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Abstract
Parallel fixed-parameter tractability studies how parameterized problems can be solved in parallel.
A surprisingly large number of parameterized problems admit a high level of parallelization, but
this does not mean that we can also efficiently compute small problem kernels in parallel: known
kernelization algorithms are typically highly sequential. In the present paper, we establish a
number of upper and lower bounds concerning the sizes of kernels that can be computed in
parallel. An intriguing finding is that there are complex trade-offs between kernel size and the
depth of the circuits needed to compute them: For the vertex cover problem, an exponential
kernel can be computed by AC0-circuits, a quadratic kernel by TC0-circuits, and a linear kernel
by randomized NC-circuits with derandomization being possible only if it is also possible for
the matching problem. Other natural problems for which similar (but quantitatively different)
effects can be observed include tree decomposition problems parameterized by the vertex cover
number, the undirected feedback vertex set problem, the matching problem, or the point line
cover problem. We also present natural problems for which computing kernels is inherently
sequential.
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1 Introduction

The core objective of parameterized complexity has classically been to determine which
problems can be solved in “FPT time,” meaning time f(k) · nc for instances of size n, where
c is a constant, f is an arbitrary computable function (usually at least exponential), and
k is a hopefully small instance parameter. Over the last 25 years, theoreticians in the field
have been very successful at determining which problems admit algorithms of this kind and
practitioners have been very successful at implementing them. In both cases, the focus has
traditionally been on finding sequential algorithms, but in recent years interest in parallel
algorithms has sparked, leading to the new field of parallel fixed parameter tractability.

In classical sequential FPT algorithms, kernelization algorithms play a key role. They
shrink the input to a small but difficult core (called the kernel), leading to the following design
principle of modern parameterized algorithms: Firstly, in polynomial time, a kernelization
algorithm computes a kernel that is, secondly, solved using an exponential (or worse) time
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algorithm – yielding a total running time of the form f(k) +nc. Regarding the parallelization
of these two algorithmic steps, it turns out that the second one is usually the easier one: the
kernel is typically processed using the search tree technique or just by “brute force,” both
of which allow natural parallelizations. In contrast, kernelization algorithms are typically
described in a very sequential way, namely “apply these reduction rules over and over again.”
This means that designing parallel fixed-parameter algorithms effectively means designing
parallel kernelization algorithms – which is exactly what this paper addresses.

Our Contributions. We start our systematic investigation of parallel kernelization by linking
the parameterized analogues of the NC-hierarchy to kernel computation using NC-circuits.
Such a link is already known for FPT and kernels computed in polynomial time. We establish
a circuit version of the well-known result that all algorithms running in time f(k) · nc can
also be implemented with running time g(k) + nc: We can turn any circuit family of size
f(k) · nc and depth f(k) + c logi n into one of size g(k) + nc

′ and depth c′ logi n (note that
we can remove the parameter dependence from the depth).

The bulk of the paper consists of a series of lower and upper bounds on the size of kernels
that can be computed by circuits of certain depths. We show that for natural problems like
the vertex cover problem intriguing trade-offs arise: the faster our algorithm, the worse our
kernel. For p-vertex-cover we show that a simple exponential kernel can be computed
in AC0, a quadratic kernel can be computed in TC0, and a linear kernel can be computed
in randomized NC. Other problems for which we establish similar results include the tree
width, path width, and tree depth problems parameterized by the vertex cover number of
the input graph.

On the negative side, we also establish a number of lower bounds for the parallel
computation of small kernels. We show that a classical 2k kernel for the vertex cover problem
can only be computed in parallel if the maximum matching problem for bipartite graphs
is in NC, for which RNC2 and quasi-NC2 are the best known upper bounds; that classic
reduction rules for feedback vertex set are P-complete (but an exponential kernel can be
computed in AC2); that for the point line cover problem we cannot (absolutely, without any
assumptions) compute any kernel in AC0 (but we can compute a quadratic one in TC0);
and that kernels for generalized versions of Horn satisfiability, linear programming, and
maximum flow cannot be computed in polylogarithmic time unless NC = P. The later results
in fact presents three natural FPT-complete problems, which demonstrate the limits of fixed
parameter parallelization.

Table 1 summarizes which trade-offs are established in this paper between the parallel
time needed to compute kernels and their sizes.

Related Work. Parameterized complexity is a rapidly growing field, see [14, 15, 18] for
an introduction, in which parallelization is a recent research direction. Early research in
the late 1990s was done by Cai, Chen, Downey, and Fellows [9] who studied parameterized
logaritmic space. A structural study of parameterized logspace and parameterized circuit
classes was started around 2015 by Elberfeld et al. [16]; see also the references therein. The
parameterized version of the NC-hierarchy we use in this paper was introduced in [2]. Chen
and Flum studied lower bounds in this context and especially provide some details and
alternative characterizations for parameterized AC0. There is a huge body of literature on
polynomial-time algorithms for computing small kernels, but the authors are not aware of
results concerning how quickly these kernels can be computed in parallel.
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Table 1 An overview of problems studied in this paper, showing which kernel size can be achieved
in certain layers of the NC-hierarchy. An explicit function represents the best bound the authors are
aware of, pointed out in this work or (for the P-column) in cited works; f(k) corresponds to kernels
originating from Theorem 2.3; and “–” means that there is no kernel of any size (either absolutely
or unless TC0 = L for –1, unless TC0 = NL for –2, unless TC0 = P for –3, unless NC = P for –4,
unless P ⊆ RNC for –5, and unless NC1 = P for –6). For problems parameterized by the vertex
cover number, S is the given vertex cover; the δ in the first column can be any fixed positive integer.

