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Abstract
A generalization of classical cycle hitting problems, called conflict version of the problem, is
defined as follows. An input is undirected graphs G and H on the same vertex set, and a positive
integer k, and the objective is to decide whether there exists a vertex subset X ⊆ V (G) such
that it intersects all desired “cycles” (all cycles or all odd cycles or all even cycles) and X is an
independent set in H. In this paper we study the conflict version of classical Feedback Vertex
Set, and Odd Cycle Transversal problems, from the view point of kernelization complexity.
In particular, we obtain the following results, when the conflict graph H belongs to the family
of d-degenerate graphs.
1. CF-FVS admits a O(kO(d)) kernel.
2. CF-OCT does not admit polynomial kernel (even whenH is 1-degenerate), unless NP ⊆ coNP

poly .
For our kernelization algorithm we exploit ideas developed for designing polynomial kernels for
the classical Feedback Vertex Set problem, as well as, devise new reduction rules that exploit
degeneracy crucially. Our main conceptual contribution here is the notion of “k-independence
preserver”. Informally, it is a set of “important” vertices for a given subset X ⊆ V (H), that
is enough to capture the independent set property in H. We show that for d-degenerate graph
independence preserver of size kO(d) exists, and can be used in designing polynomial kernel.
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1 Introduction

Reducing the input data, in polynomial time, without altering the answer is one of the
popular ways in dealing with intractable problems in practice. While such polynomial
time heuristics can not solve NP-hard problems exactly, they work well on input instances
arising in real-life. It is a challenging task to assess the effectiveness of such heuristics
theoretically. Parameterized complexity, via kernelization, provides a natural way to quantify
the performance of such algorithms. In parameterized complexity each problem instance
comes with a parameter k and the parameterized problem is said to admit a polynomial
kernel if there is a polynomial time algorithm, called a kernelization algorithm, that reduces
the input instance down to an instance with size bounded by a polynomial p(k) in k, while
preserving the answer. The reduced instance is called a p(k) kernel for the problem.

The quest for designing polynomial kernels for “hitting cycles” in undirected graphs has
played significant role in advancing the field of polynomial time pre-processing – kernelization.
Hitting all cycles, odd cycles and even cycles correspond to well studied problems of Feedback
Vertex Set (FVS), Odd Cycle Transversal (OCT) and Even Cycle Transversal
(ECT), respectively. Alternatively, FVS, OCT and ECT correspond to deleting vertices such
that the resulting graph is a forest, a bipartite graph and an odd cactus graph, respectively.
All these problems, FVS, OCT, and ECT, have been extensively studied in parameterized
algorithms and kernelization. The earliest known FPT algorithms for FVS go back to the
late 80’s and the early 90’s [4, 11] and used the seminal Graph Minor Theory of Robertson
and Seymour. On the other hand the parameterized complexity of OCT was open for long
time. Only, in 2003, Reed et al. [24] gave a 3knO(1) time algorithm for OCT. This is also
the paper which introduced the method of iterative compression to the field of parameterized
complexity. However, the existence of polynomial kernel, for FVS and OCT were open
questions for long time. For FVS, Burrage et al. [7] resolved the question in the affirmative
by designing a kernel of size O(k11). Later, Bodlaender [5] reduced the kernel size to O(k3),
and finally Thomassé [25] designed a kernel of size O(k2). The kernel of Thomassé [25] is
best possible under a well known complexity theory hypothesis. It is important to emphasize
that [25] popularized the method of expansion lemma, one of the most prominent approach
in designing polynomial kernels. While, the kernelization complexity of FVS was settled
in 2006, it took another 6 years and a completely new methodology to design polynomial
kernel for OCT. Kratsch and Wahlström [16] resolved the question of existence of polynomial
kernel for OCT by designing a randomized kernel of size O(k4.5) using matroid theory.1 As
a counterpart to OCT, Misra et al. [20] studied ECT and designed an O(k3) kernel.

Fruitful and productive research on FVS and OCT have led to the study of several
variants and generalizations of FVS and OCT. Some of these admit polynomial kernels
and for some one can show that none can exist, unless some unlikely collapse happens in
complexity theory. In this paper we study the following generalization of FVS, and OCT,
from the view-point of kernelization complexity.

Conflict Free Feedback Vertex Set (CF-FVS) Parameter: k

Input: An undirected graph G, a conflict graph H on vertex set V (G) and a non-negative
integer k.
Question: Does there exist S ⊆ V (G), such that |S| ≤ k, G− S is a forest and H[S] is
edgeless?

1 This foundational paper has been awarded the Nerode Prize for 2018.
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One can similarly define Conflict Free Odd Cycle Transversal (CF-OCT).

