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—— Abstract

Bi-Intuitionistic Linear Logic (BILL) is an extension of Intuitionistic Linear Logic with a par,
dual to the tensor, and subtraction, dual to linear implication. It is the logic of categories with
a monoidal closed and a monoidal co-closed structure that are related by linear distributivity,
a strength of the tensor over the par. It conservatively extends Full Intuitionistic Linear Logic
(FILL), which includes only the par.

We give proof nets for the multiplicative, unit-free fragment MBILL-. Correctness is by local
rewriting in the style of Danos contractibility, which yields sequentialization into a relational
sequent calculus extending the existing one for FILL. We give a second, geometric correctness
condition combining Danos-Regnier switching and Lamarche’s Essential Net criterion, and demon-
strate composition both inductively and as a one-off global operation.
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1 Introduction

Obtaining good proof-theoretic characterizations of FILL [17], intuitionistic linear logic with
a “par” connective dual to the tensor, and BILL, which further adds “subtract” dual to linear
implication, has proved difficult. The main challenge is in combining par, whose natural
home is a multi-conclusion calculus, and linear implication, which is most naturally expressed
by a single-conclusion calculus. The dual situation holds for tensor and subtraction (below
on the right), where tensor naturally prefers multiple assumptions, but subtraction a single
assumption. These are the natural sequent rules:

I'tACD ' ArB ABTFA DFCA
I'-A CpD I'- A—B AB T'F A D-CFA

A system with the above rules, however, does not satisfy cut-elimination [22, 3]: the
single-conclusion and single-assumption rules for linear implication and subtraction are too
restrictive. But their multi-conclusion and multi-assumption variants,

I'AFB A IDFCA
' A—B A I D-CFA
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Proof Nets for BILL

are unsound: they collapse the logic into MLL, since mapping linear implication A — B onto
A+ o B and subtraction D — C onto D ® C* preserves provability (in both directions) [6].
Intermediate ground between these variants is found by annotating the rules with a relation
between the antecedent and the consequent, and requiring that the discharged assumption A
in a rule introducing A — B is not related to any additional conclusions A (and dually for
D — C). With this side-condition, and without describing the development of the relation R
into S, the rules are as below. The sequent calculus (for FILL) with relational annotation
enjoys cut-elimination [4, 11].

I' Abr B A I'DFrC A

TrsAoB A M rD Crsa

Traditionally, the sequent calculus is a meta-calculus, describing the construction of
natural deduction proofs. For linear logic, naturally described in sequent style, the question
of what underlying proof objects were constructed led to the development of proof nets [12].
In this paper we ask the same question for BILL: what are the underlying, canonical proof
objects of BILL?

Our answer is a notion of proof nets, presented as a graph-like natural deduction calculus,
that embodies the perfect duality between tensor and par, and between implication and
subtraction. It exposes the relational annotation of the sequent calculus as recording the
directed paths through the proof net constructed by the sequent proof. We give two
correctness conditions: one by local rewriting in the style of Danos contractibility [8] and the
parsing approach of Lafont, Guerrini and Masini [18, 14]; and a global, geometric criterion
that combines Danos-Regnier switching [9] and Lamarche’s essential net condition [19]. We
introduce our proof nets with an example in Section 1.2.

We have aimed for canonical proof nets: those that factor out all sequent calculus per-
mutations. To this end we have restricted ourselves to the fragment MBILL—, multiplicative
bi-intuitionistic linear logic without units. MBILL with units, even though it omits negation,
includes unit-only MLL, where canonical proof nets are unavailable: the proof equivalence
problem, which canonical proof nets would solve efficiently, is PSPACE-complete [15].

1.1 Background and related work

In the late 1960s Lambek initiated the study of substructural logics, which restrict contraction
and weakening, through category theory and with a particular focus on non-commutative
variants [20]. The central point of FILL, the relation between par and linear implication,
was investigated in the early 1980s by Grishin [13]. The advent of linear logic in the late
1980s [12] created an interest also in intuitionistic variants. Schellinx observed that for a
multi-conclusion sequent calculus with single-conclusion —o R rule, cut-elimination fails [22,
p.555].

