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Abstract
Given a graph, does there exist an orientation of the edges such that the resulting directed graph
is strongly connected? Robbins’ theorem [Robbins, Am. Math. Monthly, 1939] asserts that such
an orientation exists if and only if the graph is 2-edge connected. A natural extension of this
problem is the following: Suppose that the edges of the graph are partitioned into trails. Can
the trails be oriented consistently such that the resulting directed graph is strongly connected?

We show that 2-edge connectivity is again a sufficient condition and we provide a linear time
algorithm for finding such an orientation.

The generalised Robbins’ theorem [Boesch, Am. Math. Monthly, 1980] for mixed multigraphs
asserts that the undirected edges of a mixed multigraph can be oriented to make the resulting
directed graph strongly connected exactly when the mixed graph is strongly connected and the
underlying graph is bridgeless.

We consider the natural extension where the undirected edges of a mixed multigraph are
partitioned into trails. It turns out that in this case the condition of the generalised Robbin’s
Theorem is not sufficient. However, we show that as long as each cut either contains at least 2
undirected edges or directed edges in both directions, there exists an orientation of the trails such
that the resulting directed graph is strongly connected. Moreover, if the condition is satisfied, we
may start by orienting an arbitrary trail in an arbitrary direction. Using this result one obtains
a very simple polynomial time algorithm for finding a strong trail orientation if it exists, both in
the undirected and the mixed setting.
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1 Introduction and motivation

Suppose that the mayor of a small town decides to make all the streets one-way such that
it is possible to get from any place to any other place without violating the orientations
of the streets5. If all the streets are initially two-way then Robbins’ theorem [10] asserts
that this can be done exactly when the corresponding graph is 2-edge connected. If, on the
other hand some of the streets were already one-way in the beginning then the generalised
Robbins’ theorem by Boesch [1] states that it can be done exactly when the corresponding
“mixed” graph is strongly connected and the underlying graph is bridgeless.

However, the proofs of both of these results assume that every street of the city corresponds
to exactly one edge in the graph. This assumption hardly holds in any city in the world and
therefore a more natural assumption is that every street corresponds to a trail (informally, a
potentially self-crossing path) in the graph and that the edges of each trail must be oriented
consistently6.

In this paper we consider such graphs having their edges partitioned into trails. We
prove that the trails can be oriented to make the resulting directed graph strongly connected
exactly if the initial graph is 2-edge connected (note that this is precisely the condition of
Robbins’ theorem).

Not only do we show that the strong trail orientation problem in undirected 2-edge
connected graphs always has a solution, we also provide a linear time algorithm for finding
such an orientation. In doing so, we use an interesting combination of techniques that allow
us to reduce to a graph with a number of 3-edge connected components that is linear in the
number of edges. Using that the average size of these components is constant and that we
can piece together solutions for the individual components we obtain an efficient algorithm.

Finally, we will consider the generalised Robbins’ theorem in this new setting by allowing
some edges to be oriented initially and supposing that the remaining edges are partitioned
into trails. We will show that if each cut (V1, V2) in the graph has either at least 2 undirected
edges going between V1 and V2 or at least 1 directed edge in each direction then it is possible
to orient the trails making the resulting graph strongly connected. In fact, we show that if
this condition is satisfied we may start by orienting an arbitrary trail in an arbitrary direction.
Although this condition is not necessary it does give a simple algorithm for finding a trail
orientation if it exists. Indeed, initially the graph may contain undirected edges that are
forced in one direction by some cut. For finding a trail orientation if it exists we can thus
orient forced trails in the forced direction. If there are no forced trails we orient any trail
arbitrarily.

5 The motivation for doing so is that the streets of the town are very narrow and thus it is a great hassle
when two cars unexpectedly meet.

6 This version of the problem was given to us through personal communication with Professor Robert E.
Tarjan.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.6
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Figure 1 The graph is strongly connected and the underlying graph is 2-edge connected, but
irrespective of the choice of orientation of the red trail, the graph will no longer be strongly connected.

Note that in the mixed setting the feasibility depends on the trail decomposition which is
not the case for the other results. That the condition from the generalised Robbins’ theorem
is not sufficient can be seen from Figure 1.

Earlier methods

Several methods have already been applied for solving orientation problems in graphs where
the goal is to make the resulting graph strongly connected.

