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Abstract
This survey is an invitation to parameterized counting problems for readers with a background in
parameterized algorithms and complexity. After an introduction to the peculiarities of counting
complexity, we survey the parameterized approach to counting problems, with a focus on two
topics of recent interest: Counting small patterns in large graphs, and counting perfect matchings
and Hamiltonian cycles in well-structured graphs.

While this survey presupposes familiarity with parameterized algorithms and complexity, we
aim at explaining all relevant notions from counting complexity in a self-contained way.
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1 Introduction

Many problems in computer science ask about the existence of solutions, such as satisfying
assignments or graph structures with certain properties. However, in both practice and
theory, it may be equally important to count solutions.

In network science, counting problems occur in the context of graph motifs [79], which are
small patterns in graphs that occur unexpectedly often. For instance, social networks exhibit
lower numbers of induced 3-vertex paths than one would expect in comparable random
networks. This is a consequence of the triadic closure [56], the fact that two people with a
common friend are likely to be friends themselves. Such phenomena cannot be observed by
merely testing existence of patterns.

In statistical physics, thermodynamic properties of discrete systems are determined by
partition functions [59]; such functions essentially count the admissible states of systems. As
an example, the dimer model is a graph-based system that models how atoms can pair up
to two-atom molecules [90, 65, 66]. In the 1960s, while attempting to find formulas for the
partition function of the dimer model, physicists invented a polynomial-time algorithm for
counting perfect matchings in planar graphs.
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1:2 Counting Problems in Parameterized Complexity

Counting can also help for problems that do not explicitly ask about numbers: Some
of the best known algorithms for Hamiltonicity or coloring problems rely on intermediate
counting problems [57, 8, 7].

1.1 Counting complexity
Most interesting counting problems are not known to admit polynomial-time algorithms.
Sometimes, this can be explained through NP-hardness: For instance, counting the satisfying
assignments of Boolean formulas is clearly NP-hard, since counting is certainly not easier than
deciding existence. Such arguments however do not show hardness for counting problems
that admit polynomial-time solvable decision versions, such as counting perfect matchings in
graphs, even though these problems are presumed to be hard.

This called for a complexity theory that is specific to counting problems—such a theory
was provided in 1979 by Valiant [93] in a seminal paper that introduced the complexity
class #P, which captures most natural counting problems. The problems in #P are the
counting versions of problems in NP: Rather than deciding the existence of a witness on a
given input, the task is to count the witnesses. Counting problems are #P-hard if they admit
polynomial-time Turing reductions from counting satisfying assignments of CNF formulas.
As desired, this includes natural counting problems with easy decision versions, such as the
problem of counting perfect matchings, as shown in Valiant’s paper [93]. The #P-hardness
proof for this problem required the introduction of several new reduction techniques, which
we survey in Section 1.3, and showed that counting complexity amounts to more than just
checking that NP-hardness reductions carry over to the counting setting.

Since the initial #P-hardness results, the study of counting problems advanced to a
rich sub-area of complexity theory. In particular, large territories of counting problems
were classified successfully by means of dichotomy theorems that sort into polynomial-time
solvable and #P-hard problems [46, 16, 45, 21, 19]. For instance, a dichotomy theorem for
the counting versions of constraint satisfaction problems was first shown a decade ago [17, 47],
while the analogous result for the decision version was a long-standing open problem that
was resolved only last year [18, 99]. The known dichotomy theorems for counting problems
show that most interesting problems are indeed #P-hard, with only few polynomial-time
solvable exceptions, such as counting perfect matchings in planar graphs [90, 65, 66], counting
spanning trees [67], and problems solved by holographic algorithms [94, 20].

Thus, even more so than for NP-hard decision problems, relaxations were needed to cope
with #P-hard counting problems. The most popular such coping technique is approximate
counting, which allows outputs within a multiplicative error of the actual count [38, 24,
54, 55, 64]. Important #P-hard counting problems admit randomized polynomial-time
approximation schemes; these famously include counting perfect matchings in bipartite graphs
[60]. (The same result for general graphs remains a major open problem in approximate
counting.) Counting problems were also investigated through parameterized, exponential-time,
and fine-grained complexity [48, 77, 40]. In this survey, we focus on these paradigms.

1.2 Parameterized counting complexity
The multivariate paradigm has proven to be very successful for decision and optimization
problems [44, 49, 82, 36], and it also enables a deeper understanding of counting problems.
One of the first results on parameterized counting actually lies in the three-fold intersection
of parameterization, approximation, and counting: Arvind and Raman [6] showed in 2002
how to approximately count H-subgraph copies in a graph G to within a multiplicative
error of 1 ± ε in randomized time f(k, ε) · ntw(H)+O(1). This gives an FPT-algorithm for
approximately counting k-paths, k-cycles, and k-matchings.
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However, no FPT-algorithm is known for counting such subgraph patterns exactly, creating
the need for a parameterized analogue of #P: While the problem of counting k-cliques (even
approximately) is W[1]-hard through its decision version, we cannot say the same about
counting k-paths, k-cycles, or k-matchings, as the decision versions of these problems are
FPT [4]. To deal with such issues, Flum and Grohe [48] and independently McCartin [77]
introduced the class #W[1], a natural parameterized version of #P: In analogy to W[1], the
canonical #W[1]-hard problem is that of counting k-cliques in a graph, and a problem is
#W[1]-hard if it admits a parameterized Turing reduction from counting k-cliques.

Apart from introducing the class #W[1], Flum and Grohe also proved an impressive
parameterized reduction from counting k-cliques to counting k-cycles and k-paths, thus
proving the #W[1]-hardness of these problems and paving the way for a rich complexity
theory of parameterized counting problems. Techniques in parameterized counting were later
used to classify the complexity of general subgraph counting problems parameterized by
pattern size [10, 27, 33, 78, 63, 61, 62, 15, 85, 86, 31], to obtain FPT-approximation results
for #P-hard problems [62, 63, 78, 1, 13], and to investigate classical #P-hard problems like
counting perfect matchings under structural parameters [28, 35, 32, 34].

As for decision and optimization problems, more precise running time bounds for param-
eterized counting problems can be obtained through the exponential-time hypothesis ETH
[58]. This hypothesis also admits a counting version #ETH, introduced by Dell et al. [40],
which asserts that counting satisfying assignments to Boolean 3-CNF-formulas requires time
2Ω(n). A sparsification lemma [40] and counting-specific reduction techniques [29] are known
for #ETH, enabling tight lower bounds for a variety of problems [14, 29]. Note that #ETH
may be a weaker assumption than ETH.

1.3 Techniques for counting problems

To gain some intuition for the algorithmic boundary of parameterized counting, let us examine
the fates of some techniques for parameterized algorithms as we go from decision to counting:

To start on a positive note, dynamic programming often carries over to counting problems.
For instance, in treewidth-based DPs, join nodes correspond very roughly to multiplication
(more realistically, convolution [51]) and forget nodes correspond roughly to summation
over the possible states of the vertex to be forgotten. Most importantly, Courcelle’s
theorem admits analogous counting versions [5, 26, 74]. There also is an FPT-algorithm
for counting the models of FOL formulas on structures of locally bounded treewidth [52].
On the other hand, win-win approaches like bidimensionality [42, 50] fail for counting
problems when the large-treewidth case “wins” via a guaranteed solution: As an example,
knowing that k-paths exist due to the presence of a

√
k×
√
k grid minor does a priori not

facilitate counting. However, if the large-treewidth case guarantees the absence of the
solutions sought for, then we only need to address the low-treewidth case: As mentioned
above, treewidth-based DPs for decision problems often support the extension to counting.
Color coding [4] fails, strictly speaking: While every k-set will be colorful under at least
one coloring, there is otherwise no guarantee on the number of such colorings. In fact, it
is known [2] that a perfectly balanced collection of colorings needs size Ω(nk/2) . There
are however approximately balanced collections that enable approximate counting [1, 3].
Most kernelization techniques preserve only the existence of solutions. However, under
proper definitions of a counting kernel, some techniques like the sunflower kernel for
bounded-cardinality k-hitting sets do carry over [91]. In Section 3.1, we will also see an
application of protrusion replacement [12] that works for counting.
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1:4 Counting Problems in Parameterized Complexity

What we lose in algorithmic techniques when going into the counting world, we gain in
new reduction techniques for proving hardness. In the following, we survey some reduction
techniques for #P- and #W[1]-hardness that are unavailable for NP- and W[1]-hardness.