To obtain cut-elimination, Hyland and De Paiva formalize FILL through a sequent
calculus annotated by a term calculus [17]. The terms describe natural deduction derivations
whose open assumptions, identified by free variables in the terms, give a side-condition to a
multi-conclusion —o R-rule similar to that of the current relational calculus. Unfortunately,
as pointed out by Bierman, the term assignment introduces spurious dependencies that break
cut-elimination. Three solutions to this problem were proposed: a modification of the term
assignment by the first author, in private communication to Hyland and Bierman (cfr. [1]);
a different term assignment using pattern matching by Bierman, [3]; and a sequent calculus
with relational annotation by Braiiner and De Paiva [4]. This is the calculus we adopt here,
extended with subtraction. Eades and De Paiva [11] later revisited the term-annotated
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calculus, with the first author’s correction, to prove semantic correctness. In the late 90s the
first author developed proof nets for FILL (including the MIX rule) that sequentialize into
the term-annotated sequent calculus [1]. Around the same time Cockett and Seely gave a
graph-like natural deduction calculus for FILL, and for the variant of BILL corresponding to
the plain, un-annotated multi-conclusion sequent calculus, which collapses onto MLL [6].
Recently, Clouston, Dawson, Goré and Tiu gave annotation-free alternatives to sequent
calculi, in the form of deep-inference and display calculi for BILL that enjoy cut-elimination [5].

1.2 Proof nets for MBILL- via contractibility

We will introduce our proof nets through an example. It is shown below, in two modes of
representation. On the left, it is viewed as a dag-like natural deduction proof. It is built from
links, the equivalent of a natural deduction inference, shown as solid or dashed horizontal lines
connecting premises above to conclusions below. The bottom link in the example, labelled
x, introduces a linear implication, and as in natural deduction, closes the corresponding
assumption by a matching link also labelled x. The (green) links from negative to positive
atomic formulas, a~ to at, are aziom links.

In a multiplicative linear logic such as MBILL—, each connective in the conclusion
of a sequent proof is introduced once, by exactly one proof rule; that is, connectives in
the conclusion are 1-1 related to inferences in the sequent proof. Proof nets are similar:
connectives in open assumptions and conclusions correspond 1-1 to (non-axiom) links. Via
this correspondence, proof nets can be represented by only the sequent of open assumptions
and conclusions, plus the axiom links, connected to the atomic subformulas in the sequent.
This gives the second representation below.

G_(W—d)_d_ (a=pd™)~
(@—-b) at ar
b~ ¢ (d—-¢o)"

bt ct
(bi0)+ . ((a+_0@+pc+)+ (d+— )t

We stress that these are two different representations of one and the same graphical object,
and thus the same proof net. Because the former is more explicit on logical inference, we
choose it as our main representation, and as the basis of our definitions (we could have
chosen either). We make axiom links explicit to emphasize the connection with the second
presentation.

We may explicitly annotate formulae with their polarity, in the standard notion that

reverses on the left of an implication. In BILL, it also reverses on the right of a subtraction.

In a proof net, polarity is positive for conclusions and negative for assumptions, and indicates
whether a formula is being introduced (+) or eliminated (—). An axiom link indicates a
change from an elimination phase (above) to an introduction phase (below). In a sequent
calculus, the negative formulae would be those in the antecedent I' of a sequent I' = A, and
the positive those in the consequent A.

Figure 1 sequentializes the above example by contraction. It is initiated by giving an
axiom for each axiom link (matched by colouring). Contraction is driven by the coloured
links; in the second row, the links on a and b have contracted the —o-elimination link between
them, and the links on ¢ and d have contracted the —-introduction link. The corresponding
sequent rules are added on the right.
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at a b kDb c ke
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a—-ob,at b dFc,d—c

a bt a bEDb dF d c F c
a—ob,atF b dFc,d-—c

a—ob,apdtr b,c,d—c

a bt a b D dF d ck c
a—ob,at b dFc,d-—c
a—ob,apdtFr b, c,d—c

a—ob,apdtsg bpc, d—c

a - a b b d ‘- d c k¢
a—ob,atF b dFc,d-—c
a—ob,apdtrb,c,d—c
a—ob,apdts bpc,d—c
apd bt (a—ob)—bpc,d-c

(O“Ob’b)a (a@d7b)’ (apd,c), (a@d7dfc)}
(@a—b,bpc), (apd,bpc), (apd,d-c)}

Figure 1 An example contraction and sequentialization sequence.
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Figure 2 Relational sequent calculus for MBILL—.

The next step contracts both active links with the p-elimination link, and introduces
an explicit relation R between the premises and the conclusions of the resulting link. Its
purpose is to maintain the connectedness by directed (top-down) paths through the proof
net. In this case, there was no directed path from a — b to ¢ or to d — ¢, and to reflect this
in the link created by the contraction, the relation R connects a — b only to b. In the third
step, the p-introduction link is contracted. It uses a dashed line because it is switched, and
may only contract if both premises connect to the same link.