One approach used by Robbins [10] is to use that a 2-edge connected graph has an
ear-decomposition. An ear decomposition of a graph is a partition of the set of edges into
a cycle C and paths P1, . . . , Pt such that Pi has its two endpoints but none of its internal
vertices on C∪

(⋃i−1
j=1 Pj

)
. Given the existence of an ear decomposition of a 2-edge connected

graph it is easy to prove Robbins’ theorem. Indeed, any choice of consistent orientations of
the paths and the cycle gives a strongly connected graph.

A second approach introduced by Tarjan [4] gives another simple proof of Robbins’
theorem. One can create a DFS tree in the graph rooted at a vertex v and orient all edges in
the DFS tree away from v. The remaining edges are all back edges (see [4]) and are oriented
towards v. It is easily verified that this gives a strong orientation if the graph is 2-edge
connected. A similar approach was used by Chung et al. [2] in the context of the generalized
Robbins’ theorem for mixed multigraphs.

The above methods not only prove Robbins’ theorem, they also provide linear time
algorithms for finding strong orientations of undirected or mixed multigraphs.

However, none of the above methods have proven fruitful in our case. In case of the ear
decomposition we would need one that is somehow compatible with the partitioning into trails,
and this seems hard to guarantee. Similar problems appear when trying a DFS-approach.
Neither does the proof by Boesch [1] of Robbins’ theorem for mixed multigraphs generalise
to prove our result. Most importantly, the corresponding theorem would no longer be true
for trail orientations as is shown by the example in Figure 1.

Since the classical linear time algorithms rely on ear-decompositions and DFS searches,
and since these approaches do not immediately work for trail partitions, our linear time
algorithm will be a completely new approach to solving orientation problems.

Structure of the paper

The structure of this paper is as follows. In section 3 we prove our generalisation of Robbins’
theorem for undirected graphs partitioned into trails. In section 4 we study the case of mixed
graphs. Finally in section 5 we provide our linear time algorithm for trail orientation in an
undirected graph.

ICALP 2018



6:4 One-Way Trail Orientations

2 Preliminaries

Let us briefly review the concepts from graph theory that we will need.
A graph having some subset of its edges oriented is said to be a mixed graph. We will

write {u, v} for an undirected edge between u and v and (u, v) for an edge directed from u

to v.
A walk in a graph is an alternating sequence of vertices and edges v0, e1, v1, e2, . . . , vk,

such that for 1 ≤ i ≤ k the edge ei has vi−1 and vi as its two endpoints. In a directed or
mixed graph we further require that either ei be undirected or directed from vi−1 to vi

A trail is a walk without repeated edges. A path is a trail without repeated vertices
(except possibly v0 = vk). Finally, a cycle is a path for which v0 = vk.

Next, a mixed multigraph G = (V, E) is called strongly connected if for each pair of
vertices u, v ∈ V there exists a walk from u to v. In case the graph is undirected this is
equivalent to saying that it consists of exactly one connected component. If A ⊆ V we will
say that A is strongly connected in G if for each pair of vertices u, v ∈ A there is a walk in G

from u to v.
A cut or edge-cut (V1, V2) in a graph is a partition of its vertices into two non-empty

subsets V1, V2. We recall the definition of k-edge connectivity. A graph G = (V, E) is said to
be k-edge connected if and only if G′ = (V, E−X) is connected for all X ⊆ E where |X| < k.
A trivially equivalent condition is that each cut (V1, V2) in the graph has at least k edges
going between V1 and V2.

Finally, if G = (V, E) is a mixed multigraph and A ⊆ V we define G/A to be the graph
obtained by contracting A to a single vertex (maintaining duplicate edges and self-loops)
and G[A] to be the subgraph of G induced by A. The following simple observation will be
used repeatedly in this paper.

I Observation 2.1. If G = (V, E) is k-edge connected and A ⊆ V then G/A is k-edge
connected. Also, if G is a strongly connected mixed multigraph then G/A is too.

3 Robbins Theorem Revisited

We are now ready to state and prove our generalisation of Robbins’ theorem.

I Theorem 3.1. Let G = (V, E) be an undirected multigraph with E partitioned into trails.
An orientation of each trail such that the resulting directed graph is strongly connected exists
if and only if G is 2-edge connected.

