī0(n) in terms
of Ī1(n), Ō0(n), and Ō1(n), from the recurrence for I0(C). We use results from Sections 2.1
and 2.2 to bound the last two terms, and we use a counting argument to bound Ī1(n) in
terms of Ī0(n− 1).

The charging scheme. Let v be an inner vertex of ∂U, lying on d facets f = {f1, . . . , fd}
of a set C = {C1, . . . , Cd} of d distinct hypercubes, such that fi is a facet of Ci orthogonal
to the xi-axis. For each i ≤ d, let γi denote the intersection segment of the d− 1 facets in
f \ {fi}. The segment γi is parallel to the xi-axis. The vertex v is incident to all d segments
γ1, . . . , γd. For each i, we trace the segment γi from v entering the hypercube Ci (recall
that v lies on the xi-orthogonal facet fi of Ci) until we encounter another vertex, wi, of the
arrangement A(C) of C. Three cases can arise:
(i) The vertex wi lies on the facet of Ci opposite to fi (i.e., the other facet of Ci orthogonal

to the xi-axis). This event can happen only if Ci is smaller than all the other d − 1
hypercubes in C, i.e., it can happen for at most one index i.

(ii) The vertex wi is an outer vertex at level 1 (it is contained in Ci), lying on a (d− 2)-face
of one of the hypercubes Cj ∈ C \ {Ci}.

(iii) The vertex wi is an inner vertex at level 1 (it is contained in Ci), lying on the boundary
of another hypercube C0 ∈ C \C.

In the first case, we simply ignore this segment γi and the vertex wi—at most one of the
d segments will be ignored. In cases (ii) and (iii), v charges wi one unit. This way, each
inner vertex v of U receives at least d− 1 units of charge.

An outer vertex w at level 1, lying on a (d − 2)-face φ of Cj , can be reached from an
inner vertex only along one of the two corresponding facets of Cj (in a direction normal to
the other facet containing φ), so w is charged at most twice by a type (ii) event.
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An inner vertex w at level 1 can be charged at most d times, once along each of its d
incident intersection segments. Suppose w is charged s times. If s ≤ 1, then w pays one unit
of charge for its unique charging inner vertex (or does not pay at all). If s > 1, we distribute
s − 1 of the s units of charge to nearby outer vertices at level 0 or 1 so that each outer
vertex is charged at most once (at most one inner vertex can pass a charge to it), and w also
pays only one unit of charge. The charge distribution scheme culminates in the following
recurrence.

(d− 1)I0(C) ≤ I1(C) + 3O1(C) + O0(C). (5)

Recurrence for a fixed assignment. We now obtain a recurrence for I0(C) by using the
following lemma; see [10] for the easy proof.

I Lemma 2.11.
n∑
i=1

I0(C \ {Ci}) = (n− d)I0(C) + I1(C).

Using Lemma 2.11 and (5), we obtain the following recurrence.

(n− 1)I0(C) = (n− d)I0(C) + (d− 1)I0(C)
≤ (n− d)I0(C) + I1(C) + 3O1(C) + O0(C) (Eq. (5))

=
n∑
i=1

I0(C \ {Ci}) + 3O1(C) + O0(C) (Lemma 2.11). (6)

Recurrence for a random assignment. We remind the reader that so far the analysis has
been applied to a fixed assignment of scaling factors to the points of P , that is, to a fixed set
C of hypercubes. We now want to replace (6) by the expectations of the terms appearing
there, with respect to a random assignment of the scaling factors. By linearity of expectation,

(n− 1)E[I0(C)] ≤
n∑
i=1

E[I0(C \ {Ci})] + 3E[O1(C)] + E[O0(C)]. (7)

For a fixed choice of the scaling factor ri of Ci, the assignment of the remaining scaling
factors to the elements of C\{Ci} is a random permutation (of the n−1 elements in Θ\{ri})
under the permutation model, and a random assignment under the density model. The
conditional expected value of I0(C\{Ci}) over any fixed choice of r1 is thus at most Ī0(n−1),
and therefore the same also holds for the unconditional expected value of I0(C\{Ci}). Hence,
we obtain the following:

(n− 1)Ī0(n) ≤ nĪ0(n− 1) + 3Ō1(n) + Ō0(n). (8)

Dividing both sides by n(n− 1) and setting χ(m) = 1
m Ī0(m), we obtain

χ(n) ≤ χ(n− 1) + 1
n(n− 1)(3Ō1(n) + Ō0(n)). (9)

We now substitute the bounds on Ō0(n) and Ō1(n) from Section 2.1 and Section 2.2 for
both the permutation model and the density model for tame distributions. For example,
for the permutation model in R3, Ō0(n), Ō1(n) = O(n logn). Therefore, we obtain χ(n) ≤
χ(n−1)+ b logn

n , where b > 0 is a constant. Hence, χ(n) = O(log2 n) and Ī0(n) = O(n log2 n)
in this case. For any fixed odd d > 3 and still under the permutation model, we obtain
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χ(n) ≤ χ(n− 1) + b′nbd/2c−2 logn, where b′ is another constant. Since d > 3, the solution
of the above recurrence is χ(n) = O(nbd/2c−1 logn) and thus Ī0(n) = O(nbd/2c logn). This
completes the proof of Theorem 1.1.