Preserving top-down connectedness is the key to showing the correctness of —o-introduction
links, in the last step, which must (at least) fulfil the standard intuitionistic condition: all
directed paths from the discharged assumption to an (open) conclusion must pass through
the discharging —o-introduction link (see [19]). The contraction step comes with the following
side-condition, analogous to that of the sequent rule: the assumption a — b may only be
related by S to the premise of the —o-introduction link, b o ¢, and not to other conclusions,
here d — c. For simplicity we omit the annotation for the final link again, as it is the full
relation between premises and conclusions.

This concludes the example: the net contracts to a single link, and is thus correct.

2 MBILL-

The language of MBILL— is given by the following grammar.
ABC »=a | AQB| A—B | ApB | A-B

We use a,b,c,... to range over propositional atoms. The connectives are tensor, (linear)
implication, par, and subtraction. The subformula occurrences of a formula have an implicit
polarity + or —, inherited from the parent formula but reversing to the left of an implication
and to the right of a subtraction: (A — B)T induces A~ and (A — B)" induces B, and
similarly with + and — reversed.

Figure 2 gives the relational sequent calculus of Braiiner and De Paiva [4], adapted for
MBILL— by introducing rules for subtraction, dual to implication. A sequent is of the form
I'Fr A, where I and A are multisets of formulae and R C I" X A is a relation from I to
A. (We assume that occurrences of the same formula can be distinguished, for instance by
naming them.)

The relational annotation maintains a notion of logical dependence between the formulas
of a sequent. Intuitively, it traces the subformula relation through a proof, and in addition
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A
At BT B AtBr B A
(A®B)+ (A—oB)‘i’ ’ (ApB)+ A- (B*A)+ At

: — B)” A* - B- A
-(-4-@-:5-)-“ ®F w‘oE MPE Q_E*I At cut
AT BT B~ A~ B~ B -

Figure 3 Links for the construction of MBILL— proof nets.

connects across axioms. An introduction rule for a linear implication A —o B then requires
that no formula other than B depends on the assumption A. This is closely related to the
correctness condition of Lamarche’s essential nets [19] for intuitionistic linear logic: all paths
from A must converge on A — B. The subtraction rule has a corresponding side-condition.

We use the following standard notation: relational composition R; S of R C T' x A with
S C A x A, the identity relation IDr on a sequent I'; and ARB for (A, B) € R. We extend
the latter by writing TRA if ARB for some A in I" and B in A, and TRA for the negation
of this proposition. We further adopt a useful notion of relational composition of Braiiner
and De Paiva [4]. The star-composition R xS of two relations R C I" x (AU A’) and
S C(A"UA") x A, where A, A’ and A" are pairwise disjoint, is

RxS = (RU]DAH); (IDA US) g (FUAN) X (AUA)

The above composition consists of three parts: R restricted to I' x A, S restricted to A” x A,
and R; S restricted to I' x A. It is a relational equivalent of linear distributivity [7], and
a generalization of both union (if A’ is empty) and composition (if A and A” are empty).
For ease of presentation, we write % for the full relation T" x A. Note that 7 stands for the
empty relation from the empty sequent to A; it is used, with (x)-composition, to restrict the
domain of a relation by removing A.

3 Proof nets

We shall define our proof nets for MBILL— as a graph-like natural deduction calculus. We
make axioms and cuts explicit, as inference rules that only change the polarity of a formula.
This gives a closer connection with sequent calculus and traditional proof nets, and simplifies
the definition of contractibility. First we define the underlying graphs, or pre-nets; then we
will introduce contractibility as a correctness condition, and define our proof nets as the
pre-nets satisfying contractibility.

» Definition 1 (Pre-nets). MBILL— pre-nets are built from the following notions.
Link: a node with n > 0 premise ports and m > 0 conclusion ports labelled with
formulas A;... A, and B;...B,, and a possibly empty label ¢. A relational link is
labelled with a relation R C {Ay,...,A,} x {B1...By;}. A link is drawn as follows.

A oL A,

B, ... B,"

Edge: a connection from a premise port to a conclusion port labelled with the same
formula, of the same polarity.
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r
A ar A R , * I IV RS A cut A
Lo~ A AxA A A 2/ An;?:g A A A cut > A AxA
A®B
ATB T L M(A@BXAB)*R A B et A B, s
AR A®B A®B
AT T
A—eB A g A—B A, .. g B AR vl ﬁIDF;R*(BXA—oB)
B B y Arn A—B
T
DpC o Dy R o1 r
oL ZPY peoexpoe D O A gL " R«(DC x DgC)
D C D boc DpC A
D-C
D T - b-¢ T (D—C x D)*R;IDa D 4 D Liepe
" e C D-C C D-C

Figure 4 Contraction rules.