We note that this theorem could also be proven using a general result from Király and
Szigeti [6] which relies on theorems by Nash-Willams [9]. However, our proof is significantly
simpler (in fact we believe that restating the theorem by Király and Szigeti and explaining
the reduction would be more cumbersome) and more suitable for constructing algorithms.

Proof. If G is not 2-edge connected, such an orientation obviously doesn’t exist, so we only
need to prove the converse. Suppose therefore that G is 2-edge connected.

Our proof is by induction on the number of edges in G. If there are no edges, the graph
consists of a single vertex, and the statement is obviously true. Assume now the statement
holds for all graphs with strictly fewer edges than G. Pick an arbitrary edge e that sits at
the end of its corresponding trail.

If G−e is 2-edge connected, then by the induction hypothesis there is a strong orientation
of G− e that respects the trails of G. Such an orientation clearly extends to the required
orientation of G.
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Figure 2 A 2-edge cut and the two graphs G1 = G[V1] ∪ {{u1, w1}} and G2 = G[V2] ∪ {{u2, w2}}.
The orientations of the two new edges are obtained from the strong trail orientations of G1 and G2.

If G − e is not 2-edge connected, there exists a bridge b in G − e (see Figure 2). Let
V1, V2 be the two connected components of G−{e, b}, and let e = {u1, u2} and b = {w1, w2}
such that for i ∈ {1, 2}, ui, wi ∈ Vi (note that we don’t necessarily have that ui and wi are
distinct for i ∈ {1, 2}).

Now for i ∈ {1, 2} construct the graph Gi = G[Vi] ∪ {{ui, wi}} (note that {ui, wi} might
be a self-loop but this causes no problems for the argument), and define the trails in Gi to
be the trails of G that are completely contained in Gi, together with a single trail combined
from the (possibly empty) partial trail of e contained in Gi and ending at ui, followed by the
edge {ui, wi}, followed by the (possibly empty) partial trail of b contained in Gi starting at
wi. Both G1 and G2 are 2-edge connected since they can each be obtained as contractions of
G with some self-loops deleted. Furthermore, they each have strictly fewer edges than G,
so inductively each has a strong orientation that respects the given trails. Further, we can
assume that the orientations are such that the new edges are oriented (u1, w1) and (w2, u2) by
flipping the orientation of all edges in either graph if necessary. We claim that this orientation,
together with e oriented as (u1, u2) and b oriented as (w2, w1), is the required orientation
of G. To see this first note that (by our choice of flips) this orientation respects the trails.
Secondly, suppose v1 ∈ V1 and v2 ∈ V2 are arbitrary. Since G1 is strongly connected G[V1]
contains a directed path from v1 to u1. Similarly, G[V2] contains a directed path from u2 to
v2. Thus G contains a directed path from v1 to v2. A similar argument gives a directed path
from v2 to v1 and since v1 and v2 were arbitrary this proves that G is strongly connected
and our induction is complete. J

The construction in the proof can be interpreted as a naive algorithm for finding the
required orientation when it exists.

I Corollary 3.2. The one-way trail orientation problem on a graph with n vertices and m

edges can be solved in O(n + m · f(m, n)) time, where f(m, n) is the time per operation for
fully dynamic bridge finding (a.k.a. 2-edge connectivity).

At the time of this writing [3], this is O(n + m(log n log log n)2). In Section 5 we will provide
a less naive algorithm which runs in linear time.

4 Extension to Mixed graphs

Now we will extend our result to the case of mixed graphs. We are going to prove the
following.

I Theorem 4.1. Let G = (V, E) be a strongly connected mixed multigraph. Then G− e is
strongly connected for all undirected e ∈ E if and only if for any partition P of the undirected
edges of G into trails, and any T ∈ P, any orientation of T can be extended to a strong trail
orientation of (G,P).

ICALP 2018
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Algorithm 1: Algorithm for mixed graphs.
Input: A mixed multigraph G and a partition P of the undirected edges of G into

trails.
Output: True if (G,P) has a strong trail orientation, otherwise false. If G has a

bridge or is not strongly connected, G is left unmodified. Otherwise G is
modified, either to have such a strong trail orientation, or to a forced graph
that is not strongly connected.