Problem Kernel size achievable in
AC0 TC0 NC RNC P

p-vertex-cover 2
δ√
k k2 + 2k k2 + 2k 2k 2k − c log k

p-matching 2
δ√
k 6k2 6k2 1 1

pvc-tree-width 2 δ
√
|S| |S|3 |S|3 |S|3 |S|3

pvc-path-width 2 δ
√
|S| |S|3 |S|3 |S|3 |S|3

pvc-tree-depth 2 δ
√
|S| |S|3 |S|3 |S|3 |S|3

p-point-line-cover – k2 k2 k2 k2

p-feedback-vertex-set – –1 f(k) f(k) 2k2 + k

p-strong-backdoor-2cnf-sat – –2 f(k) f(k) f(k)
p-strong-backdoor-horn-sat – –3 –3 –5 f(k)
p-mixed-integer-programming – –6 –4 –5 f(k)
p-max-flow-quantities – –6 –4 –5 f(k)

Organization of This Paper. We review basic terminology in Section 2, where we also
establish the link between parameterized parallel complexity and parallel kernel computation.
Each of the following sections studies a different well-known parameterized problem and
establishes trade-offs between kernel size and speed. We start with the vertex cover and the
matching problem in Section 3, followed by the feedback vertex set problem in Section 4,
structural parameterizations for tree width, path width, and tree depth in Section 5, the p-
point-line-cover problem in Section 6, and finally generalized versions of Horn satisfiability,
linear programming, and maximum flow in Section 7. Due to lack of space, most proofs are
given only in the full version, but we sketch some of them in the main text.

2 Parameterized Parallel Complexity Classes and Kernelization

We use standard terminology of parameterized complexity theory, see for instance [18]. A
parameterized problem is a tuple (Q, κ) consisting of a language Q ⊆ Σ∗ and a parameterization
κ : Σ∗ → N. The complexity of κ should not exceed the power of the classes that we consider,
and since we study small parameterized circuit classes, we require κ to be computable by
dlogtime-uniform constant-depth AC-circuits or, equivalently, to be first-order computable.
We denote parameterized problems by a leading “p-” as in p-vertex-cover, and, whenever
the parameterization κ is not clear from the context, we add it as an index as in pvc-
tree-width. A parameterized problem (Q, κ) is fixed-parameter tractable (or in FPT)
if there is a computable function f : N → N and a constant c such that we can decide
x ∈ Q in time f(κ(x)) · |x|c for all x ∈ Σ∗. In this paper we study the parallel complexity
of parameterized problems, that is, the parameterized counter part of the NC-hierarchy.
Formally we study the following classes, see for instance [2, 11] for a detailed discussion:

IPEC 2018



13:4 Computing Kernels in Parallel: Lower and Upper Bounds

I Definition 2.1. For each i > 0, a parameterized problem (Q, κ) is in dlogtime-uniform
para-ACi if there exists a computable function f : N→ N, a constant c ∈ N, and a family of
AC-circuits (Cn,k)n,k∈N such that:
1. For all x ∈ Σ∗ we have C|x|,κ(x)(x) = 1 ⇐⇒ x ∈ Q.
2. The depth of each Cn,k is at most f(k) + c logi n.
3. The size of each Cn,k is at most f(k) · nc.
4. There is a deterministic Turing machine that on input of bin(i)# bin(k)# bin(n), where

bin(x) is the binary encoding of x, outputs the ith bit of a suitable encoding of Cn,k in
at most f(k) + c logn steps.

The class para-AC0 is defined as above, but with circuits of constant depth. Additionally,
we define for all i ≥ 0 the class para-ACi↑ with circuits of depth f(k) · logi n. In particular,
para-AC0↑-circuits have depth f(k). Recall that AC-circuits are defined over the standard
base of not-, or-, and and-gates and that the last two may have unlimited fan-in. The same
definition works for NC-circuits (all gates have bounded fan-in) and TC-circuits (additional
threshold gates are allowed). It is known that the parameterized classes inherit their inclusion
structure from their classical counterparts [2]:

para-AC0 ( para-TC0 ⊆ para-NC1 ⊆ para-AC1 ⊆ para-TC1 ⊆ · · · ⊆ para-NC ⊆ FPT.