Motivation. On the outset, a natural thought is “why does one care” about such an esoteric
(or obscure) problem. We thought exactly the same in the beginning, till we realized the
modeling power the problem provides and the rich set of questions one can ask. In the
course of this paragraph we will try to explain this. First observe that, if one wants to model
“independent” version of these problems (where the solution is suppose to be an independent
set), then one takes conflict graph to be same as the input graph. An astute reader will figure
out that the problem as stated above is W[1]-hard – a simple reduction from Multicolor
Independent Set with each color class being modeled as cycle and the conflict graph
being the input graph. Thus, a natural question is: when does the problem become FPT? To
state the question formally, let F and G be two families of graphs. Then, (G,F)-CF-FVS is
same problem as CF-FVS, but the input graph G and the conflict graph H are restricted
to belong to G and H, respectively. It immediately brings several questions: (a) for which
pairs of families the problem is FPT; (b) can we obtain some kind of dichotomy results; and
(c) what could we say about the kernelization complexity of the problem. We believe that
answering these questions for basic problems such as FVS, OCT, and Dominating Set
will extend both the tractability as well as intractability tools in parameterized complexity
and led to some fruitful and rewarding research. It is worth to note that initially we were
inspired to define these problems by similar problems in computational geometry. See related
results for more on this.

Our Results and Methods. A graph G is called d-degenerate if every subgraph of G has a
vertex of degree at most d. For a fixed positive integer d, let Dd denote the set of graphs of
degeneracy at most d. In this paper we study the (?,Dd)-CF-FVS (Dd-CF-FVS) problem.
The symbol ? denotes that the input graph G is arbitrary. One can similarly define Dd-CF-
OCT. In fact, we study, CF-OCT for a very restricted family of conflict graphs, a family
of disjoint union of paths of length at most three and at most two star graphs. We denote
this family as P??

≤3 and this variant of CF-OCT as P??
≤3-CF-OCT. Starting point of our

research is the recent study of Jain et al. [14], who studied conflict-free graph modification
problems in the realm of parameterized complexity. As a part of their study they gave
FPT algorithms for Dd-CF-FVS, Dd-CF-OCT and Dd-CF-ECT using the independence
covering families [17]. Their results also imply similar FPT algorithm when the conflict graph
belongs to nowhere dense graphs. In this paper we focus on the kernelization complexity of
Dd-CF-FVS, and P??

≤3-CF-OCT obtain the following results.

1. Dd-CF-FVS admits a O(kO(d)) kernel.
2. P??

≤3-CF-OCT does not admit polynomial kernel, unless NP ⊆ coNP
poly .

Note that D0 denotes edgeless graphs and hence D0-CF-FVS, and D0-CF-OCT are
essentially FVS, and OCT, respectively. Thus, any polynomial kernel for Dd-CF-FVS, and
P??
≤3-CF-OCT, must generalize the known kernels for these problems. We remark that the

above result imply that CF-FVS admits polynomial kernels, when the conflict graph belong
to several well studied graph families, such as planar graphs, graphs of bounded degree, graphs
of bounded treewidth, graphs excluding some fixed graph as a minor, a topological minor
and graphs of bounded expansion etc. (all these graphs classes have bounded degeneracy).

Strategy for CF-FVS. Our kernelization algorithm for CF-FVS consists of the following
two steps. The first step of our kernelization algorithm is a structural decomposition of the

IPEC 2018



14:4 Exploring the Kernelization Borders for Hitting Cycles

input graph G. This does not depend on the conflict graph H. In this phase of the algorithm,
given an instance (G,H, k) of CF-FVS we obtain an equivalent instance (G′, H ′, k′) of
CF-FVS such that:

The minimum degree of G′ is at least 2.
The number of vertices of degree at least 3 in G′ is upper bounded by O(k3). Let V≥3
denote the set of vertices of degree at least 3 in G′.
The number of maximal degree 2 paths in G′ is upper bounded by O(k3). That is,
G′ − V≥3 consists of O(k3) connected components where each component is a path.

We obtain this structural decomposition using reduction rules inspired by the quadratic
kernel for FVS [25]. As stated earlier, this step can be performed for any graph H. Thus the
problem reduces to designing reduction rules that bound the number of vertices of degree 2
in the reduced graph. Note that we can not do this for any arbitrary graph H as the problem
is W[1]-hard. Once the decomposition is obtained we can not use the known reduction rules
for FVS. This is for a simple reason that in G′ the only vertices that are not bounded have
degree exactly 2 in G′. On the other hand for FVS we can do simple “short-circuit” of degree
2 vertices (remove the vertex and add an edge between its two neighbors) and assume that
there is no vertices of degree two in the graph. So our actual contributions start here.

The second step of our kernelization algorithm bounds the degree two vertices in the
graph G′. Here we must use the properties of the graph H. We propose new reduction
rules for bounding degree two vertices, when H belongs to the family of d-degenerate graphs.
Towards this we use the notion of d-degeneracy sequence, which is an ordering of the vertices
in H such that any vertex can have at most d forward neighbors. This is used in designing a
marking scheme for the degree two vertices. Broadly speaking our marking scheme associates
a set with every vertex v. Here, set consists of “ paths and cycles of G′ on which the forward
neighbors of v are”. Two vertices are called similar if their associated sets are same. We
show that if some vertex is not marked then we can safely contract this vertex to one of its
neighbors. We then upper bound the degree two vertices by O(kO(d)dO(d)), and thus obtain
a kernel of this size for Dd-CF-FVS.