1 if G has a bridge or is not strongly connected then
2 return false
3 end
4 while |P| > 0 do
5 if for some undirected edge e, G− e is not strongly connected then
6 Let T ∈ P be the trail containing e.
7 if some orientation of T leaves G strongly connected then
8 Apply such an orientation of T to G

9 else
10 return false
11 end
12 else
13 Let T ∈ P be arbitrary.
14 Update G by orienting T in an arbitrary direction.
15 end
16 Remove T from P.
17 end
18 return true

Suppose G = (V, E) is as in the theorem. We will say that e ∈ E is forced if it is undirected
and satisfies that G − e is not strongly connected. This terminology is natural as it is
equivalent to saying that there exists a cut (V1, V2) in G such that e is the only undirected
edge in this cut and such that all the directed edges go from V1 to V2. If we want an
orientation of the trails making the graph strongly connected we are clearly forced to orient
e from V2 to V1.

Theorem 4.1 is a proper extension of Theorem 3.1 since if G is undirected and 2-edge
connected then no e ∈ E is forced. Furthermore, the theorem suggests a very simple
polynomial time algorithm (see Algorithm 1) for finding a strong orientation of the trails if it
exists. Indeed, if the mixed graph contains forced edges we direct the corresponding trails in
the forced direction. If there are no forced edges then either the graph is no longer strongly
connected in which case we know that a strong trail orientation doesn’t exist. Otherwise, we
may by Theorem 4.1 orient any trail in an arbitrary direction.

For proving Theorem 4.1 we will need the following lemma.

I Lemma 4.2. Let G be a directed graph, and let (A, B) be a cut with exactly one edge
crossing from A to B. Then G is strongly connected if and only if G/A and G/B are.

Proof. Strong connectivity is preserved by contractions, so if G is strongly connected then
G/A and G/B both are. For the other direction, let (a1, b1) be the edge going from A to B.
As G/A is strongly connected and (a1, b1) is the only edge going from A to B we can for
any edge (b2, a2) going from B to A find a path from b1 to b2 that stays in B. Since G/B is
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Figure 3 A cut with two undirected edges and all directed edges going from A to B followed by
a contraction of B.

strongly connected, it follows that A is strongly connected in G. By a symmetric argument,
B is also strongly connected in G and since the cut has edges in both directions (as e.g. G/A

is strongly connected), G must be strongly connected. J

Now we provide the proof of Theorem 4.1.

Proof of Theorem 4.1. If there exists an undirected edge e such that G− e is not strongly
connected, then the trail T containing e can at most be directed one way since e is forced, so
there is an orientation of T that does not extend to a strong trail orientation of (G,P). To
prove the converse suppose G− e is strongly connected for all undirected e ∈ E.

The proof is by induction on |P|. If |P| = 0 the result is trivial. So suppose |P| ≥ 1 and
that the theorem holds for all (G′,P ′) with |P ′| < |P|.

Consider the chosen trail T ∈ P. If both orientations of T leave a graph where the
condition in the theorem is still satisfied we are home by induction. Otherwise, there must
exist a cut (A, B) of the following form: (1) T crosses the cut exactly once, (2) exactly
one undirected edge from a different undirected trail T ′ ∈ P crosses the cut and (3) every
directed edge crossing the cut goes from A to B.

Now suppose there is such a cut (A, B) (see Figure 3). Consider the graph G/B and let b

be the node corresponding to B in G/B. Let PA consist of all trails in P that are completely
contained in A, together with a single trail TA combined from the (possibly empty) fragments
of T and T ′, joined at b. Since any cut in G/B corresponds to a cut in G, G/B is strongly
connected and remains so after deletion of any single undirected edge. By construction
|PA| ≤ |P| − 1, so by induction any orientation of TA in G/B extends to a strong orientation
of (G/B,PA). Let G/A, a, PB and TB be defined symmetrically, then by the same argument
any orientation of TB in G/A extends to a strong orientation of (G/A,PB). Now for any
orientation of T , we can choose orientations of TA and TB that are compatible. The result
then follows by Lemma 4.2. J

Theorem 4.1 gives a sufficient condition for the existence of a strong orientation and
we deal with the other cases by first orienting all forced edges. However, the generalised
Robbins’ theorem provides a simple equivalent condition, which we lack. Finding such an
equivalent condition in our setting is an essential open problem for strong trail orientations.
As seen by the example of Figure 1 such a condition will necessarily have to depend on the
structure of the trail partition.