A Parallel Analogue of “FPT = Kernels Computable in Polynomial Time”. One of the
most fruitful aspects of parameterized complexity is the concept of kernelization. Let
f : N→ N be a computable function. A kernelization of a parameterized problem (Q, κ) is a
self-reduction K : Σ∗ → Σ∗ such that for every x ∈ Σ∗ we have x ∈ Q ⇐⇒ K(x) ∈ Q and
|K(x)| ≤ f(κ(x)). The images of K are called kernels and as they later need to be processed
by at least exponential-time algorithms, we are interested in kernels that are as small as
possible – while they still need to be efficiently computable, meaning in polynomial time
from the view point of FPT theory. The following result is well-known and gives a deep
connection between parameterized complexity and kernelization:

I Fact 2.2 (for instance [18]). A decidable parameterized problem (Q, κ) is in FPT if, and
only if, it admits a polynomial-time computable kernelization.

The following theorem shows that the same relation also connects the AC-hierarchy with its
parameterized counterpart. Note that in the theorem the ACi-circuits are really “normal
ACi-circuits,” meaning that their size is just polynomial in the input length.

I Theorem 2.3. A decidable parameterized problem (Q, κ) is in para-ACi if, and only if, it
admits a kernelization computable by a dlogtime-uniform family of ACi-circuits.

Sketch of Proof. For the reverse direction, let (Cn)n∈N be a family computing a kernelization.
Circuit Cn,k uses Cn as a first black box and reduces the input to an instance of size at most
f(κ(x)). Then the circuit essentially applies naive “brute force” in the form of a big or-gate
that checks if any element of Q of length at most f(κ(x)) equals the computed kernel. For
the other direction let k̃ ∈ N be the maximum k such that f(k) ≤ c logi n and let Cn consist
of k̃ subcircuits C0

n, . . . , C
k̃
n that are evaluated in parallel. The circuit Cjn first checks on

input x whether κ(x) = j, and, if so, uses Cn,j to solve the problem and outputs a trivial
kernel. Otherwise, it signals that it is not responsible for this instance. If any Cjn produces a
kernel, then Cn just presents this kernel as result. Otherwise Cn can just present the input
as output, as we have κ(x) > k̃ and f(κ(x)) > c logi n. J

The theorem also holds if we replace ACi with NCi or TCi. The only exception is NC0, as
this class may not be powerful enough to compute κ.
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Application: Improve the Work of Parallel Algorithms. When we study the performance
of parallel algorithms, we usually do not only measure the time of the algorithm (as we would
in the sequential case), but also its work (the total number of computational steps performed
by the algorithm). This is important as a parallel algorithm may need polynomially many
processors to reach its promised runtime: For instance, an algorithm that runs in time
O(logn) with O(n2) work will need at least time O(n2/p) on a machine with p processors –
which is bad if there exists a linear time sequential algorithm and p < n. In the circuit
model the parallel time of an algorithm corresponds to the depth of the circuit, and the
work to its size. While the layers of the AC- and para-AC-hierarchy measure the time of
parallel algorithms quite precisely, they only require the size of the circuits to be polynomial
or to be bounded by f(k) · nc, respectively. Using Theorem 2.3, we can improve the work of
any parameterized parallel algorithm from f(k) · nc to g(k) + nc

′ while, at the same time,
reducing the depth of the circuit from f(k) + c logi n to c′ logi n.

I Lemma 2.4. Let (Q, κ) be a parameterized problem with (Q, κ) ∈ para-ACi. Then there
are a computable function g : N→ N and a constant c′ such that there is a dlogtime-uniform
family (C ′n,k)n,k∈N of para-ACi-circuits that decides (Q, κ) and in which every C ′n,k has depth
at most c′ logi n and size at most g(k) + nc

′ .

Sketch of Proof. Use the ACi-circuit from Theorem 2.3 to compute a kernel in depth c logi n
and solve the kernel using “brute force” in constant depth afterwards. J

Note that the function g from the lemma may grow exponentially faster then f , as the circuit
from the lemma internally solves an instance x′ with |x′| ≤ f(κ(x)) and κ(x′) ≤ f(κ(x)). A
direct application of Lemma 2.4 is therefore only of theoretical interest. It shows, however,
that we can always search for parameterized parallel algorithms that run in polylogarithmic
time and whose work is polynomial plus an additive term depending only on the parameter.

3 Parallel Kernels for Vertex Cover and Matching

The parameterized vertex cover problem is a prime example used to demonstrate many
different kernelization techniques, and an outrider in the race for small kernels. In this
section we revisit the problem from the point of view of circuit complexity and establish a
link between circuit complexity and kernel size. An early result in this context is due to Cai
et al. [9] which, translated into the terminology of the present paper, implies that a kernel
for p-vertex-cover can be computed in logarithmic space and, hence, in AC1. Elberfeld
et al. [16] later noticed that the kernel of size k2 + 2k computed by Cai et al. can actually
also be computed in TC0. This result was later once more refined by showing that the same
kernel can be computed in para-AC0 [2]. Together with Theorem 2.3 this implies that a
kernel of size f(k) can be computed in AC0 for some computable function f . In fact, we can
improve the bound in this case to 2

δ√
k for any fixed δ > 0:

I Lemma 3.1. For every δ ∈ N there is a dlogtime-uniform family of AC0-circuits that,
on input of a tuple (G, k), outputs a p-vertex-cover kernel with at most 2

δ√
k vertices.