Pre-net: an acyclic directed graph N = (V| E) with V a set of links as in Figure 3,
and E a set of edges such that no two edges connect to the same port, satisfying the
following conditions. A premise / conclusion port with no attached edge is an open
assumption / conclusion. The —oI / —F links are in bijection with the closed as-
sumption / conclusion links, defined by the variable labels z in Figure 3. A relational
pre-net may contain also relational links.
In Figure 3, note that the illustrations for —I and —F links each show two links: the —of
link itself, plus a closed assumption link; and the —F link plus a closed conclusion link.
We abbreviate a pre-net with open assumptions I' and open conclusions A by a
==p double-lined link, as on the left. We may annotate it with a relation R that relates
Ain T to B in A if (and only if) there is a directed downward path from A to B.

3.1 Contractibility

Our correctness condition is in the style of Danos contractibility [8].} Contractibility for MLL
proof nets is, in essence, top-down sequentialization [18, 14], starting from the axioms rather
than the conclusion of a proof net. In our current natural deduction style, contraction is
inside-out, from axioms to assumptions and conclusions. Contracting a proof net corresponds
to the construction of a sequent proof or other inductive proof object. This can be made
explicit by carrying the constructed object as a label on the contracting links, which we will
do in Section 4.

The links of a proof net being contracted correspond to sequents of the proof being
constructed. As such, we will be contracting relational links (see Definition 1), corresponding
to relational sequents.

1 The second author has also used the term coalescence for the generalization of contractibility that
includes the additives—but as these are not currently present, we feel it is more appropriate to use the
terminology that was established earlier.
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r
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. = a ThpA A ATFsA N
Abr 4 AT T T Fp AN AT
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Try A—B A YA _B . T AoB T A A B T
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I DFrC A — = TFrAD  CT'kgA A D
T D-Crp AP & & TTrrAD-—CA D-CccC T
¢, A —s

Figure 5 De-sequentialization.

» Definition 2 (Contractibility). Contraction is the rewrite relation on relational pre-nets
given by the rewrite rules in Figure 4. Contraction is successful if it terminates with a single
link. A pre-net contracts, or is contractible, if it has a successful contraction path. It
strongly contracts if every contraction path is eventually successful.

» Definition 3 (Proof nets). A MBILL— proof net is a contractible MBILL— pre-net whose
open assumptions and conclusions have negative respective positive polarity.

An example contraction sequence was given in Figure 1 in the introduction. An example
of how contraction excludes incorrect nets is the following.

» Example 4. Below left is an incorrect pre-net. After several az, pF, ®I and * steps, we
obtain the pre-net below right, where R = { (a pb, a), (apb,b®c), (¢, b®c) }. Because
of the relation (a p b, b ® ¢) this prevents further contraction: there are two potential steps,
a —ol-step and a —E-step, and for both the side-condition is not met.

apb c—(b®c)y c—(b®c)
a b ¢ xapb Cp Y
z a b c a bRc
(apb)—a d®Cc, gE(apb)—oa !

4 Sequentialization and de-sequentialization

To de-sequentialize a sequent proof to a proof net, intuitively, is to take each sequent rule,
and separate the logical inference (e.g. from A — B and A to B) from the context (I' and
A). We visualize this in Figure 5, where the premises of each rule de-sequentialize to the
given (double-lined) pre-nets.
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» Definition 5. A sequent proof de-sequentializes (=) to a proof net as illustrated in
Figure 5.

» Proposition 6. The de-sequentialization of a sequent proof contracts.

Proof. By induction on the sequent proof. Following Figure 5, a de-sequentialization % R

contracts to the relational link %R. <

Sequentialization is by contraction. First, we introduce a notion of open proof, a sequent
proof from (open) premise sequents - A and BF. We abbreviate an open proof by a double
line, as below left. The given open proof will result from contracting a pre-net with negative
assumptions I'~ and positive conclusions AT, plus positive assumptions A ... A+ and
negative conclusions By ... B, below right. The domain and range of the annotating relation

of a sequent are extended to include the open permises: R C (' Ay ... A,) X (A By ... By,).

The relation is otherwise constructed as before.

FAy ... FA, BiF ... BpF F*AY#A,*LR
'FrA AT By ...B,,

For sequentialization, we define a mapping from the contracting links of a proof net to
sequent proofs. For a star-composition,

I~ Af ... AT
R 1 n X '~ IV~ Af...Af
— — — + 1 *
At By ...B,, Ct IV An+1...A; s ™ AT AT B_”.BP_RS
AT B, . ..B; !

if the links in the redex map onto the open proofs

H_I—Al...l—An B+ ... Bk @_FC’ FApt1... FA, Byl ... Byk
B TFrAC B T kg A
then the contractum is mapped onto the open proof

FAy... A, Bk ... By
T T/ Fpes A A

obtained by replacing the open premise - C of ® with the open proof II, and adding the
conclusions I" and A to each inference from + C down to the conclusion of ®.