If the scaling factors of all points are chosen from a tame pdf, the bounds for Ō0(n), Ō1(n)
can be obtained using Lemmas 2.5 and 2.10. This implies that in this case Ī0(n) = O(n logn)
for d = 3 and Ī0(n) = O(nbd/2c) for any fixed d > 3. This completes the proof of Theorem 1.2.

3 Union of Stochastic Minkowski Sums

We now consider the general (three-dimensional) stochastic Minkowski-sum union problem
defined in the introduction, i.e., we now have a set T = {41, . . . ,4n} of n pairwise-disjoint
triangles in R3 and a convex polytope B with O(1) vertices. Let r = 〈r1, . . . , rn〉 be a sequnce
of n non-negative scaling factors. Ci = 4i ⊕ riB is a convex polytope with O(1) vertices.
Set C = {Ci | 1 ≤ i ≤ n}. Let Θ = 〈θ1, . . . , θn〉 be a sequence of n scaling factors. Our goal
is to bound the expected number of vertices in U(T, r), denoted by ψ(T,Θ), when r is chosen
from Θ using the permutation model, i.e., we choose a random permutation σ of [1 : n] and
set ri = θσ(i). For simplicity, we assume that T,B,Θ are such that C is in general position
for any permutation of Θ. Let F(T, r) denote the complement of U(T, r).

As in Section 2, we first analyze a certain conditional expectation and then bound
the overall expected value ψ(T,Θ). A crucial ingredient in our analysis is the following
technical lemma, adapted from Aronov and Sharir [5, Slicing Theorem] (see also [6, Chopping
Theorem]).

I Lemma 3.1. Let R ⊆ T be a subset of t triangles and let r = 〈r, r, . . . , r〉. Then (a) the
complexity of U(T, r) is O(t2 log t), and (b) there exists a decomposition F∇ of F := F(R, r)
into O(t2 log t) tetrahedra with pairwise-disjoint interiors.

We note that each tetrahedron in F∇ is defined by at most s triangles of T , where s is a
constant that specifies the (maximum) number of input triangles that are needed to define
the features (vertices, edges, and facets) of the corresponding tetrahedron. Moreover, any s
or fewer triangles define at most O(1) tetrahedra. We thus obtain the following lemma:

I Lemma 3.2. The overall number of tetrahedra that can ever arise in the decomposition
F∇(R, r) for any subset R ⊆ T , where all the scaling factors in r are equal, is O(ns).

The recursive partition scheme. We now follow, or rather adapt, the recursive scheme
used in [2]. Specifically, fix a parameter t, whose value will be determined later, and put
ρ = θn−t, the (t + 1)-st largest scaling factor in Θ. Let Θ< be the sequence of the n − t
smallest values in Θ. We fix a subset T> ⊆ T of t triangles, and set T< = T \ T>. Let
ψ(T,Θ | T>) denote the conditional expected complexity of U conditioned over the subset
of those permutations σ that assign the t largest scaling factors in Θ to the triangles of
T>; the restriction of a random permutation from this subset to [1 : n− t] (i.e., the part of
the permutation that assigns the scaling factors of Θ< to the triangles in T<) is a random
permutation, i.e., each permutation of [1 : n− t] is equally likely to arise.

We first obtain a bound on ψ(T,Θ | T>). For each 4i ∈ T , put C̄i = 4i ⊕ ρB. Set
C̄> = {C̄i | 4i ∈ T>} and Ū := U(C̄>). Let F̄ denote the complement of Ū. Since the
4i’s are pairwise disjoint and we now add the same convex polytope ρB to each of them,
Lemma 3.1(a) implies that Ū has O(t2 log t) complexity. Moreover, by Lemma 3.1(b), there
exists a decomposition, denoted as F̄∇, of F̄ into O(t2 log t) tetrahedra with pairwise-disjoint
interiors. For each tetrahedron τ of F̄∇, let T<τ = {4i ∈ T< | C̄i ∩ τ 6= ∅}; set nτ = |T<τ |.
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Note that Ū, F̄, F̄∇, and the sets T<τ are independent of the choice of permutation; they
only depend on ρ and the set T>.8

We now fix a permutation σ, and thus an assignment of scaling factors, such that the
largest t scaling factors are assigned to the triangles of T>. Thus the scaling factors of
all triangles in T< (resp. T>) are at most (resp. at least) ρ. Therefore Ci ⊆ C̄i for each
4i ∈ T< and Ci ⊇ C̄i for each 4i ∈ T>. Consequently, Ū ⊆ U(C).