5 Linear time algorithm

In this section we provide our linear time algorithm for solving the trail orientation problem
in undirected graphs. For this, we make two crucial observations. First, we show that there
is an easy linear time reduction from general graphs or multigraphs to cubic multigraphs.

ICALP 2018
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v

Figure 4 A node of degree 5 turns into a cycle of length 5.

Second, we show that in a cubic multigraph with n vertices, we can in linear time find and
delete a set of edges that are at the end of their trails, such that the resulting graph has
Ω(n) 3-edge connected components. We further show that we can compute the required
orientation recursively from an orientation of each 3-edge connected component together with
the cactus graph of 3-edge connected components. Since the average size of these components
is constant, we can compute the orientations of most of them in constant time individually
and thus in linear time taken together. The rest contains at most a constant fraction of the
vertices, and so a simple geometric sum argument tells us that the total time is also linear.

We start out by making the following reduction.

I Lemma 5.1. The one-way trail problem on a 2-edge connected graph or multigraph with n

vertices and m edges, reduces in O(m + n) time to the same problem on a 2-edge connected
cubic multigraph with 2m vertices and 3m edges.

Proof. Cyclically order the edges adjacent to each vertex such that two edges that are
adjacent on the same trail are consecutive in the order. Replace each single vertex v with a
cycle of length deg(v), with each vertex of the new cycle inheriting a corresponding neighbour
of v such that the order of the vertices on the cycle corresponds to the cyclic ordering (see
Figure 4). Note that for a vertex of degree 2, this creates a pair of parallel edges, so the
result may be a multigraph. By the choice of cyclic ordering, we can make the cycle-edge
between the two vertices on the same trail belong to that trail. The rest of the cycle edges
form new length 1 trails. Clearly the new graph is also 2-edge connected so by Theorem 3.1
it has a strong trail orientation, and any strong trail orientation on this graph translates to a
strong trail orientation of the original graph. The new graph has exactly 2m vertices and
3m edges, and is constructed in O(m + n) time. J

Recall now that a multigraph C is called a cactus if it is connected and each edge is contained
in at most one cycle. If G is any connected graph we let C1, . . . , Ck be its 3-edge connected
components. It is well known that if we contract each of these we obtain a cactus graph. For
a proof of this result see section 2.3.5 of [8]. As the cuts in a contracted graph are also cuts
in the original graph we have that if G is 2-edge connected then the cactus graph is 2-edge
connected. The edges of the cactus are exactly the edges of G which are part of a 2-edge cut.
We will call these edges 2-edge critical.

It is easy to check that if a cactus has m edges and n vertices then m ≤ 2(n− 1). We
will be using this result in the proof of the following lemma.
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I Lemma 5.2. Let G = (V, E) be a cubic 2-edge connected multigraph, let X ⊆ E, and let
F ⊆ E with F ⊇ E \X minimal (w.r.t inclusion) such that H = (V, F ) is 2-edge connected.
Then H has at least 2

5 |X| distinct 3-edge connected components.

Proof. Let Xdel = X \ F be the set of edges deleted from G to obtain H, and let Xkeep =
X \Xdel be the remaining edges in X.

By minimality of H there are at least |Xkeep| 2-edge-critical edges in H i.e. edges of the
corresponding cactus, and thus, if |Xkeep| ≥ 4

5 |X|, there are at least 1
2 |Xkeep|+ 1 ≥ 2

5 |X|+ 1
distinct 3-edge connected components.

If |Xkeep| ≤ 4
5 |X| then |Xdel| ≥ 1

5 |X|, and since G is cubic and the removal of each edge
creates two vertices of degree 2 we must have that H has at least 2 |Xdel| ≥ 2

5 |X| distinct
3-edge connected components. J

I Lemma 5.3. Let G = (V, E) be a connected cubic multigraph with E partitioned into trails.
Then G has a spanning tree that contains all edges that are not at the end of their trail.

Proof. Let F be the set of edges that are not at the end of their trail. Since G is cubic, the
graph (V, F ) is a collection of vertex-disjoint paths, and in particular it is acyclic. Since G is
connected, F can be extended to a spanning tree. J

Note that we can find this spanning tree in linear time e.g. by contracting all edges
internal to a trail, finding a spanning tree of the resulting graph, and adding the internal
trail edges to the edges of this spanning tree.