To the contractum of the steps ax, cut, @I, —oF, pFE, —I we assign the respective proofs:

rC CF FA FB FA BF CF Dk FC DF
AF A - FA@B A BF CpDF FC-D
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To the remaining steps we assign proofs as follows, where I' = T~ Af ... A} and A =
A" By ...B,,.

FAi... FA, BiF... Byt
498 s A®B T L L
A B FR > 7A(A®B><AB)*R ABT FgrA
A A@BT b A
AT T, - FA ... FA, BiF... Bnk
B . A i»))] mIDr;R*(BXAwB) I Atgp B N ,
A—B ARD rr AoB A 2
r FAi... FA, BiF... Byt
— R g r
Q,,,,g, A & D CiA Rx(D C x DpC) 1N l_RC D A
DpC v I'Fr CpD A
_ FAy... FA, Bib... B,k
&x B D—C T 1 1
D r r 7A(D—C><D)*R;IDA I DFgrC A/ ,
c, A e D Crp a7

Finally, recall that a proof net has only negative assumptions and positive conclusions. If
it contracts to a single link, this link maps to a regular (relational) sequent proof, without
open premises.

» Definition 7 (Sequentialization). A proof net sequentializes to a proof II if it contracts
to a single link that maps onto II.

» Proposition 8. The de-sequentialization of a sequent proof 11 sequentializes to T1.

Proof. By induction on the sequent proof. Following Figure 5, a de-sequentialization % R

N

of II contracts to the relational link A

R mapping to II. <

5 A geometric characterization

In this section we give a geometric correctness condition for MBILL— proof nets, and
demonstrate that a pre-net contracts if and only if it is correct. The condition has two
components: a switching condition in the style of Danos and Regnier [9] that integrates the
condition on Lamarche’s essential nets [19], and a bi-functionality condition that further
refines the essential net condition. We begin by giving the necessary definitions.

» Definition 9 (Switching). In a pre-net N:

Switched / solid. The switched links are pI, ® E, —I, and —F; other links are solid. A
switched edge is one connecting to an auxiliary port of a switched link or to a closed
assumption or conclusion link; other edges are solid.

Targets. The targets of a switched link are as follows:

the targets of a pI or ®F link are the two links connected by a switched edge;

the targets of a —of link A —o B are the link connected to the auxiliary port B plus
all links on a directed downward path starting from the associated closed assumption
link A, but not passing through A — B;

the targets of a —F link D — C are the link connected to the auxiliary port D plus all
links on a directed downward path ending at the associated closed conclusion link C,
but not passing through D — C.
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Switching graph. A switching graph G for N is an undirected graph (V, E') whose vertices
V' are the links of N, and whose edges F connect:
any two links connected by a solid edge in NV;
any switched link to exactly one of its targets.
Switching condition. A pre-net satisfies the switching condition if every switching graph
is acyclic and connected.

» Definition 10 (Bi-functionality). A pre-net satisfies the bi-functionality condition if
a directed path from a closed assumption x to an open conclusion passes through —I, z;
a directed path from an open assumption to a closed conclusion y passes through —F, y;
a directed path from a closed assumption x to a closed conclusion y passes through —I, x
or —F,y.

» Remark. Closer observation will reveal that the first two components of the bi-functionality
condition are equivalent to assuming an implicit p/-link connecting all open conclusions, and
a ®F-link connecting open assumptions. The third component is equivalent to considering a
closed assumption x and its implication introduction link —oI, x to be one and the same link
for the purpose of the switching graph (though not for downward reachability).

» Definition 11 (Geometric correctness). A pre-net N is geometrically correct if it satisfies
both the switching condition and the bi-functionality condition.

A switching path is an undirected path in a switching graph G, which we will indicate
by (i) A single, switched edge will be written (--(-;-), and we may omit the superscript if G
is understood. For simplicity, we will refer to a link by its principal formula when indicating
switching paths. For a link A and switched link B in a switching graph G, write A <4 B if
A is on a switching path between two targets B; and By of B, i.e. if there is a switching
path B; -~ 4-% B,.

» Definition 12. A link A is in scope of a switched link B, written A < B, if A < B
for some G. The scope of a link B is the set {4 | A < B}.