Proof. Let I be the input instance and let n = |I| be the size of its encoding. The circuit
first checks if we have k ≤ logδ(n). If not, we have 2

δ√
k > n and the instance is already the

desired kernel. Otherwise the circuit can simulate threshold gates up to k using standard
hashing techniques, as AC0-circuits can simulate polylogarithmic threshold gates [30]. Since
the TC0-circuit from Elberfeld et al. [16] only uses threshold gates up to k, it follows that the
AC0-circuit under construction can simulate this TC0-circuit, which completes the proof. J

IPEC 2018



13:6 Computing Kernels in Parallel: Lower and Upper Bounds

The central observation in the proof of Lemma 3.1 is that the threshold-gates in the
corresponding family of TC0-circuits only “count up to the parameter.” We will use exactly
the same trick for other TC0-kernelizations, but will then only formulate it as corollary.
Summarizing the statements from above, we can compute an exponential kernel for p-
vertex-cover in AC0 and a quadratic kernel in TC0. However, the best known kernelizations
for p-vertex-cover are able to produce linear kernels – and a reasonable next step is to
implement them in parallel as well. Unfortunately, this is a way more challenging task, as
both the classical 3k kernel based on crown decomposition [14] and the 2k kernel due to
Chen et al. [10] require the computation of sufficiently large matchings. We can state this
more precisely for the latter observation, by showing that the core part of the kernelization
is NC-equivalent to computing maximum matchings in bipartite graphs. The kernelization of
Chen et al. is based on the following fact, known as the Nemhauser–Trotter Theorem:

I Fact 3.2 ([29]). Let G = (V,E) be a graph and I = {xv | v ∈ V } be a set of variables.
For every optimal solution β : I → R for the following linear program (LPVC)

min
∑
v∈V xv

xu + xv ≥ 1 for all {u, v} ∈ E
xv ≥ 0 for all v ∈ V

let V0 = { v | β(xv) < 1/2 }, V1/2 = { v | β(xv) = 1/2 }, V1 = { v | β(xv) > 1/2 } be a
partition of V . There is a minimum vertex cover S of G that satisfies V1 ⊆ S ⊆ V1 ∪ V1/2.

Chen et al. have shown that one can obtain the desired kernel from a solution of LPVC
by discarding the vertices of V0 and by taking the vertices of V1 into the solution. The
remaining 2k vertices of V1/2 constitute the kernel [10]. The following theorem shows that
solving LPVC is tightly linked to the maximum matching problems for bipartite graphs.

I Theorem 3.3. Computing a solution for LPVC is NC-equivalent to computing a maximum
matching in bipartite graphs.

Sketch of Proof. For the first direction we construct a bipartite auxiliary graph H such
that an optimal vertex cover of H can be turned into a half-integral solution of LPVC
on G. This vertex cover of H can be computed using a maximum matching subroutine and
König’s Theorem [25]. In the second direction we wish to compute a maximum matching in
a bipartite graph with the help of LPVC. We first turn an optimal real solution of LPVC
into an optimal half-integral solution. Afterwards, we transform this half-integral solution
into an optimal integral solution, that is, into a minimal vertex cover. Applying König’s
Theorem again results in the desired matching. J

The parallel complexity of the maximum matching problem is still not fully resolved. The
currently best parallel algorithms run in RNC2 [28] or quasi-NC2 [17]. From the theorem
we can deduce that we can compute the Nemhauser–Trotter-based 2k-vertex kernel for p-
vertex-cover in RNC and quasi-NC; and we can deduce that we cannot compute this kernel
in NC without improving the parallel complexity of the maximum matching problem – which
is a longstanding open problem.

I Corollary 3.4. There is a dlogtime-uniform family of NC-circuits of polylogarithmic depth
that, on input of a graph G = (V,E) and an integer k, outputs a kernel of p-vertex-cover
with at most 2k vertices. The circuits of the family either use randomness and have size |V |c,
or are deterministic and of size |V |c log |V |.
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Note that other kernels that are based on the Nemhauser–Trotter Theorem, such as the one
by Soleimanfallah and Yeo [31], or the one by Lampis [27], also do not bypass Theorem 3.3.
A natural goal is, thus, to compute linear kernels for p-vertex-cover in NC – most likely
using an algorithm that does not rely on a LPVC relaxation. Table 1 summarizes the
complexity of computing kernels of certain size for p-vertex-cover.

Since p-matching turns out to be an obstruction for parallel kernelization, it is a natural
question in the light of this paper, whether or not we are able to compute polynomial kernels
for the matching problem in NC. Note that the problem is in para-AC0, and hence we can
compute a size-f(k) kernel in AC0; and since matching ∈ RNC we can compute a size-1
kernel in RNC.