At the heart of our kernelization algorithm is a combinatorial tool of “k-independence
preserver”. Informally, it is a set of “important” vertices for a given subset X ⊆ V (H), that
is enough to capture the independent set property in H. We show that for d-degenerate
graph independence preserver of size kO(d) exists, and can be used in designing polynomial
kernel. This is our main conceptual contribution.

Strategy for CF-OCT. The kernelization lower bound is obtained by the method of cross-
composition [6]. We first define a conflict version of the s-t-Cut problem, where H belongs
to P??

≤3. Then, we show that the problem is NP-hard and cross composes to itself. Finally,
we give a parameter preserving reduction from the problem to P??

≤3-CF-OCT, and obtain
the desired kernel lower bound.

Related Work. In the past, the conflict free versions of some classical problems have been
studied, e.g. for Shortest Path [15], Maximum Flow [21, 22], Knapsack [23], Bin
Packing [12], Scheduling [13], Maximum Matching and Minimum Weight Spanning
Tree [10, 9]. It is interesting to note that some of these problems are NP-hard even when
their non-conflicting version is polynomial time solvable. The study of conflict free problems
has also been recently initiated in computational geometry motivated by various applications
(see [1, 2, 3]).
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2 Preliminaries

Throughout the paper, we follow the following notions. Let G be a graph, V (G) and E(G)
denote the vertex set and the edge set of graph G, respectively. Let n and m denote the
number of vertices and the number of edges of G, respectively. Let G be a graph and
X ⊆ V (G), then G[X] is the graph induced on X and G−X is graph G induced on V (G)\X.
Let ∆ denotes the maximum degree of graph G. We use NG(v) to denote the neighborhood
of v in G and NG[v] to denote NG(v) ∪ {v}. Let E′ be subset of edges of graph G, by G[E′]
we mean the graph with the vertex set V (G) and the edge set E′. Let X ⊆ E(G), then
G−X is a graph with the vertex set V (G) and the edge set E(G) \X. Let Y be a set of
edges on vertex set V (G), then G ∪ Y is graph with the vertex set V (G) and the edge set
E(G) ∪ Y . Degree of a vertex v in graph G is denoted by degG(v). For an integer `, we
denote the set {1, 2, . . . , `} by [`]. A path P = {v1, . . . , vn} is an ordered collection of vertices
such that there is an edge between every consecutive vertices in P and v1, vn are endpoints of
P . For a path P by V (P ) we denote set of vertices in P and by E(P ) we denote set of edges
in P . A cycle C = {v1, . . . , vn} is a path with an edge v1vn. We define a maximal degree two
induced path in G as an induced path of maximal length such that all vertices in path are of
degree exactly two in G. An isolated cycle in graph G is defined as an induced cycle whose
all the vertices are of degree exactly two in G. Let G′ and G be graphs, V (G′) ⊆ V (G) and
E(G′) ⊆ E(G), then we say that G′ is a subgraph of G. The subscript in the notations will
be omitted if it is clear from the context.

A graph G has degeneracy d if every subgraph of G has a vertex of degree at most d. An
ordering of vertices σ : V (G)→ {1, · · · , n} is is called a d-degeneracy sequence of graph G, if
every vertex v has at most d neighbors u with σ(u) > σ(v). A graph G is d-degenerate if and
only if it has a d-degeneracy sequence. For a vertex v in d-degenerate graph G, the neighbors
of v which comes after (before) v in d-degeneracy sequence are called forward (backward)
neighbors of v in the graph G. Given a d-degenerate graph, we can find d-degeneracy sequence
in linear time [18].

3 A Tool for Our Kernelization Algorithm

In this section, we give a tool, which we believe might be useful in obtaining kernelization
algorithm for “conflict free” versions of various parameterized problems (admitting kernels),
when the conflict graph belongs to the family of d-degenerate graphs. We particularly use
this tool to obtain kernel for Dd-CF-FVS (Section 4). For a parameterized problem Π,
consider an instance (G,H, k) of its conflict free variant, Conflict Free Π. Then in the
kernelization step where we want to bound the number of vertices, it is seemingly useful to
be able to obtain a set of “important” vertices for a given subset X ⊆ V (H) that will be
enough to capture the independent set property in H. The above intuition becomes clear
when we describe the kernelization algorithm for Dd-CF-FVS.

To formalize the notion of “important” set of vertices, we give the following definition.

I Definition 1. For a d-degenerate graph H and a set X ⊆ V (H), a k-independence preserver
for (H,X) is a set X ′ ⊆ X, such that for any independent set S in H of size at most k, if
there is v ∈ (S∩X)\X ′, then there is v′ ∈ X ′ \S, such that (S \{v})∪{v′} is an independent
set in H.