I Lemma 5.4. Let G = (V, E) be a cubic 2-edge connected multigraph with E partitioned
into trails. Let T be a spanning tree of G containing all edges that are not at the end of
their trail. Let H be a minimal subgraph of G (w.r.t inclusion) that contains T and is 2-edge
connected. Then for any k ≥ 5, less than 4

5
k

k−1 |V | of the vertices in H are in a 3-edge
connected component with at least k vertices.

Proof. Let X be the set of edges that are not in T . Since G is cubic, |X| = 1
2 |V |+ 1. By

Lemma 5.2 H has at least 2
5 |X| >

1
5 |V | 3-edge connected components. Each such component

contains at least one vertex, so the total number of vertices in components of size at least k

is less than k
k−1

(
|V | − 1

5 |V |
)

= 4
5

k
k−1 |V |. J

I Definition 5.5. Let C be a 3-edge connected component of some 2-edge connected graph
H, whose edges are partitioned into trails. Define ΓH(C) to be the 3-edge connected graph
obtained from C by inserting a new edge {e1, f1} for each min-cut {e, f} where e = {e1, e2}
and f = {f1, f2} and e1, f1 ∈ C. Define the corresponding partition of the edges of ΓH(C)
into trails by taking every trail that is completely contained in C, together with new trails
combined from the fragments of the trails that were broken by the min-cuts together with
the new edges that replaced them. See Figure 5.

At this point the idea of the algorithm can be explained. We remove as many of the edges
that sit at the end of their trails as possible, while maintaining that the graph is 2-edge
connected. Lemma 5.4 guarantees that we obtain a graph H with Ω(|V |) many 3-edge
connected components of size O(1). We solve the problem for each ΓH(C) for every 3-edge
connected component. Finally, we combine the solutions for the different components like in
the proof of Theorem 3.1.

I Theorem 5.6. The one-way trail orientation problem can be solved in O(m + n) time on
any 2-edge connected undirected graph or multigraph with n vertices and m edges.

ICALP 2018
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C ΓH(C)

Figure 5 The 3-edge connected components of a 2-edge connected graph. Notice that every
edge leaving a 3-edge connected component C becomes part of a cycle if all 3-edge components are
contracted. The right hand side shows ΓH(C) where C is the component in the middle.

Proof. By Lemma 5.1, we can assume the graph is cubic. For the algorithm we will use two
subroutines. First of all, when we have found a minimum spanning tree T containing the
edges that are not on the end of their trail we can use the algorithm of Kelsen et al. [5] to, in
linear time, find a minimal (w.r.t. inclusion) subgraph H of G that contains T and is 2-edge
connected. Secondly, we will use the algorithm by Mehlhorn et al. [7] to, in linear time, build
the cactus graph of 3-edge connected components. The algorithm runs as follows:
1. Construct a spanning tree T of G that contains all edges that are not at the end of their

trail.
2. Construct a minimal subgraph H of G that contains T and is 2-edge connected7.
3. Find the cactus of 3-edge connected components of8 H.
4. For each 3-edge connected component Ci, construct ΓH(Ci).
5. Recursively compute an orientation for each9 ΓH(Ci).
6. Combine the orientations from each component to a strong trail orientation of H. A such

is also a strong trail orientation of G.
First we will show correctness and then we will determine the running time.

Recall that we can flip the orientation in each ΓH(Ci) and still obtain a strongly connected
graph respecting the trails in ΓH(Ci). The way we construct the orientation of the edges of
G is by flipping the orientation of each ΓH(Ci) in such a way that each cycle in the cactus
graph becomes a directed cycle10. This can be done exactly because no edge of the cactus is
contained in two cycles. By construction this orientation respects the trails so we need to
argue that it gives a strongly connected graph.