I Lemma 3.5. There is a dlogtime-uniform family of TC0-circuits that, on input of a
tuple (G, k), outputs a p-matching kernel with at most O(k2) vertices.

The circuits of Lemma 3.5 need their threshold gates “only” to count up to k. We can thus
deduce the following corollary (the proof argument is the same as for Lemma 3.1):

I Corollary 3.6. For every δ ∈ N there is a dlogtime-uniform family of AC0-circuits that,
on input of a tuple (G, k), outputs a p-matching kernel with at most O(2

δ√
k) vertices.

4 Parallel Kernels for the Feedback Vertex Set Problem

The input for p-feedback-vertex-set = p-fvs is an undirected multigraph G = (V,E)
and an integer k, the question is whether it is possible to delete k vertices such that the
remaining graph is a forest. The problem is well-known to be fixed-parameter tractable.
Concerning the parallel complexity, it is known that membership in FPT can be witnessed
by a machine that uses “FPT time and XL space” [16] and the problem was recently shown
to lie in para-NC2+ε ⊆ para-NC3 [3].

A lot of effort has been put into the design of sequential kernels for this problem, ultimately
resulting in a kernel with O(k2) vertices [8, 7, 33, 22]. Much less is known concerning parallel
kernels. Since the k = 0 slice of p-fvs is exactly the L-complete [13] problem whether a
given graph is a forest, we get as a lower bound that no kernel of any size can be computed
for p-fvs by any circuit class C unless L ⊆ C and the smallest AC-class for which this is
known is AC1. On the other hand, the mentioned membership in para-NC2+ε together with
Theorem 2.3 yield an NC2+ε kernel. In summary:

I Lemma 4.1. There is a dlogtime-uniform family of NC2+ε-circuits that, on input of a
tuple (G, k), outputs a p-fvs kernel with at most f(k) vertices. There is no such family of
AC1−ε-circuits, unless L ⊆ AC1−ε.

A natural first question arising from this lemma is: Can we improve the bounds? It turns
out that we can lower the upper bound from NC2+ε to AC1+ε by observing the reduction
rules used in sequential kernels for p-fvs can, in certain cases, be applied in parallel. In
detail, the known sequential kernels for p-fvs all repeatedly apply (at least) the below rules,
whose correctness is very easily seen. We will show that each of the first three rules can
individually be applied exhaustively in AC1. Based on this, we show p-fvs ∈ para-AC1↑.
Leaf Rule Delete a vertex v of degree 1.
Chain Rule Contract a vertex v of degree 2 to one of its neighbors.
Loop Rule Delete a vertex v with v ∈ N(v), reduce k by 1.
Flower Rule Delete a vertex v that appears in more then k cycles that only share the vertex v,

reduce k by 1.

IPEC 2018



13:8 Computing Kernels in Parallel: Lower and Upper Bounds

Figure 1 A graph that is fully reduced by the Chain Rule and the Loop Rule in k = 6 rounds.
In every round, the Chain Rule can only be applied after the Loop Rule was used exhaustively.

I Lemma 4.2. There is a dlogtime-uniform family of AC1-circuits that, on input of a
tuple (G, k), outputs a tuple (G′, k′) that results from repeatedly applying (only) the Leaf Rule
as long as possible. The same holds for the Chain Rule and for the Loop Rule.

I Theorem 4.3. p-fvs ∈ para-AC1↑.

Sketch of Proof. The circuit implements a search-tree of depth O(k) that, on any layer,
applies the reduction rules of Lemma 4.2 using an AC1-circuit. This either reduces k
immediately by one, or provides a small set of vertices on which the circuit can branch. J

I Corollary 4.4. There is a dlogtime-uniform family of AC1+ε-circuits that, on input of a
tuple (G, k), outputs a p-fvs kernel with at most f(k) vertices.

Proof. Follows by Theorem 2.3 and by the fact that para-ACi↑ ⊆ para-ACi+ε [2]. J

We now have rather tight bounds (an upper bound of AC1+ε and a conditional lower
bound of AC1−ε) on how quickly we can compute some kernel for p-fvs in parallel. However,
there is a natural second question arising from Lemma 4.1: Can we also compute a polynomial
kernel in parallel?

We claim that progress towards such a kernel cannot solely be based on the presented
reduction rules. In the proof of Theorem 4.3 we may need to branch after the exhaustive
application of one of the rules Leaf Rule, Chain Rule, or Loop Rule. If we seek to implement a
polynomial kernel for p-fvs in NC, we have to implement these rules without branching and
have to apply the rules exhaustively together while they may influence each other. Figure 1
provides an intuition why this interplay is “very sequential,” and Theorem 4.5 provides
evidence that it is in fact very unlikely that there exists a parallel algorithm that computes
the result of jointly applying all rules exhaustively.

I Theorem 4.5. The problem of deciding whether a specific vertex of a given graph will be
removed by an exhaustive application of the Leaf Rule, the Chain Rule, and the Loop Rule is
P-hard under NC1-reduction.