Throughout this section, we work with a (fixed) d, which is the degeneracy of the input
graph. The goal of this section will be to obtain an algorithm for computing a k-independence
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preserver for (H,X) of “small” size. To quantify the “small” size, we need the following
definition.

I Definition 2. For each q ∈ [d], we define an integer nq as follows.
1. If q = 1, then nq = kd+ k + 1, and
2. nq = knq−1 + kd+ k + 1, otherwise.

Next, we formally define the problem for which we want to design a polynomial time
algorithm. We call this problem d-Bounded Independence Preserver (d-BIP, for short).

d-Bounded Independence Preserver (d-BIP)
Input: A d-degenerate graph H, a set X ⊆ V (H), and an integer k.
Output: A set X ′ ⊆ X of size at most nd+1, such that X ′ is a k independence preserver
for (H,X).

In the following, let (H,X, k) be an instance of d-BIP. We work with a (fixed) d-degeneracy
sequence, σ of H. We recall that such a sequence can be computed in polynomial time [18].
Forward and backward neighbors of a vertex v are also defined with respect to the ordering
σ. If σ(u) < σ(v), then u is a backward neighbor of v and v is a forward neighbor of u. By
Nf

H(v) (N b
H(v)) we denote the set of forward (backward) neighbors of the vertex v in H.

To design our polynomial time algorithm for d-BIP, we need the notion of q-reducible
sets, which is formally defined below.

I Definition 3. A set Y ⊆ V (H) is q-reducible, if for every set U ⊆ Y , for which there is a
set Z ⊆ V (H), such that: (i) Z is of size exactly d− q + 1 and (ii) for each u ∈ U , we have
Z ⊆ Nf

H(u), it holds that |U | ≤ nq.

Now, we give our polynomial time algorithm for d-BIP in Algorithm 1.

Algorithm 1 Algo1(H,X).
Require: d-degenerate graph H, X ⊆ V (H), and an integer k.
Ensure: X ′ ⊆ X of size at most nd+1, which is a k-independence preserver of (H,X).

1: For q ∈ [d], set nq = kd+ 1, when q = 1, and nq = knq−1 + kd+ k + 1, otherwise.
2: q = 1.
3: while q ≤ d do
4: while X is not q-reducible do
5: Find U ⊆ X of size nq + 1, for which there is Z ⊆ V (H) of size exactly d− q + 1,

such that for each u ∈ U , we have Z ⊆ Nf
H(u).

6: Let v be an arbitrary vertex in U .
7: X = X \ {v}.
8: end while
9: q = q + 1.

10: end while
11: while |X| > nd+1 do
12: Let v be an arbitrary vertex in X.
13: X = X \ {v}.
14: end while
15: Set X ′ = X.
16: return X ′

To prove the correctness of our algorithm, we state an observation, the proof of which
follows from the fact that any vertex can have at most d forward neighbors in H.
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I Observation 4. Let H be a d-degenerate graph and S be an independent set of H of size
at most k. Then, for any set U ⊆ V (H), such that for each vertex u ∈ U , N b

H(u) ∩ S 6= ∅,
we have that |U | ≤ kd.

Now we are ready to prove the correctness of our algorithm (Algorithm 1) for d-BIP.

I Lemma 5. Algorithm 1 is correct.

Proof. Let (H,X, k) be an instance of d-BIP, and X ′ be the output returned by Algorithm 1
with it as the input. Clearly, X ′ ⊆ X as we do not add any new vertex to obtain the set X ′,
and size of X ′ is bounded by nd+1, since at Step 10-13 of the algorithm we reduce its size
to (at most) nd+1. Therefore, it remains to show that X ′ is a k-independence preserver of
(H,X). To this end, we consider the following cases.

Case 1: X is q-reducible, for each q ∈ [d]. In this case, the algorithm arbitrarily deletes
vertices (if required) from X to obtain X ′. If X = X ′, then the claim trivially holds.
Therefore, we assume that X ′ is a strict subset of X. To show that X ′ is a k-independence
preserver for (H,X), consider an independent set S in H of size at most k. Furthermore,
consider a vertex v ∈ (S ∩ X) \ X ′ (again, if such a vertex does not exists, the claim
follows). To prove the desired result, we want to find a replacement vertex for v in X ′
which can be added to S (after removing v) to obtain an independent set in H. To this
end, we mark some vertices in X ′. Firstly, mark all the forward neighbors of each s ∈ S
in the set X ′. That is, we let X ′M to be the set (∪s∈SN

f
H(s)) ∩ X ′. Also, we add all

vertices in S ∩X ′ to the set X ′M . By the property of d-degeneracy sequence, we have
that |X ′M | ≤ kd+ k (see Observation 4). Next, we will mark some more vertices in X ′M
with the hope to find a replacement vertex for v in X ′ \X ′M to add to S. Recall that
by our assumption X is q-reducible, for each q ∈ [d], and in particular, it is d-reducible.
Thus, for each s ∈ S, the set Xs = {x ∈ X | s ∈ Nf