Cancellations in gadgets

Gadgets in NP- or W[1]-hardness proofs typically serve the purpose of testing local states:
They can be extended by an internal solution iff their external state is admissible in a
problem-specific sense. In counting problems with easy decision versions, gadgets with this
property may not necessarily exist, as they might imply hardness of the decision version. We
must actually use the power of counting: As first done by Valiant [93], we can design gadgets
that do admit unwanted internal extensions for non-admissible external states, but such that
the (weighted) contributions of unwanted internal extensions cancel out to zero.

As an example, let us consider a weighted version of counting perfect matchings: Given
an edge-weighted graph G = (V,E,w), we define

PerfMatch(G) =
∑
M

∏
e∈M

w(e),

where M ranges over the perfect matchings of G. The following edge-weighted gadget Γ with
special vertices X = {x1, . . . , x4} acts as an “equality gadget” for PerfMatch: For S = ∅ and
S = X, we have PerfMatch(Γ− S) = 1, and we also have PerfMatch(Γ− S) = 0 for all other
S ⊆ X. (The gadget is from [34] and was found with a computer algebra system.)

x1

x2 x3

x4

1

−1
1
2

− 1
2

Summarizing, if the gadget Γ is used in a larger construction, then effectively either all
or none of X must be matched by edges outside of Γ. Even though Γ does admit internal
matchings in some of the other cases, the weighted number of such matchings cancels to zero.

Interpolation

In the counting world, Turing reductions become very powerful, as the results of oracle queries
can be added, multiplied, subtracted—a luxury we do not have with Boolean values. This
enables linear algebra on oracle outputs, in particular, polynomial interpolation [93, 92, 98, 29].
As an example of this prevalent technique, we show a classical reduction that computes
PerfMatch(G) for an n-vertex graph G with edge-weights ±1 when given an oracle for
counting perfect matchings in unweighted graphs.

Let x be an indeterminate and define a graph Gx by replacing each edge of weight −1 in
G by an edge of weight x. Then p := PerfMatch(Gx) is a polynomial in x of degree at most
n
2 such that p(−1) = PerfMatch(G). If we knew the n

2 + 1 values p(0), . . . , p(n2 ), we could
recover all coefficients of p(G) via Lagrange interpolation and could thus evaluate p(−1).
But the evaluation p(i) for 0 ≤ i ≤ n

2 can be obtained as PerfMatch(Gi) for the graph Gi in
which each edge of weight x is replaced by an edge of weight i. Each such edge in turn can
be simulated by a bundle of i parallel unweighted edges.

Overall, we can recover the value of PerfMatch(G) for the ±1-weighted graph G by
counting perfect matchings in the unweighted graphs G0, . . . , Gn/2 via oracle calls and
performing linear algebra on the oracle results to interpolate the polynomial p.
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Inclusion-exclusion

Also taking linear combinations of oracle outputs, the inclusion-exclusion principle is a very
useful tool for parameterized hardness results [78, 39, 25, 33]. Given a universe Ω and “bad”
subsets A1, . . . , Ak ⊆ Ω, inclusion-exclusion allows us to count those elements of Ω that avoid
all bad subsets, provided that we know the sizes of intersections of bad subsets:∣∣∣∣∣Ω \

k⋃
i=1

Ai

∣∣∣∣∣ =
∑

S⊆{1,...,k}

(−1)|S| |AS | (1)

with A∅ := Ω and AS :=
⋂
i∈S Ai for ∅ ⊂ S ⊆ [k]. We can thus determine the left-hand side

with 2k oracle calls to numbers |AS | for S ⊆ [k].
We use (1) for a parameterized reduction from the colorful subgraph isomorphism problem

to the uncolored version [78, 33]. Let H and G be graphs such that G is (not necessarily
properly) vertex-colored with colors from {1, . . . , k} for k = |V (H)|. A subgraph copy of H
in G is colorful if it does not avoid any color. Thus, writing Ω for the set of all H-copies in
G, and defining Ai for i ∈ [k] to be the set of H-copies that do avoid color i, we can invoke
(1) to obtain the number of colorful H-copies if we knew the cardinalities |AS | for S ⊆ [k].
But |AS | is just the number of H-copies avoiding all colors in S. These are precisely the
H-copies in the graph GS obtained from G by removing all vertices with a color among S
and ignoring colors. The numbers of H-copies in GS can then be obtained by oracle calls to
counting uncolored H-copies, and we only need 2k such numbers to evaluate (1).

Somewhat peculiarly, this reduction goes the opposite way as in the decision problem:
In the decision version of subgraph isomorphism, color-coding reduces from the uncolored
to the colorful setting, while the reverse direction is generally not known. In the counting
version however, we have just seen a reduction from the uncolored to the colorful setting.
Furthermore, the converse reduction is generally false: Counting k-paths is #W[1]-hard [48],
whereas a simple FPT-algorithm counts colorful k-paths. See also an article by Meeks [78]
for a nice overview of the relationship between colored and uncolored subgraph problems.

Organization of this survey
After this brief introduction, we apply the multivariate perspective on counting to two specific
problems: In Section 2, we count small patterns in large graphs. Complementary to that, in
Section 3, we then count large patterns like perfect matchings and Hamiltonian cycles in
graphs excluding fixed minors or bounded treewidth.

2 Counting small patterns

Large networks can often be approached by counting small patterns [79, 73]. This naturally
leads to parameterized pattern counting problems: Given as input a pattern graph H and a
host graph G, determine the number of occurrences of H in G, parameterized by the size of
H. Such problems have been intensively studied in different communities; we survey some
results in Section 2.1 and present recent developments in Section 2.2.

2.1 Results for individual pattern types
There are different ways of formalizing an occurrence of a pattern in a graph, and they can
lead to stark differences in complexity. Below are some of the most common notions:

IPEC 2018



1:6 Counting Problems in Parameterized Complexity

Let us write sub(H,G) for the number of (not necessarily induced) subgraphs of G that
are isomorphic to H. Closely related is emb(H,G), the number of embeddings from H

to G: An embedding from H to G is an injective function f : V (H)→ V (G) such that
uv ∈ E(H) implies f(u)f(v) ∈ E(G). We have emb(H,G) = aut(H) · sub(H,G), where
aut(H) is the number of automorphisms of H.
Depending on the application, we may also ask for the number ind(H,G) of induced
subgraphs isomorphic to H. Extending this, Jerrum and Meeks introduced a more general
model [62, 61]: For a fixed property Φ of k-vertex graphs, we can ask to determine the
number ind(Φ, G) of k-vertex subsets inducing a subgraph with property Φ.
We could also ask for the number hom(H,G) of homomorphisms from H to G. These are
essentially embeddings that need not be injective, that is, functions f : V (H)→ V (G)
such that uv ∈ E(H) implies f(u)f(v) ∈ E(G). Homomorphism counts appear in the
setting of database queries [22], they are a fundamental notion in the theory of graph
limits and graph algebras [73], and we will see in Section 2.2 that they enable a depeer
understanding of subgraph and induced subgraph counting problems.

Improved algorithms

All of the above numbers can be computed in time O(f(k) · nk) by brute force; we write
k = |V (H)| and n = |V (G)| throughout. As even a moderate value of k can be prohibitively
large for large host graphs G, the possibility of improved algorithms was investigated:

Fast matrix multiplication solves the above problems in time f(k) · nωk/3+O(1), where
ω < 2.373 is the exponent of matrix multiplication [81].
For computing sub(H,G) and thin patterns H, an additional improvement to f(k) ·
n0.46k+2pw(H)+O(1) time is possible, where pw(H) denotes the pathwidth of H [9].
Again for sub(H,G), substantial improvements can be made when H has bounded vertex-
cover number vc(H): As an example, if H = K1,k is a star with k ≥ 2 rays, then
sub(H,G) =

∑
v∈V (G)

(
d(v)
k

)
, where d(v) denotes the degree of v. This formula can be

evaluated in linear time. More generally, if H has a vertex-cover C, then we can iterate
over all n|C| maps from C into G and determine, for each map, the number of ways to
extend the image of C to a full copy of H. This last step can be performed in polynomial
time, enabling an overall running time of f(k) · nvc(H)+O(1) [69, 97].
We will show in Section 2.2 that sub(H,G) can be computed in f(k) · n0.174`+O(1) time
when H has ` edges; this is useful for counting matchings, paths, or cycles.