Sketch of Proof. We encode the monotone circuit value problem into a graph similar to the
one of Figure 1. The reduction rules then simulate the propagation of truth values through
the circuit. J

I Remark 4.6. The proof of Theorem 4.5 shows that the problem remains P-hard restricted
to the Chain Rule and the Loop Rule, even if they are alternatingly executed exhaustively.

We close this section with the observation that also the last rule, the Flower Rule, is unlikely
to yield a parallel algorithm.

I Theorem 4.7. Unless matching ∈ NC, there is no dlogtime-uniform family of NCi-
circuits for any i that determines, give a graph G = (V,E), an integer k, and a vertex v,
whether the Flower Rule can be applied to v.
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5 Parallel Kernels for Structural Parameterizations

It is known that NP-hard graph parameters that are closed under taking disjoint union do not
allow a polynomial kernel unless NP ⊆ coNP/poly [14]. Famous problems that suffer from
this result are the decision versions of tree width, path width, and tree depth, which has led to
a growing body of research that considers structural parameters for these problems [6, 5, 24].
A commonly used parameter in this line of research is the vertex cover number of the input
graph and in this section we extend the cited results by proving that the corresponding
kernels can be computed in small circuit classes.

We use the following standard definitions: A tree decomposition of a graph G = (V,E)
is a tuple (T, ι) where T is a tree and ι a mapping from the nodes of T to subsets of V
(which we call bags) such that for every u ∈ V and every {v, w} ∈ E there is (1) a node n
with u ∈ ι(n), (2) a node m with {v, w} ⊆ ι(m), and (3) the set {n | u ∈ ι(n) } is connected
in T . The width of a tree decomposition is the maximum size of the bags minus one. For
a graph G, its tree width tw(G) is the minimum width of all tree decompositions of G, its
path width pw(G) is the minimum width of all tree decompositions of G that are paths, and
its tree depth td(G) is the minimum width of all tree decompositions (T, ι) of G that can be
rooted in such a way that for all n,m ∈ V (T ) we have ι(n) ( ι(m) if m is an descendant of n.
The following two facts will be useful, where N(v) = {u | {u, v} ∈ E } is the neighborhood
of v, N [v] = N(v) ∪ {v}, and where we call a vertex v simplicial if N(v) is a clique:

I Fact 5.1 ([6, 5, 24]). Let G = (V,E) be a graph with tree width, path width, or tree depth
at most k and with u, v ∈ V , {u, v} 6∈ E, and |N(u) ∩ N(v)| > k. Then adding the edge
{u, v} to G will not increase the tree width, path width, or tree depth of G, respectively.

I Fact 5.2 ([4]). Let G = (V,E) be a graph and v ∈ V be a simplicial vertex, then we have
tw(G) ≥ |N(v)|.

Computing a Kernel for Tree Width. For the problem pvc-tree-width we are given a
graph G = (V,E), an integer k, and a vertex cover S ⊆ V of G; the parameter is |S| and the
question is whether tw(G) ≤ k holds.

I Theorem 5.3. There is a dlogtime-uniform family of TC0-circuits that, on inputs of a
triple (G, k, S), outputs a pvc-tree-width kernel with at most O(|S|3) vertices.

Sketch of Proof. We check in parallel for every pair u, v ∈ S with {u, v} 6∈ E if they have
more than k common neighbors in V \ S and, if so, add the edge {u, v} by Fact 5.1. By
Fact 5.2 simplicial vertices in V \S can not have high degree and we may safely remove them
by standard arguments. A counting argument then provides the claimed kernel size. J

I Corollary 5.4. For every δ ∈ N there is a dlogtime-uniform family of AC0-circuits that,
on input of a triple (G, k, S), outputs a pvc-tree-width kernel with at most 2 δ

√
|S| vertices.

Computing a Kernel for Path Width. We define pvc-path-width analogously to pvc-
tree-width and the aim of this section is to reformulate Theorem 5.3 in terms of path
width. The main difference is that we cannot simply delete simplicial vertices as this would,
for instance, eliminate trees completely. We can, however, use the following weaker result:

I Fact 5.5 ([5]). Let G = (V,E) be a graph, k ∈ N, and v ∈ V be a simplicial vertex. If the
degree |N(v)| of v is 1 and the neighbor of v has another degree-1 neighbor, or if we have
2 ≤ |N(v)| ≤ k and for each pair x, y ∈ N(v) there is a simplicial vertex w ∈ N(x) ∩N(y)
with w 6∈ N [v], then pw(G) ≤ k if, and only if, pw(G[V \ {v}]) ≤ k.
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I Theorem 5.6. There is a dlogtime-uniform family of TC0-circuits that, on input of a
triple (G, k, S), outputs a pvc-path-width kernel with at most O(|S|3) vertices.