H(x)} ⊆ X has size at most nd. Based
on the above observation, we describe our second level of marking of vertices in X ′. For
each s ∈ S, we add each vertex in Xs to X ′M . From the discussions above, we have that
|X ′M | ≤ kd+ k+ knd. Since |X ′| = nd+1, and by definition, nd+1 = knd + kd+ k+ 1, we
have X ′ \X ′M 6= ∅. Moreover, no vertex in X ′ has a neighbor in S \ {v}. Therefore, for
v′ ∈ X ′ \X ′M , we have that S′ = (S \ {v}) ∪ {v′} is an independent set in H.

Case 2: X is not q-reducible, for some q ∈ [d]. Let q′ be the smallest integer for which X
is not q′-reducible. Since X is not q′-reducible, there is a set U ⊆ X of size at least
nq + 1, for which there is a set Z ⊆ V (H) of size exactly d− q + 1, such that for each
u ∈ U , we have Z ⊆ Nf

H(u). Consider (first) such pair of sets U,Z considered by the
algorithm in Step 4. Furthermore, let v ∈ U be the vertex deleted by the algorithm in
Step 6. Let Û = U \{v}. To prove the claim, it is enough to show that for an independent
set S of size at most k containing v in H, there is v′ ∈ Û such that (S \ {v}) ∪ {v′} is
an independent set in H. Here, we will use the fact that deleting a vertex from a set
does not change a set from being q̃-reducible to a set which is not q̃-reducible, where
q̃ ∈ [d]. In the following, consider an independent set S of size at most k containing v
in H. We construct a marked set ÛM , of vertices in Û . Firstly, we add all the vertices
in (∪s∈S\{v}N

f
H(s)) ∩ Û to ÛM . Also, we add all vertices in S ∩ Û to ÛM . Notice that

at the end of above marking scheme, we have |X̂M | ≤ kd+ k. We will mark some more
vertices in Û . Before stating the second level of marking, we remark that S ∩ Z = ∅. For
each s ∈ S \ {v}, let Zs = Z ∪ {s}. Since S ∩ Z = ∅, we have that |Zs| = d− (q − 1) + 1.
For s ∈ S \ {v}, let Ûs = {u ∈ Û | Zs ⊆ Nf

H(u)}. Since X is q∗-reducible for each q∗ < q′,
we have |Ûs| ≤ nq−1, for each s ∈ S \ {v}. Now we are ready to describe our second
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level of marking. For each s ∈ S \ {v}, add all vertices in Us to the set ÛM . Notice that
|ÛM | ≤ kd+ k+ knq−1. Moreover, |Û | ≥ nq and nq = knq−1 + kd+ k+ 1. Thus, there is
a vertex v′ ∈ Û \ ÛM , such that (S \ {v}) ∪ {v′} is an independent set in H. J

I Lemma 6. (?)2 Algorithm 1 runs in time nO(d).

Using Lemma 5 and Lemma 6 we obtain the following theorem.

I Theorem 7. d-Bounded Independence Preserver admits an algorithm running in
time nO(d).

4 A Polynomial Kernel for Dd-CF-FVS

In this section, we design a kernelization algorithm for Dd-CF-FVS.
To design a kernelization algorithm for Dd-CF-FVS, we define another problem called Dd-

Disjoint-CF-FVS (Dd-DCF-FVS, for short). We first define the problem Dd-DCF-FVS
formally, and then explain its uses in our kernelization algorithm.

Dd-Disjoint-CF-FVS (Dd-DCF-FVS) Parameter: k

Input: An undirected graph G, a graph H ∈ Dd such that V (G) = V (H), a subset
R ⊆ V (G), and a non-negative integer k.
Question: Is there a set S ⊆ V (G) \R of size at most k, such that G− S does not have
any cycle and S is an independent set in H?
Notice that Dd-CF-FVS is a special case of Dd-DCF-FVS, where R = ∅. Given an

instance of Dd-CF-FVS, the kernelization algorithm creates an instance of Dd-DCF-FVS
by setting R = ∅. Then it applies a kernelization algorithm for Dd-DCF-FVS. Finally, the
algorithm takes the instance returned by the kernelization algorithm for Dd-DCF-FVS and
generates an instance of Dd-CF-FVS. Before moving forward, we note that the purpose
of having set R is to be able to prohibit certain vertices to belong to a solution. This is
particularly useful in maintaining the independent set property of the solution, when applying
reduction rules which remove vertices from the graph (with an intention of it being in a
solution).