It is natural to ask how far such improvements can be pushed. For fixed graphs H, let us
write sub(H, ·), ind(H, ·) and hom(H, ·) for the graph parameters1 that map input graphs G
to the numbers sub(H,G), ind(H,G) and hom(H,G). As it is interesting to quantify running
time improvements even for algorithms that are not FPT, we define the complexity exponent
of graph parameters like sub(H, ·) to be the infimum over all C ∈ R such that sub(H,G) can
be evlauated in time O(nC) on input G [30]. Note that the complexity exponent of sub(H, ·),
ind(H, ·) and hom(H, ·) for fixed H is always bounded from above by k, but it may be well
below k, say, for sub(H, ·) where H has low vertex-cover number.

1 A graph parameter f is a function from graphs into Q. Please note that graph parameters are not
(necessarily) parameters in the sense of parameterized complexity—it is a bit awkward to talk about the
“parameterized complexity of graph parameters”, but graph parameters are a well-established notion.
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Hardness results

We want to understand the optimal complexity exponents of graph parameters that count
small patterns. Parameterized complexity allows us to aggregate graph parameters into
classes H and prove statements on the asymptotic behaviour of the complexity exponents:
Given a graph class H, we define the problem sub(H, ·), where the task is to compute
sub(H,G) on input a pattern graph H ∈ H and an arbitrary host graph G. An analogous
definition gives the problems ind(H, ·) and hom(H, ·).

If a problem sub(H, ·) is FPT or even polynomial-time solvable, then there is a fixed
constant C that bounds all complexity exponents of sub(H, ·) for H ∈ H. If sub(H, ·) is
#W[1]-hard, then we believe that no such constant exists. Furthermore, conditional lower
bounds under #ETH enable lower bounds on the asymptotic growth of complexity exponents.
Indeed, such lower bounds are known for counting subgraphs, induced subgraphs, and
homomorphisms for restricted pattern classes H that are recursively enumerable.

If H is finite, then ind(H, ·) is polynomial-time solvable, otherwise it is #W[1]-hard [25].
Furthermore, if H is infinite, then there is no f(k) · no(k) time algorithm for ind(H, ·)
unless ETH fails. Note that this result holds for every fixed recursively enumerable class
H; it shows that no pattern structure whatsoever can be exploited for counting induced
subgraphs. Jerrum and Meeks generalized this result and proved that counting k-vertex
subgraphs with fixed properties Φ is #W[1]-hard for certain well-behaved properties Φ
like connectedness or having even/odd number of edges [61, 62, 63].
For counting not necessarily induced subgraphs, we have seen above that pattern structure
can be exploited: If the maximum vertex-cover number of graphs in H is finite, then
sub(H, ·) is polynomial-time solvable. Otherwise the problem is known to be #W[1]-hard
[33]. We will see in the next section that an f(k) · no(vc(H)/ log vc(H)) time algorithm
would refute #ETH, even for patterns from fixed classes H.
For counting homomorphisms, we may even allow bounded-treewidth patterns: If the
treewidth of H is finite, then hom(H, ·) is polynomial-time solvable; otherwise the problem
is #W[1]-hard [39]. As a consequence of Marx’s cornerstone “Can you beat treewidth”
paper, #ETH rules out an f(k) · no(tw(H)/ log tw(H)) time algorithm [76].

2.2 Graph motif parameters

Despite the similar appearance of the problems ind(H, ·), sub(H, ·), and hom(H, ·), their
dichotomy theorems were each proven about five years apart, by different people, using
somewhat different techniques. Recently, it was shown that these problems can be studied in
a uniform way: From the perspective of parameterized complexity, these problems become
the same problem when “extended linearly”.

More formally, graph parameters like sub(H, ·) or ind(H, ·) for fixed H are special cases
of so-called graph motif parameters, a notion introduced in [30] that adapts early works by
Lovász [71, 73] to study counting small patterns from a parameterized perspective. Apart
from sub(H, ·) and ind(H, ·), graph motif parameters include the graph parameters ind(Φ, ·)
that count induced k-vertex subgraphs with a fixed property Φ, and generally, every graph
parameter that depends only on the numbers of constant-sized subgraphs.

I Definition 1. A graph motif parameter is any graph parameter f that can be written as

f(·) =
∑
F∈F

αF · ind(F, ·) (2)

IPEC 2018



1:8 Counting Problems in Parameterized Complexity

for a finite set of graphs F and coefficients αF for F ∈ F . In other words, f is a (point-wise)
linear combination of a finite set of functions ind(F, ·) for fixed patterns F . Recall that the
function ind(F, ·) takes as input a graph G and outputs ind(F,G).

The graph motif parameter evaluation problem asks to evaluate f(G) when given as input
a graph G and a representation of f via F = {F1, . . . , Ft} and coefficients α1, . . . , αt. We
parameterize the problem by the description length of f .

Note that the functions ind(H, ·) for fixed H are graph motif parameters themselves, but
using linear combinations of such functions allows us to express much more counting functions
as graph motif parameters. As an example, for any H, we have

sub(H, ·) =
∑

F extends H
βF · ind(F, ·), (3)

where an unlabeled graph F extends H if F is a supergraph of H on |V (H)| vertices, and
the coefficient βF equals sub(F,H). Since only finitely many graphs F occur in (3), the
graph parameter sub(H, ·) for fixed H is a graph motif parameter. Moreover, the graphs
and coefficients can be computed in time depending only on H. It follows that the problem
of computing sub(H,G) on input H and G, parameterized by H, admits a parameterized
reduction to the graph motif evaluation problem.

Interestingly, (3) admits a converse form that expresses the number of induced subgraphs
ind(H, ·) as a finite linear combination of subgraph counts sub(F, ·), see [73, (5.17)]. Thus,
subgraph counts are finite linear combinations of induced subgraph counts, and vice versa.
We could thus replace ind with sub in Definition 1 and still end up defining the same objects:
Any graph motif parameter f =

∑
F∈F αF · ind(F, ·) can also be written as

f(·) =
∑
F∈F ′

βF · sub(F, ·). (4)

for a finite set of graphs F ′ and coefficients βF for F ∈ F ′ that can be computed from F and
the coefficients αF for F ∈ F . We call (4) the sub-expansion of f and (2) its ind-expansion.2

Homomorphism counts count

There are actually many equivalent ways of expanding graph motif parameters into finite
linear combinations of basis functions, with explicit formulas for changing bases between
such expansions [73, Chapter 5.2]. As it turns out, such basis changes enable a much better
understanding of the complexity of graph motif parameters. In particular, expanding graph
motif parameters into linear combinations of the previously neglected homomorphism counts
will prove to be extremely useful for algorithmic purposes.

Let us have a more detailed look at the relation between embeddings3 and homomorphisms:
We can easily express the number of homomorphisms hom(H, ·) as a finite linear combination
of embeddings emb(F, ·). A graph F is a quotient of H if F can be obtained from H by
repeated identifications of vertex pairs. These identifications can be performed all at once: If
π is a partition of V (H), then the quotient H/π is obtained from H by identifying, for each

2 We could have chosen to call the parameterized counting problem from Definition 1 the “evaluation
problem for graph motif parameters in the ind-expansion” and could have defined an analogous version
for the sub-expansion, but the fact that the sub-expansion and the ind-expansion can be transformed
into each other algorithmically implies that these problems are FPT-interreducible.