For showing that the resulting graph is strongly connected, consider the graph in which
every 3-edge connected component is contracted to a single point. This is exactly the cactus
of 3-edge connected component of G which is strongly connected as the cycles of the cactus

7 See Kelsen [5].
8 See Mehlhorn [7].
9 Note that ΓH(Ci) is cubic unless it consists of exactly one node. In this case however we don’t need to

do anything.
10 In practice this is done by making a DFS (or any other search tree one likes) of the cactus and repeatedly

orienting each component in a way consistent with the previous ones.
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C

C

Figure 6 Before and after uncontracting component C. The blue edges are the edges of the
cactus i.e. the 2-edge critical edges of H. The red edges are the ones obtained from the 2-edge cuts
of H as described in the construction of the ΓH(Ci).

graph have become directed cycles. Now assume inductively that we have uncontracted some
of the 3-edge connected components obtaining a graph G1 which is strongly connected. We
then uncontract another component C (see Figure 6) and obtain a new graph G2 which we
will show is strongly connected. If u, v ∈ C, then since ΓH(C) is strongly connected there
is a path from u to v in ΓH(C). If this path only contains edges which are edges of C it
will also exist in G2. If the path uses one of the added (now oriented) edges (e1, f1), it is
because there are edges (e1, e2) and (f2, f1) forming a cut and thus being part of a cycle
in the cactus. In this case we use edge (e1, e2) to leave component C and then go from e2
back to component C which is possible since G1 was strongly connected. When we get back
to the component C we must arrive at f1 since otherwise there would be two cycles in the
cactus containing the edge (e1, e2). Hence we succeeded in disposing of the edge (e1, f1) with
a directed path in G2. This argument can be used for any of the edges of ΓH(C) that are not
in C and thus C is strongly connected in G2. Since G1 was strongly connected this suffices
to show that G2 is strongly connected. By induction this implies that after uncontracting all
components the resulting graph is strongly connected.

Now for the running time. By Lemma 5.4 each level of recursion reduces the number
of vertices in “large” components by a constant fraction, for instance for k = 10 we reduce
the number of vertices in components of size at least 10 by a factor of 8

9 . Let f(n) be the
worst case running time with n nodes for a cubic graph, and pick c large enough such that
cn is larger than the time it takes to go through steps 1-4 and 6 as well as computing the
orientations in the “small” components. This includes the linear time needed to construct
the new set of trails (in 4), and the linear time to reassemble the directed trails (in 6). Let
a1, . . . , ak be the number of vertices in the “large” 3-edge connected components. Then∑

i ai ≤ 8n
9 and

f(n) ≤ cn +
∑

i

f(ai).

Inductively, we may assume that f(ai) ≤ 9cn and thus obtain

f(n) ≤ cn +
∑

i

f(ai) ≤ cn +
∑

i

9cai = cn + 8cn = 9cn

proving that f(n) ≤ 9cn for all n. J
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6:12 One-Way Trail Orientations

Algorithm 2: Linear time algorithm for cubic graphs.
Input: A 2-edge connected undirected cubic multigraph G and a partition P of the

edges of G into trails.
Output: G is modified to a strong trail orientation of (G,P).

1 Construct a spanning tree T of G that contains all edges that are not at the end of
their trail.

2 Construct a minimal subgraph H of G that contains T and is 2-edge connected.
3 Find the cactus C of 3-edge connected components of H.
4 for each 3-edge connected component Ci in C in DFS preorder do
5 Construct Gi = ΓH(Ci).
6 Recursively compute an orientation for Gi.
7 if the orientation of Gi is not compatible with its DFS parent then
8 Flip orientation of Gi

9 end
10 end
11 for each edge e deleted from G to create H do
12 if no edge on the trail of e has been oriented yet then
13 Pick an arbitrary orientation for e.
14 else
15 Set the orientation of e to follow the trail.
16 end
17 end

6 Open problems

We here mention two problems concerning trail orientations which remain open.
First of all, our linear time algorithm for finding trail orientations only works for undirected

graphs and it doesn’t seem to generalise to the trail orientation problem for mixed graphs.
It would be interesting to know whether there also exists a linear time algorithm working for
mixed graphs. If so it would complete the picture of how fast an algorithm we can obtain for
any variant of the trail orientation problem.

Secondly, our sufficient condition for when it is possible to solve the trail orientation
problem for mixed multigraphs is clearly not necessary. It would be interesting to know
whether there is a simple necessary and sufficient condition like there is in the undirected
case. Since in the mixed case the answer to the problem actually depends on the given trail
decomposition and not just on the structure of the mixed graph it is harder to provide such
a condition. One can however give the following condition. It is possible to orient the trails
making the resulting graph strongly connected if and only if when we repeatedly direct the
forced trails end up with a graph satisfying our condition in Theorem 4.1. This condition is
not simple and is not easy to check directly. Is there a more natural condition?
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