We first focus on designing a kernelization algorithm for Dd-DCF-FVS, and then give
a polynomial time linear parameter preserving reduction from Dd-DCF-FVS to Dd-CF-
FVS. If the kernelization algorithm for Dd-DCF-FVS returns that (G,H,R, k) is a YES
(NO) instance of Dd-DCF-FVS, then conclude that (G,H, k) is a YES (NO) instance of
Dd-CF-FVS. In the following, we describe a kernelization algorithm for Dd-DCF-FVS. Let
(G,H,R, k) be an instance of Dd-DCF-FVS. The algorithm starts by applying the following
simple reduction rules.

I Reduction Rule 1.
(a) If k ≥ 0 and G is acyclic, then return that (G,H,R, k) is a YES instance of Dd-DCF-

FVS.
(b) Return that (G,H,R, k) is a NO instance of Dd-DCF-FVS, if one of the following

conditions is satisfied:
(i) k ≤ 0 and G is not acyclic,
(ii) G is not acyclic and V (G) ⊆ R, or

2 Due to space constraints, the proofs of results marked with ? have been omitted from this extended
abstract.
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(iii) There are more than k isolated cycles in G.

I Reduction Rule 2.
(a) Let v be a vertex of degree at most 1 in G. Then delete v from the graphs G,H and the

set R.
(b) If there is an edge in G (H) with multiplicity more than 2 (more than 1), then reduce its

multiplicity to 2 (1).
(c) If there is a vertex v with self loop in G. If v /∈ R, delete v from the graphs G and H,

and decrease k by one. Furthermore, add all the vertices in NH(v) to the set R, otherwise
return that (G,H,R, k) is a NO instance of Dd-DCF-FVS.

(d) If there are parallel edges between (distinct) vertices u, v ∈ V (G) in G:
(i) If u, v ∈ R, then return that (G,H,R, k) is a NO instance of Dd-DCF-FVS.
(ii) If u ∈ R (v ∈ R), delete v (u) from the graphs G and H, and decrease k by one.

Furthermore, add all the vertices in NH(v) (NH(u)) to the set R.

It is easy to see that the above reduction rules are correct, and can be applied in
polynomial time. In the following, we define some notion and state some known results,
which will be helpful in designing our next reduction rules.

I Definition 8. For a graph G, a vertex v ∈ V (G), and an integer t ∈ N, a t-flower at v is a
set of t vertex disjoint cycles whose pairwise intersection is exactly {v}.

I Proposition 9. [8, 19, 25] For a graph G, a vertex v ∈ V (G) without a self-loop in G, and
an integer k, the following conditions hold.
(i) There is a polynomial time algorithm, which either outputs a (k + 1)-flower at v, or

it correctly concludes that no such (k + 1)-flower exists. Moreover, if there is no
(k + 1)-flower at v, it outputs a set Xv ⊆ V (G) \ {v} of size at most 2k, such that Xv

intersects every cycle passing through v in G.
(ii) If there is no (k + 1)-flower at v in G and the degree of v is at least 4k + (k + 2)2k.

Then using a polynomial time algorithm we can obtain a set Xv ⊆ V (G) \ {v} and a set
Cv of components of G[V (G) \ (Xv ∪ {v})], such that each component in Cv is a tree,
v has exactly one neighbor in C ∈ Cv, and there exist at least k + 2 components in Cv

corresponding to each vertex x ∈ Xv such that these components are pairwise disjoint
and vertices in Xv have an edge to each of their associated components.

I Reduction Rule 3. Consider v ∈ V (G), such that there is a (k + 1)-flower at v in G. If
v ∈ R, then return that (G,H,R, k) is a NO instance of Dd-DCF-FVS. Otherwise, delete v
from G,H and decrease k by one. Furthermore, add all the vertices in NH(v) to R.

The correctness of the above reduction rule follows from the fact that such a vertex must
be part of every solution of size at most k. Moreover, the applicability of it in polynomial
time follows from Proposition 9 (item (i)).

I Reduction Rule 4. Let v ∈ V (G), Xv ⊆ V (G) \ {v}, and Cv be the set of components
which satisfy the conditions in Proposition 9(ii) (in G), then delete edges between v and the
components of the set Cv, and add parallel edges between v and every vertex x ∈ Xv in G.

The polynomial time applicability of Reduction Rule 4 follows from Proposition 9. And,
in the following lemma, we prove the safeness of this reduction rule.

I Lemma 10. (?) Reduction Rule 4 is safe.
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In the following, we state an easy observation, which follows from non-applicability of
Reduction Rule 1 to 4.

IObservation 11. Let (G,H,R, k) be an instance of Dd-DCF-FVS, where none of Reduction
Rule 1 to 4 apply. Then the degree of each vertex in G is bounded by O(k2).