3 Recall that an embedding is an injective homomorphism, and that emb(H, ·) = aut(H) · sub(H, ·).
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block B of π, the vertices in B to a single vertex. Quotients of graphs H correspond to the
images that H can attain under homomorphisms, and we obtain

hom(H, ·) =
∑
π

emb(H/π, ·), (5)

where π ranges over all partitions of V (H). Different partitions can yield isomorphic quotients,
and after collecting for isomorphic copies in (5) and rewriting emb = aut · sub, we obtain a
formula for the sub-expansion of hom(H, ·).

More interestingly, as shown in [73, (5.18)], the formula (5) can be inverted4 to read

emb(H, ·) =
∑
π

(−1)k−|π|
∏
B∈π

(|B| − 1)!︸ ︷︷ ︸
=:µ(π)

·hom(H/π, ·), (6)

where we write |π| for the number of blocks in π. The precise form of (6) and µ(π) will
become important later on, but for now let us just use it to conclude that every graph motif
parameter f can be expressed as a linear combination of homomorphism counts

f(·) =
∑
F∈F ′′

γF · hom(F, ·) (7)

for a finite set of graphs F ′′ and coefficients γF for F ∈ F ′′. We call (7) the hom-expansion of
f . This works because every graph motif parameter has a sub-expansion via (4), and because
subgraph counts are rescaled embedding counts, which in turn are linear combinations of
homomorphism counts by (6).

Complexity monotonicity of the hom-expansion

Lovász showed that homomorphism counts enjoy a wealth of mathematical properties that
make them more well-behaved than subgraph or induced subgraph counts [73], and some
of these properties translate almost directly into complexity-theoretic properties. Most
importantly for us, the hom-expansion of graph motif parameters enjoys a monotonicity
property with respect to complexity exponents: Any linear combination of homomorphism
counts, as in (7), is unconditionally at least as hard to evaluate as its hardest terms.

I Theorem 2 ([30, 22]). Let f be a graph motif parameter with f =
∑
F∈F αF · hom(F, ·)

for a finite set of pairwise non-isomorphic graphs F with αF 6= 0 for all F ∈ F . Then
the complexity exponent of f is exactly the maximum over all complexity exponents of the
functions hom(F, ·) for F ∈ F .

I Remark. A result similar to Theorem 2 cannot be obtained for the sub-expansion or
the ind-expansion. In these cases, we can “hide” cliques in easy linear combinations: For
any k ∈ N, summing over the induced subgraph counts from all k-vertex graphs H gives∑
H ind(H,G) =

(|V (G)|
k

)
, which can be evaluated in linear time for any graph G, even

though the left-hand side contains a k-clique. Theorem 2 rules this out for homomorphisms.
Via Theorem 2, we obtain a good grip on the complexity of a graph motif parameter f if we
manage to understand (i) what patterns F occur in the hom-expansion of f , and (ii) how
hard counting homomorphisms hom(F, ·) is for these patterns. For the first item, we can use
enumerative combinatorics to obtain formulas like (6). For the second item, we can use the
known lower bounds under ETH for cliques [23] or patterns of large treewidth [76].

4 This is done via Möbius inversion on the partition lattice, a generalization of the inclusion-exclusion
principle, which can be viewed as Möbius inversion on the subset lattice [88].
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Understanding subgraph counting via homomorphisms

In the following, we use the two-step approach to give upper and lower bounds on the
complexity of counting subgraphs sub(H, ·) for fixed H. Let us start with an upper bound.

I Theorem 3 ([30]). On input H and G, the number sub(H,G) can be determined in time
kO(k) · n0.174`+O(1) with ` = |E(H)|.

Proof. Consider the formula (6) for transforming embedding counts into homomorphism
counts. The right-hand side sums over all partitions π of V (H), of which there are at most
kO(k), and requires homomorphism numbers from quotients H/π into G. Any quotient
H/π has at most ` edges, and the treewidth of `-edge graphs F is known to be at most
tw(F ) ≤ 0.174`+ o(`) [87]. By a standard DP approach, we can determine hom(H/π,G) in
time 2O(k) · n0.174`+O(1) for every fixed π, and the overall running time bound follows. J

It is not much harder to prove hardness results for subgraph counting via Theorem 2:

I Theorem 4. For any fixed recursively enumerable class H, the problem sub(H, ·) cannot
be solved in time f(k) · no(vc(H)/ log vc(H)) for patterns H ∈ H unless ETH fails.

Proof. Consider sub(H, ·) for H ∈ H. If H has vertex-cover number b ∈ N, then H contains
a matchingM with t = b/2 edges. We show that for every t-edge graph S, the hom-expansion
of sub(H, ·) contains a supergraph of S with non-zero coefficient. In particular, this holds for
bounded-degree expanders S of treewidth Ω(t). Supergraphs have only larger treewidth.

Every t-edge graph S is some quotient of the t-matching M in H. It follows that
some supergraph of S is a quotient of H. Using (6), we can see that every quotient H/π
appears with non-zero coefficient in the hom-expansion of sub(H, ·) even after collecting for
isomorphic graphs: While different partitions π, π′ may lead to isomorphic quotients, this
requires |π| = |π′|. But since the sign of µ(π) in (6) depends only on |π|, the contributions
of π and π′ cannot cancel. J

The hom-expansion of graph motif parameters is a fascinating object of study on its own that
connects various mathematical areas: After the results for subgraph counting, Theorem 2
was used by Roth [85] to classify the complexity of counting homomorphism variants such as
locally injective homomorphisms. This was obtained by finding large-treewidth patterns in the
relevant hom-expansions through matroid theory. Very recently, an almost exhaustive #W[1]-
hardness proof for counting induced k-vertex subgraphs with a fixed monotone property Φ
was given by Roth and Schmitt [86] by using topological properties of abstract simplicial
complexes. In unpublished work by the author, connections to finite model theory and
chromatic polynomials were also uncovered.

3 Counting large patterns in “simple” graphs

In this last and shorter part of the survey, we count large objects in graphs of simple structure:
In Section 3.1, we attempt to count perfect matchings in graphs that exclude fixed minors,
and in Section 3.2, we count Hamiltonian cycles in graphs of bounded pathwidth.

3.1 Counting perfect matchings in minor-free graphs
Counting perfect matchings was the first problem shown to be #P-hard for interesting
reasons, and it admits a beautiful polynomial-time algorithm on planar graphs, the Fisher-
Kasteleyn-Temperley (FKT) method [90, 65, 66], which we already mentioned earlier. Other
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than planar graphs, there are further tractable graph classes C: For instance, while planar
graphs exclude both K3,3 and K5 as minors, it was shown that excluding either of these two
minors is sufficient [70, 96, 89]. The FKT method was also extended to an FPT-algorithm
with running time 4γnO(1) for graphs that are embedded on a surface of genus γ [53]; together
with an FPT-algorithm for finding such embeddings [80], this shows that counting perfect
matchings is FPT when parameterized by genus. Furthermore, dynamic programming with
subset convolution yields an O(2tw(G)n) time algorithm when G is given with an optimal
tree-decomposition [95]. It is also possible to count perfect matchings in time O(ncw(G)+1)
on graphs of cliquewidth cw(G) given with an optimal parse-tree, but unlike the previous
results, this holds only for unweighted graphs [75].

The above list shows that, apart from cliquewidth, all tractability results for counting
perfect matchings address graphs that exclude some fixed minor. In fact, the algorithms for
K3,3-free and K5-free graphs make use of classical precursors to Robertson and Seymour’s
graph structure theorem for H-minor free graphs [84]: By Wagner’s theorem [43], the K3,3-
free and K5-free graphs admit tree-decompositions of adhesion 3 in which every torso is
planar or has bounded size. Prior to proving the full graph structure theorem, Robertson
and Seymour showed very similar decompositions for all graphs excluding minors H that
can be drawn in the plane with at most one crossing [83], such as H = K3,3 and H = K5.
Such decompositions can be used algorithmically:

I Theorem 5 ([28, 89]). For any fixed graph H that can be drawn in the plane with at most
one crossing, there is an O(n4) time algorithm for counting perfect matchings in H-minor
free graphs G.