We take the scope relation (<) as ranging over all links, though note that for a solid link
B there is never any A < B.

» Lemma 13. In a pre-net satisfying the switching condition, (<) is a strict partial order.

Proof. Irreflexivity: A =« A. Immediate, since a switching path Ay — A ---- Ay (with A
switched to As) creates a cycle A; — A ---- Ay by switching A to A;.

Transitivity: if A < B < C then A < C. Let B be a switched link with jump targets
Bi, By, and Bs, and C a switched link with targets C; and Cs. Let A < B <« C be
witnessed by switching graphs G and H, so that A <o B <y C, via the following paths.

By - A% B, oL B E Bt

We allow the possiblity that B; is the same as either of By and Bj, as is necessarily the case
for a binary switched link. First, we create a switching K which agrees with H everywhere
except the links on the below path, where it agrees with those links.

BBy £ A5 By

Crucially, no other path in G from B may connect to the above path, and so any path in K
not ending with a switched edge of B must agree with H. In particular this includes the path
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B — (5. Moreover, in H no path from the principal port of B reaches Cy, since there is
already a path C; — Bj ---- B. Then also in K no path from the principal port of B, which
must all agree with H, can reach C;. Instead, C7 and B must then be connected as follows.

¢, 2B, B

Let X be the link where this path first intersects the path Bs -%~ A - B;, where K agrees
with G; without loss of generality, assume thats X comes before A. This gives the following.

oL x*2 B BLXxEALp
Switching B to B3 we have the following path.
L XxE AL B BECG
Then A < C, as required. <

Our notion of scope is related to the first author’s notion of loop for MLL nets with Mix
[1]. Tt is further closely related to the De Naurois-Mogbil correctness condition [10]. This
uses the relation (<), over a fixed switching graph G. Unlike (<) the relation (<¢) is
not necessarily transitive. We write (<) for the transitive closure and (@) for the n-fold
relational composition,

A< A, = AgKchi<e - <Kg A, .

» Proposition 14. In a pre-net satisfying the switching condition, A <& B if and only if
A< B.

Proof. From left to right, A < B implies A < B, and (<) is transitive. From right to
left, we proceed by induction on the distance between A and B in (). First consider the
case where A and B are immediate neighbours (distance 1), i.e. there is no C such that
A <« C <« B. Then there is a path between the premises of B that does not contain any
switched links. Whichever way G switches on B, we have A <& B. In the case where there
is a C such that A <« C' < B, by induction we have A <, C and C <, B, and hence
AL B. |

The scope of a link A includes exactly those links that must be contracted before A
can be contracted itself. (We will use this to prove that a correct pre-net contracts, by
demonstrating that any link that is minimal in (<) may be contracted, as part of the proof
of Theorem 16 below.) The scope of A then corresponds to the smallest open subproof of
A in any sequentialization. In this way, the notion of scope is also closely related to the
standard notion of kingdom [2]: the kingdom kA of a subformula A corresponds to the
smallest subproof of A in any sequentialization.

For an MLL proof net, the kingdom kA is the smallest subgraph such that A € kA and:
1. if B € kA and B is in an axiom link with B+, then B+ € kA;

2. if BQC € kA then B € kA and C € kA;

3. If BpC € kA then kA includes the scope of Bp C: if D < B pC then D € kA.
Observe that (2) corresponds to the fact that a subproof containing B ® C' must contain also
subproofs for B and for C'; however, an open subproof need not. Because scope is transitive,
and because it does not need to be closed under (2) like kingdoms, we may avoid an inductive
definition. Interestingly, this implies that (smallest) open subproofs are a geometric concept,
not an inductive one.



G. Bellin and W. B. Heijltjes

We will now show that contractibility and geometric correctness are equivalent conditions.
First, we establish that if N contracts to M, then if either of N and M is geometrically
correct, both are. This is a straightforward induction on the contraction sequence.

r
R T T/
(@) A A Z’I g AT RS
(b) g g f =f ﬁmp;m(z—} x A—oB)
A-B . ARA —

» Lemma 15. Contraction preserves and reflects geometric correctness.

Proof. We will treat the star-contraction rule (a) and the contraction rule for linear implica-
tion (b); the other rules are similar, or trivial.

Let N ~ M by a x-step. The composition RxS ensures that directed paths are maintained
through the contraction step. It follows that the targets of any —ol or —F link are the same
in both N and M, save that if one of both contracted links in IV is a target then the resulting
link in M is a target, and vice versa. This leaves the geometry of the switching graphs in NV
and M unchanged.