Proof. As Reduction Rule 3 is not applicable, then there is no k + 1-flower in G. Now, if
there is v ∈ V (G) with degree at least 4k + (k + 2)2k, then Reduction Rule 4 would be
applicable. J

To design our next reduction rule, we construct an auxiliary graph G?. Intuitively
speaking, G? is obtained from G by shortcutting all degree two vertices. That is, vertex
set of G? comprises of all the vertices of degree at least three in 3. From now on, vertices
of degree at least 3 (in G) will be referred to as high degree vertices. For each uv ∈ E(G),
where u, v are high degree vertices, we add the edge uv in G?. Furthermore, for an induced
maximal path Puv, between u and v where all the internal vertices of Puv are degree two
vertices in G, we add the (multi) edge uv to E(G?). Next, we will use the following result to
bound the number of vertices and edges in G?.

I Proposition 12. [8] A graph G with minimum degree at least 3, maximum degree ∆, and
a feedback vertex set of size at most k has at most (∆ + 1)k vertices and 2∆k edges.

The above result (together with the construction of G?) gives us the following (safe)
reduction rule.

I Reduction Rule 5. If |V (G?)| ≥ 4k2 + 2k2(k + 2) or |E(G?)| ≥ 8k2 + 4k2(k + 2), then
return NO.

I Lemma 13. Let (G,H,R, k) be an instance of Dd-DCF-FVS, where none of the Reduction
Rules 1 to 5 are applicable. Then we obtain the following bounds:

The number of vertices of degree at least 3 in G is bounded by O(k3).
The number of maximal degree two induced paths in G is bounded by O(k3).

Having shown the above bounds, it remains to bound the number of degree two vertices
in G. We start by applying the following simple reduction rule to eliminate vertices of degree
two in G, which are also in R.

I Reduction Rule 6. Let v ∈ R, dG(v) = 2, and x, y be the neighbors of v in G. Delete v
from the graphs G,H and the set R. Furthermore, add the edge xy in G.

The correctness of this reduction rule follows from the fact that vertices in R can not be part
of any solution and all the cycles passing through v also passes through its neighbors.

In the polynomial kernel for the Feedback Vertex Set problem (with no conflict
constraints), we can short-circuit degree two vertices. But in our case, we cannot perform
this operation, since we also need the solution to be an independent set in the conflict
graph. Thus to reduce the number of degree two vertices in G, we exploit the properties
of a d-degenerate graph. To this end, we use the tool that we developed in Section 3. This
immediately gives us the following reduction rule.

I Reduction Rule 7. Let P be a maximal degree two induced path in G. If |V (P )| ≥ nd+1 +1,
apply Algorithm 1 with input (H,V (P ) \R). Let V̂ (P ) be the set returned by Algorithm 1.
Let v ∈ (V (P ) \ R) \ V̂ (P ), and x, y be the neighbors of v in G. Delete v from the graphs
G,H. Furthermore, add edge xy in G.
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I Lemma 14. Reduction Rule 7 is safe.

Proof. Let (G,H,R, k) be an instance of Dd-DCF-FVS and v be a vertex in a maximal
degree two path P with neighbors x and y, with respect to which Reduction Rule 14 is
applied. Furthermore, let (G′, H ′, R, k) be the resulting instance after application of the
reduction rule. We will show that (G,H,R, k) is a YES instance of Dd-DCF-FVS if and
only if (G′, H ′, R, k) is a YES instance of Dd-DCF-FVS.

In the forward direction, let (G,H,R, k) be a YES instance of Dd-DCF-FVS and S be
one of its minimal solution. Consider the case when v /∈ S. In this case, we claim that S
is also a solution of Dd-DCF-FVS for (G′, H ′, R, k). Suppose not then either S is not an
independent set in H ′ or G′ − S contains a cycle. Since, H ′ is an induced subgraph of H, we
have that S′ is also an independent set in H ′. So we assume that G′ − S has a cycle, say C.
If C does not contain the edge xy, then C is also a cycle in G− S. Therefore, we assume
that C contains the edge xy. But then (C \ {xy}) ∪ {xv, vy} is a cycle in G− S. Next, we
consider the case when v ∈ S. By Lemma 5 we have a vertex v′ ∈ V (P ) \ {v} such that
(S \ {v}) ∪ {v′} is an independent set in H ′. By using the fact that any cycle that passes
through v also contains all vertices in P (together with the discussions above) imply that
(S \ {v}) ∪ {v′} is a solution of Dd-DCF-FVS for (G′, H ′, R, k).

In the reverse direction, let (G′, H ′, R, k) be a YES instance of Dd-DCF-FVS and S′
be one of its minimal solution. We claim that S′ is also a solution of Dd-DCF-FVS for
(G,H,R, k). Suppose not, then either S is not an independent set in H or G− S contains a
cycle. Since, H ′ is an induced subgraph of H, we have that S′ is also an independent set in H.
Next, assume that there is a cycle C in G− S. The cycle C must contain v, otherwise, C is
also a cycle in G′ − S′. Since v is a degree two vertex in G, therefore any cycle that contains
v, must also contain x and y. As observed before, G − {xv, vy} is identical to G′ − {xy}.
But then, (C \ {xv, vy})∪ {xy} is a cycle in G′ − S′, a contradiction. This concludes that S′
is a solution of Dd-DCF-FVS for (G,H,R, k). J

I Lemma 15. (?) Let (G,H,R, k) be an instance of Dd-DCF-FVS, where none of the
Reduction Rules 1 to 7 are applicable. Then the number of vertices in a degree two induced
path in G is bounded by O(kO(d)).