Proof. For single-crossing minors H, a tree-decomposition of H-free graphs G into planar
and bounded-treewidth torsos of adhesion 3 can be obtained in O(f(H) ·n4) time [41]. Given
such a decomposition, the algorithm now uses a counting version of protrusion replacement
[12]: When counting perfect matchings, any 3-boundaried graph S can be simulated by
an equivalent planar 3-boundaried graph S′ with edge-weights [94], and the graph S′ can
be computed in FPT-time for planar and bounded-treewidth graphs S. Traversing the
decomposition of G bottom-up, we can successively replace torsos S by planar replacement
graphs S′ until all of G is processed. J

How far can we push this result? In particular, is it possible to obtain polynomial-time
algorithms for counting perfect matchings for any graph class that excludes some fixed graph
H? More strongly, is the problem FPT when parameterized by the Hadwiger number, which
is the maximum size of a clique minor in G? The answer to the second question is negative,
as we can show #W[1]-hardness on k-apex graphs. These are the graphs that become planar
after deleting at most k vertices; this upper-bounds their Hadwiger number by k + 5.

I Theorem 6 ([35]). Counting perfect matchings in k-apex graphs is #W[1]-hard and an
f(k)no(k/ log k) time algorithm would refute #ETH.

Thus, counting perfect matchings is also #W[1]-hard when parameterized by the Hadwiger
number. However, an XP-algorithm might still be possible, e.g., because there is a simple
O(nk+3) time algorithm for counting perfect matchings in k-apex graphs: Simply iterate
over all nk possible choices for matching the k apices to vertices in the planar base graph,
delete the apices together with their matching partners, and count perfect matchings in the
remaining planar graph via the FKT method.

To recapitulate, we know that counting perfect matchings is FPT parameterized by
genus, in XP parameterized by apex number, and we have seen some techniques for dealing
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with clique-sums in Theorem 5. By the graph structure theorem [84], these are almost all
the building blocks of H-minor free graphs, and thus an XP algorithm for counting perfect
matchings on such graphs almost seems within reach.

Alas, we blocked out vortices: In general, H-minor free graphs allow for graphs of bounded
pathwidth to be inserted at the faces of the bounded-genus parts; these structures are called
vortices. It turns out that counting perfect matchings is #P-hard even in planar graphs with
one single vortex, and such graphs can be seen to exclude a constant-sized minor.

I Theorem 7 (Unpublished work by the author with Mingji Xia). There is a fixed graph H
such that counting perfect matchings is #P-hard in graphs excluding H.

Thus, polynomial-time algorithms cannot be obtained for each excluded minor H, but it is
still open to find out which fixed graphs H can be excluded for polynomial-time algorithms.

3.2 Counting Hamiltonian cycles in low-pathwidth graphs

To conclude, we briefly consider counting Hamiltonian cycles parameterized by pathwidth.
The standard DP for this problem gives a running time of O∗(pwO(pw)) for counting and
decision, but celebrated improvements [37] enabled O∗((2 +

√
2)pw) time for the decision

problem and for counting modulo 2, and O∗(6pw) time for counting [11]. The bases 2 +
√

2
and 6 are optimal under the strong exponential-time hypothesis SETH [37, 32].

Curiously, the concrete numbers 2 +
√

2 and 6 can be explained through connection
matrices. These are particularly nice objects in the intersection of linear algebra and
combinatorics [72, 73]. Given a graph parameter f such as the number of Hamiltonian
cycles, and k ∈ N, the k-th connection matrix of f is an infinite matrix Cf,k, indexed by
k-boundaried graphs, that describes the behavior of f under graph separations of size k. The
entry Cf,k(G,H) for k-boundaried graphs G,H is defined to be f(G⊕H), where G⊕H is the
union of k-boundaried graphs G and H with matching vertices identified. Even though the
matrices Cf,k are infinite-sized, they have finite rank for many interesting graph parameters
f , including all MSOL-definable f [68]. It can be shown furthermore that evaluating graph
parameters f with finite-rank connection matrices is nonuniformly FPT when parameterized
by treewidth [73]; this gives an alternative proof of Courcelle’s theorem.

Let us focus again on the connection matrix CHC,k for the number of Hamiltonian cycles:
Lovász [72] upper-bounded the rank of CHC,k over Q by kO(k). This bound was recently
improved to Θ(6k) up to polynomial factors, with a matching lower bound [32]. It was also
known before that the rank of CHC,k drops to Θ((2 +

√
2)k) over the ring Z2 with a matching

lower bound [37]. Note that the constants 6 and 2 +
√

2 appearing in the rank of CHC,k
over Q and Z2 are the running time bases for counting Hamiltonian cycles over these rings
parameterized by pathwidth. This is a consequence of a more general statement:

I Theorem 8 ([32]). Let R be any of the rings Q or Zp for prime p. If the connection
matrix CHC,k of the number of Hamiltonian cycles has rank Ω(ck) over R, then an algorithm
with running time O∗((c− ε)pw) for counting Hamiltonian cycles over R refutes SETH.

While we do know that the rank of CHC,k is Ω(3.97k) over Zp when p 6= 2, resulting in a
corresponding complexity lower bound [32], algorithms faster than O∗(6pw) are not known.
It is also interesting to close this gap and to investigate to what extent the proof technique
in Theorem 8 can be applied to study problems other than Hamiltonian cycles through their
connection matrices.



R. Curticapean 1:13

References
1 Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and S Cenk Sahi-

nalp. Biomolecular network motif counting and discovery by color coding. Bioinformatics,
24(13):i241–i249, 2008. doi:10.1093/bioinformatics/btn163.

2 Noga Alon and Shai Gutner. Balanced Hashing, Color Coding and Approximate Count-
ing. In Parameterized and Exact Computation, 4th International Workshop, IWPEC 2009,
Copenhagen, Denmark, September 10-11, 2009, Revised Selected Papers, pages 1–16, 2009.
doi:10.1007/978-3-642-11269-0_1.

3 Noga Alon and Shai Gutner. Balanced families of perfect hash functions and their applica-
tions. ACM Trans. Algorithms, 6(3):54:1–54:12, 2010. doi:10.1145/1798596.1798607.

4 Noga Alon, Raphael Yuster, and Uri Zwick. Color-Coding. J. ACM, 42(4):844–856, 1995.
doi:10.1145/210332.210337.

5 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy Problems for Tree-Decomposable
Graphs. J. Algorithms, 12(2):308–340, 1991. doi:10.1016/0196-6774(91)90006-K.

6 Vikraman Arvind and Venkatesh Raman. Approximation Algorithms for Some Parameter-
ized Counting Problems. In Algorithms and Computation, 13th International Symposium,
ISAAC 2002 Vancouver, BC, Canada, November 21-23, 2002, Proceedings, pages 453–464,
2002. doi:10.1007/3-540-36136-7_40.

7 Andreas Björklund. Determinant Sums for Undirected Hamiltonicity. In 51th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las
Vegas, Nevada, USA, pages 173–182, 2010. doi:10.1109/FOCS.2010.24.

8 Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set Partitioning via Inclusion-
Exclusion. SIAM Journal on Computing, 39(2):546–563, 2009. doi:10.1137/070683933.

9 Andreas Björklund, Petteri Kaski, and Lukasz Kowalik. Counting Thin Subgraphs via
Packings Faster than Meet-in-the-Middle Time. ACM Trans. Algorithms, 13(4):48:1–48:26,
2017. doi:10.1145/3125500.

10 Markus Bläser and Radu Curticapean. Weighted Counting of k-Matchings Is #W[1]-
Hard. In Parameterized and Exact Computation - 7th International Symposium, IPEC
2012, Ljubljana, Slovenia, September 12-14, 2012. Proceedings, pages 171–181, 2012.
doi:10.1007/978-3-642-33293-7_17.

11 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth.
Inf. Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

12 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (Meta) Kernelization. J. ACM, 63(5):44:1–44:69, 2016. doi:
10.1145/2973749.

13 Cornelius Brand, Holger Dell, and Thore Husfeldt. Extensor-coding. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, June 25-29, 2018, pages 151–164, 2018. doi:10.1145/3188745.3188902.