For a cell τ ∈ F̄∇, set C<τ = {Ci | Ti ∈ T<τ }. Clearly, no other triangle 4i ∈ T< can have
its real expansion Ci meet τ . We define Cτ = {Ci ∩ τ | 4i ∈ T<τ ∪ T>}, and set Uτ = U(Cτ ).
By construction,

U = U(C) = Ū ∪
⋃

τ∈F̄∇
Uτ . (10)

We call a vertex v of U internal if v does not lie on the boundary of any polytope Ci
with Ti ∈ T>, and we call v external otherwise. The number of external vertices is trivially
O(tn2), so it suffices to bound the number of internal vertices of U. Since Ū ⊆ U, every
internal vertex lies in F̄. Suppose v lies in the tetrahedron τ of F̄∇. Then by (10), v is a
vertex of Uτ . Furthermore, v is an internal vertex, so it is not incident on any Ci for Ti ∈ T>,
and thus v is a vertex of U(C<τ ). The total number of internal vertices in τ is bounded by the
combinatorial complexity of U(C<τ ), denoted by ψ(T<τ , rτ ) (as defined in the introduction),
where rτ is the set of scaling factors of the triangles in Tτ , Hence, the total number of internal
vertices on U is

∑
τ∈F̄∇ ψ(T<τ , rτ ), and (10) implies that the total number vertices ψ(T, r)

on U satisfies ψ(T, r) ≤
∑
τ∈F̄∇ ψ(T<τ , rτ ) +O(tn2).

Expected number of vertices. We now bound the expected complexity of U, conditioned
on a fixed choice of T>. That is, we condition the analysis on the subset of those permutations
σ that assign the t largest scaling factors in Θ to the triangles of T>. The set Θ<

τ of scaling
factors assigned to the triangles in T<τ is not fixed, but, since T<τ is a fixed set, conditioned
only on the choice of T>, the set Θ<

τ is a random subset of Θ< = {θ1, . . . , θn−t} of the
fixed size nτ . Moreover, the assignment (under the original random permutation σ) of these
scaling factors to the triangles in T<τ is a random permutation of Θ<

τ . Hence, conditioning
further on the choice of Θ<

τ , the expected value of ψ(T<τ , rτ ) is ψ(T<τ ,Θ<
τ ) ≤ ψ(nτ ). Hence,

the last expression also bounds the unconditional expected complexity of U(C−τ ), albeit still
conditioned on a fixed choice of T>. Summing this over all tetrahedra of F̄∇, we obtain that
ψ(T,Θ | T>) ≤

∑
τ∈F̄∇ ψ(nτ ) +O(tn2).

To bound the unconditional expected value ψ(T,Θ) we notice that the subset T> of the
triangles that are assigned the t largest scaling factors is a random subset of T . Since T> is a
random sample of T of size t and since, by Lemma 3.2, there are only O(ns) tetrahedra that
can appear in the decomposition F̄∇, the following lemma is a consequence of a standard
random-sampling argument; see [17, Section 4.6] for a proof.

I Lemma 3.3. For any constant c > 0, with probability 1−O
( 1
nc

)
, every (open) tetrahedron

τ of F̄∇ intersects at most c′n
t logn of the sets of C̄<, where c′ is a constant that depends on

both c.

Choosing c = 3 in Lemma 3.3, with probability 1 − O
( 1
n3

)
our T> is such that nτ ≤

c′n
t logn for every τ ∈ F̄∇. With probability O

( 1
n3

)
, T> may fail to satisfy this property,

8 Clearly, Ū and F̄ are uniquely determined. For F̄∇, the statement means that if we follow an agreed-upon
implementation of the construction in the proof of Lemma 3.1, F̄∇ is also uniquely determined.
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but, since the complexity of U(C) is always O(n3) (again, with a constant of proportionality
that depends on the complexity of B), the contribution of these “bad” choices of T> to
ψ(T,Θ) is O(1). If n is below some appropriate constant n0, we can use a trivial bound of
O(n3) for the complexity of U. Altogether, we obtain the following recurrence,

ψ(n) ≤

 a0n
3 for n ≤ n0,

a1t
2 log t · ψ

(
c′n
t logn

)
+ a2n

2t for n > n0,
(11)

where n0, a0, a1, a2, c
′ are suitable constants. With appropriate choice of parameters, the

solution of this recurrence is ψ(n) ≤ An2+ε, for any ε > 0, where A depends on ε and on the
other constants appearing in the recurrence. This proves Theorem 1.3.
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