Next, let N ~» M by a —oI-step. Because of the side-condition ARA, the only target of
the link A —o B is the contraction link R. It follows that there is a one-to-one correspondence
between switching graphs in N and in M, preserving their geometry. |

» Theorem 16. A pre-net N contracts if and only if it is geometrically correct.

Proof. From left to right, assume that N contracts. The end result, a single contracted link,
is geometrically correct. Since contraction reflects geometric correctness, by Lemma 15, by
induction on the contraction sequence N is geometrically correct.

From right to left, it must be shown that if IV is geometrically correct, a contraction step
applies. As contraction preserves geometric correctness (Lemma 15), it then follows that N
contracts, by induction on its size.

Contraction steps on solid links have no side conditions, and the star-contraction rule (a)
applies to any adjacent relational links. Applying these steps first, we may assume that N
consists solely of relational links separated by switched links. Consider a switched link that
is minimal in (). We will treat the case of a —oI link A—B and show that a —oI-step (b)
applies; the other three cases are similar.

Let X be the link connected to the port A of the closed assumption of A—B, and Y
the link connected to the auxiliary port B of the link A—oB. In any switching graph G
the links X and Y must be connected, and since both are targets of A— B, they cannot
be connected through its principal port, as this would violate irreflexivity of (<). Because
A—oB is minimal in (<) there can be no switched link on the switching path X — Y, and
since relational links are not adjacent (they would have been contracted), there can be only
one. Then X =Y is the unique relational link to which both ports A and B connect, as
required by the —I contraction step (b).

Finally, we show that the side condition ARA is satisfied. Suppose there is a port D in
A such that ARD. By the bi-functionality condition D cannot be an open conclusion, and
cannot connect to a closed one. The link L connected at D must then be a switched link
(since adjacent relational links were assumed to have been contracted). Note that L is a
target of A—B. If Lisa QF, —I, or pl link, also at least one link connected at an auxiliary
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A
. 5 v A
A ® B [®] é E B [:i] : Zu.’l‘ [MR;] A
A®B A B A_OBT . —cut
A B A-B A B
A—D A4 B
B
D
c D ¢ D-C o .
C @] D (0] g 2 D-C . -] : UCUL L{;] c
C £ D C D D ) —ax
: C
C D : ol
C

Figure 6 Proof net normalization rules.

port of L (possibly X) is a target of A—B. This would mean L <« (A—B), contradicting
the assumption that A—B was minimal. It follows that ARA, and a —oI-contraction step
applies to A—B. <

To be effective, it is crucial to have strong contractibility, where any contraction path
(eventually) terminates with a single link. If only some paths would eventually be successful,
an algorithm for correctness would need to backtrack (or have a guaranteed strategy). Instead,
we should be able to use any contraction sequence, without the chance of failure. This is
established by the following theorem.

» Theorem 17 (Strong contractibility). MBILL— proof nets are strongly contractible.

Proof. Since proof nets are correct (Theorem 16), and contraction preserves correctness
(Lemma 15), any contraction step yields a correct proof net, which must then contract
(Theorem 16). <

6 Normalization

We give proof reduction as a graph-rewrite relation on pre-nets. There are six reduction
steps, one for each connective and two for axioms, given in Figure 6. Since proof nets strictly
reduce in size, termination is immediate. So is confluence: the only redexes that may overlap
are [L] and [R], but this critical pair converges trivially. A pre-net is in normal form if it
has no cuts, and in expanded normal form if in addition the formulas of axiom links are
atomic. The unique expanded normal form of a net N is denoted NJ. The example in the
introduction is in expanded normal form.

» Theorem 18 (Normalization preserves correctness). A proof net reduces to a proof net.

Proof. By inspection of the normalization steps, geometric correctness is preserved. |

6.1 One-step composition

Proof nets in expanded normal form have a compact alternative representation. In a purely
multiplicative logic such as MBILL—, a proof (or proof net) has exactly one rule (or link)
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for every connective in the conclusion sequent. Identifying links with connectives, we can
display a proof net by drawing its open assumptions (above) and conclusions (below), and
connecting these with the axiom links. An example was given in the introduction; here is
another.

a
awz a (a—ob)—obpc a—ob
3 z
(a—ob)—obpc a —ob
bypc
b ¢ d b—d c
b —d c

d
d

We will formalize such proof nets as the compact form of a net in expanded normal form.

As in classical and intuitionistic MLL [16], composition of compact forms in MBILL—

particularly nice: it is path-composition along the axiom links of both nets, as connected
through the formula along which they are composed. This is demonstrated below. On the left
are the net from the introduction, in blue, and that from above in red (with the assumption
a —o b re-positioned on the left), with their common open conclusion and assumption

superimposed. Composing these nets along that common formula gives the net below right.

d b—d ¢ d-—c

WL ]

We will formalize this concisely, as follows.