14 Cornelius Brand, Holger Dell, and Marc Roth. Fine-Grained Dichotomies for the Tutte
Plane and Boolean #CSP. In 11th International Symposium on Parameterized and Exact
Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, pages 9:1–9:14, 2016.
doi:10.4230/LIPIcs.IPEC.2016.9.

15 Cornelius Brand and Marc Roth. Parameterized Counting of Trees, Forests and Matroid
Bases. In Computer Science - Theory and Applications - 12th International Computer
Science Symposium in Russia, CSR 2017, Kazan, Russia, June 8-12, 2017, Proceedings,
pages 85–98, 2017. doi:10.1007/978-3-319-58747-9_10.

16 Andrei Bulatov and Martin Grohe. The complexity of partition functions. Theoretical
Computer Science, 348(2):148–186, 2005. doi:10.1016/j.tcs.2005.09.011.

IPEC 2018

http://dx.doi.org/10.1093/bioinformatics/btn163
http://dx.doi.org/10.1007/978-3-642-11269-0_1
http://dx.doi.org/10.1145/1798596.1798607
http://dx.doi.org/10.1145/210332.210337
http://dx.doi.org/10.1016/0196-6774(91)90006-K
http://dx.doi.org/10.1007/3-540-36136-7_40
http://dx.doi.org/10.1109/FOCS.2010.24
http://dx.doi.org/10.1137/070683933
http://dx.doi.org/10.1145/3125500
http://dx.doi.org/10.1007/978-3-642-33293-7_17
http://dx.doi.org/10.1016/j.ic.2014.12.008
http://dx.doi.org/10.1145/2973749
http://dx.doi.org/10.1145/2973749
http://dx.doi.org/10.1145/3188745.3188902
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.9
http://dx.doi.org/10.1007/978-3-319-58747-9_10
http://dx.doi.org/10.1016/j.tcs.2005.09.011


1:14 Counting Problems in Parameterized Complexity

17 Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. J.
ACM, 60(5):34, 2013. doi:10.1145/2528400.

18 Andrei A. Bulatov. A Dichotomy Theorem for Nonuniform CSPs. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pages 319–330, 2017. doi:10.1109/FOCS.2017.37.

19 Jin-Yi Cai and Xi Chen. Complexity of Counting CSP with Complex Weights. J. ACM,
64(3):19:1–19:39, 2017. doi:10.1145/2822891.

20 Jin-yi Cai and Pinyan Lu. Holographic algorithms: From art to science. J. Comput. Syst.
Sci., 77(1):41–61, 2011. doi:10.1016/j.jcss.2010.06.005.

21 Jin-yi Cai, Pinyan Lu, and Mingji Xia. Computational Complexity of Holant Problems.
SIAM J. Comput., 40(4):1101–1132, 2011. doi:10.1137/100814585.

22 Hubie Chen and Stefan Mengel. Counting Answers to Existential Positive Queries: A Com-
plexity Classification. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Sympo-
sium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA, June 26 -
July 01, 2016, pages 315–326, 2016. doi:10.1145/2902251.2902279.

23 Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj,
and Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Information
and Computation, 201(2):216–231, 2005. doi:10.1016/j.ic.2005.05.001.

24 Xi Chen, Martin E. Dyer, Leslie Ann Goldberg, Mark Jerrum, Pinyan Lu, Colin McQuillan,
and David Richerby. The complexity of approximating conservative counting CSPs. J.
Comput. Syst. Sci., 81(1):311–329, 2015. doi:10.1016/j.jcss.2014.06.006.

25 Yijia Chen, Marc Thurley, and Mark Weyer. Understanding the Complexity of Induced
Subgraph Isomorphisms. In Automata, Languages and Programming, 35th International
Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack
A: Algorithms, Automata, Complexity, and Games, pages 587–596, 2008. doi:10.1007/
978-3-540-70575-8_48.

26 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. On the fixed parameter complexity
of graph enumeration problems definable in monadic second-order logic. Discrete Applied
Mathematics, 108(1-2):23–52, 2001. doi:10.1016/S0166-218X(00)00221-3.

27 Radu Curticapean. Counting Matchings of Size k Is #W[1]-Hard. In Automata, Languages,
and Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12,
2013, Proceedings, Part I, pages 352–363, 2013. doi:10.1007/978-3-642-39206-1_30.

28 Radu Curticapean. Counting perfect matchings in graphs that exclude a single-crossing
minor. CoRR, abs/1406.4056, 2014. URL: http://arxiv.org/abs/1406.4056, arXiv:
1406.4056.

29 Radu Curticapean. Block interpolation: A framework for tight exponential-time counting
complexity. Inf. Comput., 261(Part):265–280, 2018. doi:10.1016/j.ic.2018.02.008.

30 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for
counting small subgraphs. In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages
210–223, 2017. doi:10.1145/3055399.3055502.

31 Radu Curticapean, Holger Dell, and Marc Roth. Counting Edge-Injective Homomorphisms
and Matchings on Restricted Graph Classes. In 34th Symposium on Theoretical Aspects of
Computer Science, STACS 2017, March 8-11, 2017, Hannover, Germany, pages 25:1–25:15,
2017. doi:10.4230/LIPIcs.STACS.2017.25.

32 Radu Curticapean, Nathan Lindzey, and Jesper Nederlof. A Tight Lower Bound for Count-
ing Hamiltonian Cycles via Matrix Rank. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018, pages 1080–1099, 2018. doi:10.1137/1.9781611975031.70.

http://dx.doi.org/10.1145/2528400
http://dx.doi.org/10.1109/FOCS.2017.37
http://dx.doi.org/10.1145/2822891
http://dx.doi.org/10.1016/j.jcss.2010.06.005
http://dx.doi.org/10.1137/100814585
http://dx.doi.org/10.1145/2902251.2902279
http://dx.doi.org/10.1016/j.ic.2005.05.001
http://dx.doi.org/10.1016/j.jcss.2014.06.006
http://dx.doi.org/10.1007/978-3-540-70575-8_48
http://dx.doi.org/10.1007/978-3-540-70575-8_48
http://dx.doi.org/10.1016/S0166-218X(00)00221-3
http://dx.doi.org/10.1007/978-3-642-39206-1_30
http://arxiv.org/abs/1406.4056
http://arxiv.org/abs/1406.4056
http://arxiv.org/abs/1406.4056
http://dx.doi.org/10.1016/j.ic.2018.02.008
http://dx.doi.org/10.1145/3055399.3055502
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.25
http://dx.doi.org/10.1137/1.9781611975031.70


R. Curticapean 1:15

33 Radu Curticapean and Dániel Marx. Complexity of Counting Subgraphs: Only the Bound-
edness of the Vertex-Cover Number Counts. In 55th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014,
pages 130–139, 2014. doi:10.1109/FOCS.2014.22.

34 Radu Curticapean and Dániel Marx. Tight conditional lower bounds for counting per-
fect matchings on graphs of bounded treewidth, cliquewidth, and genus. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, January 10-12, 2016, pages 1650–1669, 2016. doi:10.1137/1.
9781611974331.ch113.

35 Radu Curticapean and Mingji Xia. Parameterizing the Permanent: Genus, Apices, Minors,
Evaluation Mod 2k. In IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 994–1009, 2015. doi:10.
1109/FOCS.2015.65.

36 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

37 Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast Hamiltonicity Checking Via Bases
of Perfect Matchings. J. ACM, 65(3):12:1–12:46, 2018. doi:10.1145/3148227.

38 Paul Dagum and Michael Luby. Approximating the Permanent of Graphs with Large Fac-
tors. Theoretical Computer Science, 102(2):283–305, 1992. doi:10.1016/0304-3975(92)
90234-7.

39 Víctor Dalmau and Peter Jonsson. The complexity of counting homomorphisms seen from
the other side. Theoretical Computer Science, 329(1-3):315–323, 2004. doi:10.1016/j.
tcs.2004.08.008.

40 Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlen. Exponen-
tial Time Complexity of the Permanent and the Tutte Polynomial. ACM Transactions on
Algorithms, 10(4):21, 2014. doi:10.1145/2635812.