Sketch of Proof. In difference to the proof of Theorem 5.3, we must now identify the vertices
for which Fact 5.5 applies in constant time. This is not trivial because of dependencies
between them, but a circuit can use a two-stage marking process to find them. J

I Corollary 5.7. For every δ ∈ N there is a dlogtime-uniform family of AC0-circuits that,
on input of a triple (G, k, S), outputs a pvc-path-width kernel with at most 2 δ

√
|S| vertices.

Computing a Kernel for Tree Depth. The last problem we consider is tree depth, and, as
for path width, we prove a version of Theorem 5.3 for it. The main problem is once more that
we cannot simply remove simplicial vertices. However, by the following fact of Kobayashi
and Tamaki there are still enough simplicial vertices that are safe to remove:

I Fact 5.8 ([24]). Let G = (V,E) be a graph, k ∈ N, and let v ∈ V be a simplicial vertex
with 1 ≤ |N(v)| ≤ k. If every neighbor of v has degree at least k+ 1, then we have td(G) ≤ k
if, and only if, td(G[V \ {v}]) ≤ k.

I Theorem 5.9. There is a dlogtime-uniform family of TC0-circuits that, on input of a
triple (G, k, S), outputs a pvc-tree-depth kernel with at most O(|S|3) vertices.

Sketch of Proof. Similar to the proofs of the Theorems 5.3 and 5.6, we identify vertices for
which Fact 5.8 holds in parallel constant time. This time, we mark for every vertex v ∈ S
with |N(v)| > k the k + 1 lexicographically smallest neighbors of v, then the circuit marks
every simplicial vertex v ∈ V \ S that has at least one neighbor of degree less than k. J

I Corollary 5.10. For every δ ∈ N there is a dlogtime-uniform family of AC0-circuits that,
on inputs of a triple (G, k, S), outputs a pvc-tree-depth kernel with at most 2 δ

√
|S| vertices.

6 A Parallel Kernel for Point Line Cover

In this section we study a natural, well-known problem for which we can prove (uncon-
ditionally) that we cannot compute a kernel using AC0-circuits while we can compute
polynomially-sized kernels in TC0. In the p-point-line-cover problem we are given dis-
tinct points p1, . . . , pn ∈ Zd for some dimension d ≥ 2 and a natural number k ∈ N, the
question is whether we can cover all points by at most k lines. This problem is NP-hard in
general (even for d = 2) and in FPT parameterized by k [26]. There is a simple k2 kernel,
which is essentially optimal [26]: If any line covers at least k + 1 points, remove all points on
this line and reduce k by one. This is safe since we would require at least k + 1 different
lines if we would not use this line. Because no set of k + 1 points lies on the same line after
the reduction, we have at most k2 points left or we deal with a no-instance.

I Lemma 6.1. There is a dlogtime-uniform family of TC0-circuits that, on input of
a dimension d, a set of distinct points p1, . . . , pn ∈ Zd, and an integer k, outputs a p-
point-line-cover kernel with at most k2 points.

The lemma shows that the optimal kernel for p-point-line-cover can be computed in TC0

and it is natural to ask if we can do the same using a AC0-circuit or, failing that, to at
least compute some kernel using a AC0-circuit (as we could for the problems in the previous
sections). We answer this question in the negative, settling the complexity of the problem to
para-TC0:
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I Lemma 6.2. For every fixed k, the kth slice of p-point-line-cover is TC0-complete
under AC0-reduction.

I Corollary 6.3. p-point-line-cover is para-TC0-complete under AC0-reduction.

Now assume there would be a uniform family of AC0-circuits computing a kernel of arbitrary
size for p-point-line-cover. Then by Theorem 2.3 the problem is in para-AC0, which on
the other hand implies that for every fixed k the problem must be in AC0. This contradicts
Lemma 6.2 as it is known that AC0 ( TC0 [19]. Therefore, no family of AC0-circuits can
compute such a kernel.

7 Problems for Which Computing Kernels is Inherently Sequential

As surprisingly many problems have NC-computable, in fact often even AC0-computable,
kernelizations, we may ask which problems do not have this property. We would like to find
problems for which the computation of any kernel is P-complete or, equivalently, which are
FPT-complete under AC0- or NC1-reductions. While it is easy to find artificial problems with
this property – such as any P-complete problem (like cvp) with the trivial parametrization
(κ(x) ≡ 1) –, no natural problems that are FPT-complete for sensible parametrizations can
be found in the literature. We remedy this situation in the following; but must caution
the reader that in all our results the hardness of the parameterized problem for FPT stems
from the fact that some slice of the problem is (essentially) a known P-complete problem.
Unfortunately, it is known [18] that this “cannot be helped” since all FPT-complete problems
have this property. Our main contribution here lies, thus, in the assembly of a diverse body
of relevant, non-trivial FPT-problems that will serve as starting points for further studies of
the limits of parameterized parallelization.