» Definition 19. The compact form |N| = A:T'F A of a pre-net N in expanded normal

form consists of the open assumptions I', the open conclusions A, and the axiom links A of
N.

Given two compact forms |[M| = Ap: Ty B Ay AT and |K| = Ax: A~ Tk F Ax,
define their composition along A as A: Ty 'k F Ay Ax where A consists of all
maximal paths in the undirected graph formed by Ays, Ak, and connecting corresponding
atoms in AT and A~. Correspondingly for (non-compact) pre-nets, the cut-composition
along A of pre-nets M with open conclusion AT and K with open assumption A, is the
(disjoint) union of both graphs together with a cut-link with premise A* and conclusion A~.

» Theorem 20. If N is the cut-composition along A of proof nets M and K in expanded
normal form, then | N]| is the composition along A of | M| and | K].

Proof. By induction on the cut-formula. |
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A Relations with existing syntax.

Lamarche [19] (see also Murawski and Ong [21]) developed a system of essential nets for ILL
where nets are polarized, edges are directed and the polarization of links reflects the structure
of ILL sequent calculus inferences. Notice that a @~ link is not switched and o™ links have a
canonical right switch. The links of polarized classical MLL— formuas correspond to the
intuitionistic ILL— inferences in red.

—=
+ + - - - + + - + ar — —_cut_ +
N A N/ A X ¥ —
e o~ ot ®
A v A v
+ - + -
QR ®L — R — L ax cut

» Definition 21. An essential net £ is a structure satisfying the following conditions:

1. (acyclicity) there is no cycle of directed edges in &;

2. (functionality of implications) for every p. link with premises A~ and BT, every directed
path from (the only positive) conclusion of € to A~ passes through B™.

Lamarche proves that every correct proof net can be sequentialized into an ILL sequent

derivation.

» Example 22. Essential net for ¢ ® (¢ — r) b (1 —o p) —o p, where X = ¢ ® (¢ — r) and
Y = (r —op) —op.

R
U Y U
q— g+ r— r+ p— p+
\ AN AN /
®— ®—

Ly v . Lo

2 pt+

i A

X Y

In order to extend the above representation to FILL— and BILL— we may add links for
intuitionistic par and subtraction, below left. However, in this extension it is no longer
possible to verify the acyclicity condition on directed paths. There is no directed cycle in the
pre-net below right:

+ + - - + - - + ax
~ 7 N ¥ N ¥ AN
Kﬁ’ + R~ ®+ - 16 + f ar ﬂ
d v 4 v B A At B+
+ - + - N N
pR oL —-R —L ®; B ®’T‘+

A solution is first test the MLL— acyclicity and connectedness condition of undirected DR-
graphs with switchings on par-like links, namely, links representing MBILL— ®L, pR (for
—o R and —L the switching is canonical), and then test a specific correctness condition, the
bifunctionality condition on — R and —L.

The first author [1] sequentializes proof nets for FILL into Hyland and De Paiva’s labelled
sequent calculus.

» Definition 23. A proof net R for FILL- is a polarized MLL- structure satisfying the
following conditions:
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1. (DR condition) for every switching s, sR is acyclic and connected;

2. (functionality of implications) for every p. link with premises A~ and BT, and conclusion
(ApB)™ every directed path from any positive conclusion X+ of R to A~ passes through
(ApB)™.

To prove sequentialization the following lemma is needed:

Lemma. Let D be a labelled sequent calculus derivation of S and let D~ be the polarized
proof net resulting from de-sequentializing D~. Then x : A occurs in t : B in some sequent
of D iff there is a directed path from (B')" to (A’)~ in D~, where (B")* and (A’)~ are the
translations of B and A in polarized MLL.

» Example 24.

R
ax ax ax
' Y N
q— g+ T+ r— p— p+
N 7 ~N
®+ ®——

Ly 7 Lo

o+ o+

A A

X Y

Here X = ¢ — (¢®7), Y = (rpp) —o p and there is a directed path from X to the premise rpp of Y
against the functionality of implication. In the following sequent derivation

y:qhuy:q z:rkz:r

Y:¢,z:rFyRxz:qT r:pkx:p
virpp,y:qbletvbez' — iny®z:q®r,letvbe —xinx:p

— R

v:rpph Ayletvbez — iny®z:q—oq®r,letvbe—aP inz:p R

FAyletvbez — iny®z:q—oq®r, dv.let vbe—2a? in x: (rpp) —p

the last inference —o R is incorrect because v still occurs free in the succedent.
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