41 E. Demaine, M. Hajiaghayi, and D. Thilikos. Exponential Speedup of Fixed-Parameter Al-
gorithms for Classes of Graphs Excluding Single-Crossing Graphs as Minors. Algorithmica,
41(4):245–267, 2005. doi:10.1007/s00453-004-1125-y.

42 Erik D. Demaine and MohammadTaghi Hajiaghayi. The Bidimensionality Theory and Its
Algorithmic Applications. Comput. J., 51(3):292–302, 2008. doi:10.1093/comjnl/bxm033.

43 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

44 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

45 Martin Dyer, Leslie Ann Goldberg, and Mike Paterson. On counting homomorphisms to
directed acyclic graphs. J. ACM, 54, December 2007. doi:10.1145/1314690.1314691.

46 Martin E. Dyer and Catherine S. Greenhill. The complexity of counting graph ho-
momorphisms. Random Struct. Algorithms, 17(3-4):260–289, 2000. doi:10.1002/
1098-2418(200010/12)17:3/4\%3C260::AID-RSA5\%3E3.0.CO;2-W.

47 Martin E. Dyer and David Richerby. An Effective Dichotomy for the Counting Constraint
Satisfaction Problem. SIAM J. Comput., 42(3):1245–1274, 2013. doi:10.1137/100811258.

48 Jörg Flum and Martin Grohe. The parameterized complexity of counting problems. SIAM
Journal on Computing, 33(4):892–922, 2004. doi:10.1137/S0097539703427203.

49 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.
50 Fedor V. Fomin, Erik D. Demaine, and Mohammad Taghi Hajiaghayi. Bidimensionality.

In Encyclopedia of Algorithms. Springer, 2015. doi:10.1007/978-3-642-27848-8_47-2.
51 Fedor V. Fomin and Dieter Kratsch. Subset Convolution, pages 125–139. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2010. doi:10.1007/978-3-642-16533-7_7.

IPEC 2018

http://dx.doi.org/10.1109/FOCS.2014.22
http://dx.doi.org/10.1137/1.9781611974331.ch113
http://dx.doi.org/10.1137/1.9781611974331.ch113
http://dx.doi.org/10.1109/FOCS.2015.65
http://dx.doi.org/10.1109/FOCS.2015.65
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1145/3148227
http://dx.doi.org/10.1016/0304-3975(92)90234-7
http://dx.doi.org/10.1016/0304-3975(92)90234-7
http://dx.doi.org/10.1016/j.tcs.2004.08.008
http://dx.doi.org/10.1016/j.tcs.2004.08.008
http://dx.doi.org/10.1145/2635812
http://dx.doi.org/10.1007/s00453-004-1125-y
http://dx.doi.org/10.1093/comjnl/bxm033
http://dx.doi.org/10.1007/978-1-4612-0515-9
http://dx.doi.org/10.1145/1314690.1314691
http://dx.doi.org/10.1002/1098-2418(200010/12)17:3/4%3C260::AID-RSA5%3E3.0.CO;2-W
http://dx.doi.org/10.1002/1098-2418(200010/12)17:3/4%3C260::AID-RSA5%3E3.0.CO;2-W
http://dx.doi.org/10.1137/100811258
http://dx.doi.org/10.1137/S0097539703427203
http://dx.doi.org/10.1007/978-3-642-27848-8_47-2
http://dx.doi.org/10.1007/978-3-642-16533-7_7


1:16 Counting Problems in Parameterized Complexity

52 Markus Frick. Generalized Model-Checking over Locally Tree-Decomposable Classes. The-
ory Comput. Syst., 37(1):157–191, 2004. doi:10.1007/s00224-003-1111-9.

53 Anna Galluccio and Martin Loebl. On the Theory of Pfaffian Orientations. I. Perfect
Matchings and Permanents. Electronic Journal of Combinatorics, 6, 1998.

54 Leslie Ann Goldberg and Mark Jerrum. Approximating the Tutte polynomial of a binary
matroid and other related combinatorial polynomials. J. Comput. Syst. Sci., 79(1):68–78,
2013. doi:10.1016/j.jcss.2012.04.005.

55 Leslie Ann Goldberg and Mark Jerrum. The Complexity of Approximately Counting Tree
Homomorphisms. TOCT, 6(2):8, 2014. doi:10.1145/2600917.

56 Mark S. Granovetter. The Strength of Weak Ties. American Journal of Sociology,
78(6):1360–1380, 1973.

57 Thore Husfeldt. Invitation to Algorithmic Uses of Inclusion-Exclusion. In Automata,
Languages and Programming - 38th International Colloquium, ICALP 2011, Zurich,
Switzerland, July 4-8, 2011, Proceedings, Part II, pages 42–59, 2011. doi:10.1007/
978-3-642-22012-8_3.

58 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. System Sci., 63(4):512–530, 2001.

59 A. Isihara. Statistical physics. Academic Press, 1971.
60 M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm for

the permanent of a matrix with nonnegative entries. J. ACM, 51(4):671–697, 2004. doi:
10.1145/1008731.1008738.

61 Mark Jerrum and Kitty Meeks. Some hard families of parameterized counting problems.
ACM Transactions on Computation Theory, 7(3):11, 2015. doi:10.1145/2786017.

62 Mark Jerrum and Kitty Meeks. The parameterised complexity of counting connected sub-
graphs and graph motifs. J. Comput. Syst. Sci., 81(4):702–716, 2015. doi:10.1016/j.
jcss.2014.11.015.

63 Mark Jerrum and Kitty Meeks. The parameterised complexity of counting even and odd
induced subgraphs. Combinatorica, pages 1–26, 2016. doi:10.1007/s00493-016-3338-5.

64 Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the Ising
model. SIAM Journal on Computing, 22(5):1087–1116, 1993. doi:10.1137/0222066.

65 Pieter W. Kasteleyn. The statistics of dimers on a lattice: I. The number of dimer
arrangements on a quadratic lattice. Physica, 27(12):1209–1225, 1961. doi:10.1016/
0031-8914(61)90063-5.

66 Pieter W. Kasteleyn. Graph Theory and Crystal Physics. In Graph Theory and Theoretical
Physics, pages 43–110. Academic Press, 1967.

67 Gustav Kirchhoff. Über die Auflösung der Gleichungen, auf welche man bei der Unter-
suchung der linearen Vertheilung galvanischer Ströme geführt wird. Annalen der Physik
und Chemie, LXXIL(12), 1847.

68 Tomer Kotek and Johann A. Makowsky. Connection Matrices and the Definability of Graph
Parameters. Logical Methods in Computer Science, 10(4), 2014. doi:10.2168/LMCS-10(4:
1)2014.

69 Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Counting and Detecting Small
Subgraphs via Equations. SIAM J. Discrete Math., 27(2):892–909, 2013. doi:10.1137/
110859798.

70 Charles Little. An Extension of Kasteleyn’s method of enumerating the 1-factors of planar
graphs. In Combinatorial Mathematics, LNCS, pages 63–72. Springer, 1974. doi:10.1007/
BFb0057377.

71 László Lovász. Operations with structures. Acta Mathematica Hungarica, 18(3-4):321–328,
1967.

http://dx.doi.org/10.1007/s00224-003-1111-9
http://dx.doi.org/10.1016/j.jcss.2012.04.005
http://dx.doi.org/10.1145/2600917
http://dx.doi.org/10.1007/978-3-642-22012-8_3
http://dx.doi.org/10.1007/978-3-642-22012-8_3
http://dx.doi.org/10.1145/1008731.1008738
http://dx.doi.org/10.1145/1008731.1008738
http://dx.doi.org/10.1145/2786017
http://dx.doi.org/10.1016/j.jcss.2014.11.015
http://dx.doi.org/10.1016/j.jcss.2014.11.015
http://dx.doi.org/10.1007/s00493-016-3338-5
http://dx.doi.org/10.1137/0222066
http://dx.doi.org/10.1016/0031-8914(61)90063-5
http://dx.doi.org/10.1016/0031-8914(61)90063-5
http://dx.doi.org/10.2168/LMCS-10(4:1)2014
http://dx.doi.org/10.2168/LMCS-10(4:1)2014
http://dx.doi.org/10.1137/110859798
http://dx.doi.org/10.1137/110859798
http://dx.doi.org/10.1007/BFb0057377
http://dx.doi.org/10.1007/BFb0057377


R. Curticapean 1:17

72 László Lovász. The rank of connection matrices and the dimension of graph algebras. Eur.
J. Comb., 27(6):962–970, 2006. doi:10.1016/j.ejc.2005.04.012.