Strong Backdoors to Satisfiability. A strong backdoor set of a propositional formula φ is
a set of variables such that under any assignment of these variables the resulting formula φ′
belongs to a certain class of formulas [20]. In the p-strong-backdoor-{horn,2cnf}-sat
problems, we are given a formula φ and an integer k, the question is whether φ is satisfiable
and has a strong backdoor set of size k to Horn- or 2cnf-formulas, respectively. Solving such
problems is usually done in two phases: first detect the backdoor set and, second, solve the
satisfiability problem of the formula for every assignment of the backdoor set. While the first
part might seem harder in general, it is not from a parameterized point of view: (1) A strong
backdoor set to Horn formulas is exactly a vertex cover of size k in the positive primal graph
of φ, that is, the graph that has a vertex for each variable and an edge between any two
variables appearing together positively in a clause; (2) strong backdoor sets to 2cnf-formulas
are exactly the hitting sets of the hypergraph that has the variables of φ as vertices and
that connects three vertices by a hyperedge if they appear together in a clause. Since p-
vertex-cover ∈ para-AC0 and also p-3-hitting-set ∈ para-AC0 [2, 12], we can conclude:

I Corollary 7.1. There is a dlogtime-uniform family of para-AC0-circuits that, on input
of a propositional formula φ and an integer k, either outputs a size-k strong backdoor set to
{Horn, 2cnf}-formulas, or concludes that no such set exists.

The second step of solving p-strong-backdoor-{horn,2cnf}-sat is to solve the sat-
isfiability problem for φ on every assignment to the variables of the backdoor set. While
we can nicely handle all assigments in parallel, checking if the formulas are satisfiable in
parallel is difficult. Indeed, it is known that, under AC0-reductions, the satisfiability problem
is NL-complete for 2cnf-formulas, and is even P-complete for Horn formulas [1].
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I Corollary 7.2. p-strong-backdoor-2cnf-sat is para-NL-complete under AC0-reduction.

I Corollary 7.3. p-strong-backdoor-horn-sat is FPT-complete under AC0-reduction.

The last corollary implies that there is no parallel polylogarithmic time kernelization for
p-strong-backdoor-horn-sat that produces a kernel of any size, unless NC = P.

Mixed Integer Linear Programming. The FPT-complete problem above is an intermediate
problem between a P-complete problem (horn-sat) and a NP-complete problem (sat); the
transition between the problems is caused by the backdoor variables. A similar intermediate
problem is known for linear-programming (another classical P-complete problem) and its
integer variant (which is NP-complete). The intermediate version of these problems is called
p-mixed-integer-programming, which asks, given a matrix A ∈ Zn×n, vectors b ∈ Zn,
c ∈ Zn, and integers k and w, if there is a vector x ∈ Rn such that Ax ≤ b, cTx ≥ w, and
such that x[i] ∈ Z for 0 ≤ i < k. A celebrated result by Lenstra states that an instance I of
this problem can be solved in time 2O(k3) · |I|c for a suitable constant c, that is, the problem
is in FPT. Therefore, every slice of the problem is in P and, as linear-programming
trivially reduced to it, we get that k-mixed-integer-programming is P-complete for every
k (under NC1-reductions [34]).

I Corollary 7.4. p-mixed-integer-programming is FPT-complete under NC1-reductions.

Maximum Flow with Minimum Quantities. The last problem we review in this section is
the maximum flow problem with minimum quantities: Inputs are directed graphs G = (V,E)
with s, t ∈ V , two weight functions u, l : E → N, an integer w ∈ N, and a set of edges
B ⊆ E; the question is whether there is a set A ⊆ B such that in G′ = (V,E \ A) there
is a valid s-t-flow f of value at least w that fulfills the flow conservation constraints and
l(e) ≤ f(e) ≤ u(e) for all e ∈ E \A. For B = ∅ the problem boils down to classical maximum
flow with lower bounds on the edges, which can be solved in polynomial time [23] and
which is known to be P-hard under NC1-reduction [34]. On the other hand, for B = E the
problem becomes NP-complete even on serial-parallel graphs [21] and it is also NP-hard to
approximate the problem within any positive factor [32]. The intermediate problem between
this two cases is the parameterized problem p-max-flow-quantities, defined as above,
where the cardinality of B is the parameter.

I Lemma 7.5. p-max-flow-quantities is FPT-complete under NC1-reduction.

8 Conclusion and Outlook

Kernelization is a fundamental concept of parameterized complexity and we have studied
its parallelization. Since traditional descriptions of kernelization algorithms are inherently
sequential, we found it surprising how many parameterized problems lie in para-AC0 – the
smallest robust class in parallel parameterized complexity theory. We found, furthermore,
that for many problems the equation “smaller circuit class = larger kernel” holds, see Table 1
for a summary of our results.

Apart from classifying more parameterized problems in the spirit of this paper, namely
according to how well small kernels can be computed by small circuits, an interesting open
problem is to improve any of the AC0-kernelizations presented in the present paper so that
they produce a polynomially sized kernel (which we, at best, can currently do only in TC0).
Perhaps even more challenging seems to be the design of a framework for proving that
polynomially sized kernels for these problems cannot be computed in AC0.
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