73 László Lovász. Large networks and graph limits, volume 60. American Mathematical Society
Providence, 2012.

74 Johann A. Makowsky. Algorithmic uses of the Feferman-Vaught Theorem. Annals of Pure
and Applied Logic, 126(1-3):159–213, 2004. Provinces of logic determined. Essays in the
memory of Alfred Tarski. Parts I, II and III. doi:10.1016/j.apal.2003.11.002.

75 Johann A. Makowsky, Udi Rotics, Ilya Averbouch, and Benny Godlin. Computing Graph
Polynomials on Graphs of Bounded Clique-Width. In Graph-Theoretic Concepts in Com-
puter Science, 32nd International Workshop, WG 2006, Bergen, Norway, June 22-24, 2006,
Revised Papers, pages 191–204, 2006. doi:10.1007/11917496_18.

76 Dániel Marx. Can You Beat Treewidth? Theory of Computing, 6(1):85–112, 2010. doi:
10.4086/toc.2010.v006a005.

77 Catherine McCartin. Parameterized counting problems. Ann. Pure Appl. Logic, 138(1-
3):147–182, 2006. doi:10.1016/j.apal.2005.06.010.

78 Kitty Meeks. The challenges of unbounded treewidth in parameterised subgraph counting
problems. Discrete Applied Mathematics, 198:170–194, 2016. doi:10.1016/j.dam.2015.
06.019.

79 Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri
Alon. Network motifs: Simple building blocks of complex networks. Science, 298(5594):824–
827, 2002. doi:10.1126/science.298.5594.824.

80 Bojan Mohar. A Linear Time Algorithm for Embedding Graphs in an Arbitrary Surface.
SIAM J. Discrete Math., 12(1):6–26, 1999. URL: http://epubs.siam.org/sam-bin/dbq/
article/29248.

81 Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Com-
mentationes Mathematicae Universitatis Carolinae, 26(2):415–419, 1985.

82 Rolf Niedermeier. Invitation to fixed-parameter algorithms, volume 31 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2006.

83 Neil Robertson and Paul D. Seymour. Excluding a graph with one crossing. In Proceedings
of the AMS-IMS-SIAM Joint Summer Research Conference on Graph Minors, Held June
22 to July 5, 1991, pages 669–675, 1993.

84 Neil Robertson and Paul D. Seymour. Graph Minors. XVI. Excluding a non-planar graph.
J. Comb. Theory, Ser. B, 89(1):43–76, 2003. doi:10.1016/S0095-8956(03)00042-X.

85 Marc Roth. Counting Restricted Homomorphisms via Möbius Inversion over Matroid Lat-
tices. In 25th Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017,
Vienna, Austria, pages 63:1–63:14, 2017. doi:10.4230/LIPIcs.ESA.2017.63.

86 Marc Roth and Johannes Schmitt. Counting Induced Subgraphs: A Topological Approach
to #W[1]-hardness. CoRR, abs/1807.01920, 2018. arXiv:1807.01920.

87 Alexander D. Scott and Gregory B. Sorkin. Linear-programming design and analysis of fast
algorithms for Max 2-CSP. Discrete Optimization, 4(3-4):260–287, 2007. doi:10.1016/j.
disopt.2007.08.001.

88 Richard P. Stanley. Enumerative Combinatorics, volume 1. Cambridge University Press,
second edition, 2011.

89 Simon Straub, Thomas Thierauf, and Fabian Wagner. Counting the Number of Perfect
Matchings in K5-Free Graphs. In IEEE 29th Conference on Computational Complexity,
CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, pages 66–77, 2014. doi:10.1109/
CCC.2014.15.

90 H. N. V. Temperley and Michael E. Fisher. Dimer problem in statistical mechanics - an
exact result. Philosophical Magazine, 6(68):1478–6435, 1961.

IPEC 2018

http://dx.doi.org/10.1016/j.ejc.2005.04.012
http://dx.doi.org/10.1016/j.apal.2003.11.002
http://dx.doi.org/10.1007/11917496_18
http://dx.doi.org/10.4086/toc.2010.v006a005
http://dx.doi.org/10.4086/toc.2010.v006a005
http://dx.doi.org/10.1016/j.apal.2005.06.010
http://dx.doi.org/10.1016/j.dam.2015.06.019
http://dx.doi.org/10.1016/j.dam.2015.06.019
http://dx.doi.org/10.1126/science.298.5594.824
http://epubs.siam.org/sam-bin/dbq/article/29248
http://epubs.siam.org/sam-bin/dbq/article/29248
http://dx.doi.org/10.1016/S0095-8956(03)00042-X
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.63
http://arxiv.org/abs/1807.01920
http://dx.doi.org/10.1016/j.disopt.2007.08.001
http://dx.doi.org/10.1016/j.disopt.2007.08.001
http://dx.doi.org/10.1109/CCC.2014.15
http://dx.doi.org/10.1109/CCC.2014.15


1:18 Counting Problems in Parameterized Complexity

91 Marc Thurley. Kernelizations for Parameterized Counting Problems. In Theory and
Applications of Models of Computation, 4th International Conference, TAMC 2007,
Shanghai, China, May 22-25, 2007, Proceedings, pages 703–714, 2007. doi:10.1007/
978-3-540-72504-6_64.

92 Salil P. Vadhan. The Complexity of Counting in Sparse, Regular, and Planar Graphs.
SIAM J. Comput., 31(2):398–427, 2001. doi:10.1137/S0097539797321602.

93 Leslie G. Valiant. The complexity of computing the permanent. Theoret. Comput. Sci.,
8(2):189–201, 1979.

94 Leslie G. Valiant. Holographic Algorithms. SIAM J. Comput., 37(5):1565–1594, 2008.
doi:10.1137/070682575.

95 Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic Program-
ming on Tree Decompositions Using Generalised Fast Subset Convolution. In Algorithms
- ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark, September 7-9,
2009. Proceedings, pages 566–577, 2009. doi:10.1007/978-3-642-04128-0_51.

96 Vijay V. Vazirani. NC algorithms for computing the number of perfect matchings in K3,3-
free graphs and related problems. Inf. Comput., 80(2):152–164, 1989.

97 Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting
weighted subgraphs. SIAM Journal on Computing, 42(3):831–854, 2013. doi:10.1137/
09076619X.

98 Mingji Xia, Peng Zhang, and Wenbo Zhao. Computational complexity of counting problems
on 3-regular planar graphs. Theoretical Computer Science, 384(1):111–125, 2007. Theory
and Applications of Models of Computation. doi:10.1016/j.tcs.2007.05.023.

99 Dmitriy Zhuk. A Proof of CSP Dichotomy Conjecture. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17,
2017, pages 331–342, 2017. doi:10.1109/FOCS.2017.38.

http://dx.doi.org/10.1007/978-3-540-72504-6_64
http://dx.doi.org/10.1007/978-3-540-72504-6_64
http://dx.doi.org/10.1137/S0097539797321602
http://dx.doi.org/10.1137/070682575
http://dx.doi.org/10.1007/978-3-642-04128-0_51
http://dx.doi.org/10.1137/09076619X
http://dx.doi.org/10.1137/09076619X
http://dx.doi.org/10.1016/j.tcs.2007.05.023
http://dx.doi.org/10.1109/FOCS.2017.38

	Introduction
	Counting complexity
	Parameterized counting complexity
	Techniques for counting problems

	Counting small patterns
	Results for individual pattern types
	Graph motif parameters

	Counting large patterns in ``simple'' graphs
	Counting perfect matchings in minor-free graphs
	Counting Hamiltonian cycles in low-pathwidth graphs