I Theorem 16. Dd-DCF-FVS admits a kernel with O(kO(d)) vertices.

I Lemma 17. (?) There is a polynomial time parameter preserving reduction from Dd-DCF-
FVS to Dd-CF-FVS.

By Theorem 16 and Lemma 17, we obtain the following result.

I Theorem 18. Dd-CF-FVS admits a kernel with O(kO(d)) vertices.

5 Kernelization Complexity of P??
≤3-CF-OCT

In this section, we show that CF-OCT does not admit a polynomial kernel when the conflict
graph belongs to the family P??

≤3. Let P≤3 denotes the family of disjoint union of paths of
length at most three, and P?

≤3 denotes the family of disjoint union of paths of length at most
three and a star graph. We give parameter preserving reduction from P?

≤3-Conflict Free
s-t Cut (P?

≤3-CF-s-t Cut) to P??
≤3-CF-OCT.

We first prove that P?
≤3-CF-s-t Cut is NP-hard. Then, we prove that P?

≤3-CF-s-t
Cut does not admit a polynomial compression, unless NP ⊆ coNP

poly using the method of
cross-composition.

IPEC 2018
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Figure 1 An illustration of construction of graph G′ and H ′ in reduction from P?
≤3-CF-s-t Cut

to P??
≤3-CF-OCT.

I Theorem 19 (?). P?
≤3-CF-s-t Cut does not admit a polynomial compression unless

NP ⊆ coNP
poly .

Lower Bound for Kernel of P??
≤3-CF-OCT. In this subsection, we prove the main result of

this section. We show that there does not exist a polynomial kernel of P??
≤3-CF-OCT. Towards

this we give a parameter preserving reduction from P?
≤3-CF-s-t Cut to P??

≤3-CF-OCT. Given
an instance (G,H, s, t, k) of P?

≤3-CF-s-t Cut, we construct an instance (G′, H ′, k + 1) of
P??
≤3-CF-OCT as follows. Initially, we have V (G′) = V (H ′) = V (G) ∪ {z, a, b}. Now, for

each edge ei ∈ E(G), add a vertex wi to V (G′) and V (H ′). Now, we define the edge set of
G′. Let xi, yi be end points of ei ∈ E(G). For each ei ∈ E(G), add edges xiwi and yiwi to
E(G′). Also, add a self loop on z in G′ and edges sa, ab and bt to E(G′). To construct the
edge set of H ′, we set E(H ′) = E(H − {s, t}). Additionally, we add zs, zt, za, zt, and zwi

for each wi ∈ V (H ′) to E(H ′). Figure 1 describes the construction of G′ and H ′.
Clearly, H ′ belongs to P??

3 and this construction can be carried out in the polynomial
time. Now, we prove the equivalence between the instances (G,H, s, t, k) of P?

≤3-CF-s-t Cut
and (G′, H ′, k + 1) of P??

≤3-CF-OCT in the following lemma.

I Lemma 20. (G,H, s, t, k) is a yes-instance of P?
≤3-CF-s-t Cut if and only if (G′, H ′, k+1)

is a yes-instance of P??
≤3-CF-OCT.

Proof. In the forward direction, let (G,H, s, t, k) be a yes-instance of P?
≤3-CF-s-t Cut and S

be one of its solution. We claim that S ∪{z} is a solution to P??
≤3-CF-OCT in (G′, H ′, k+ 1).

In the graph G′, since we subdivide each edge, all the paths from s− t are of even length.
Since, we subdivide each edge of G, G′ − {a, b, z} is a bipartite graph. Hence, an odd cycle
in G′ − z consists of an s − t path in G′ − {a, b} and edges sa, ab and bt. Clearly, by the
construction of G′, (G′ − {a, b}) \ S does not contain an s− t path and hence G′ − z does
not contain an odd cycle. Since, H[S] is edgeless, S ∪ {z} is an independent set in H ′. This
completes the proof in the forward direction.

In the reverse direction, let S be a solution to P??
≤3-CF-OCT in (G′, H ′, k+1). Since, z ∈ S,

therefore, s, t, a, b, wi /∈ S for any wi ∈ V (H ′). We claim that S′ = S\{z} is a solution to P?
≤3-

CF-s-t Cut in (G,H, s, t, k). Suppose not, then there exists a s−t path (s, x1, x2, · · · , xl, t) in
G\S′. Correspondingly, there exists a s−t path (s, w1, x1, w2, x2, · · · , xl, wl+1, t) in G′ of even
length which results into an odd cycle
(s, w1, x1, w2, x2, · · · , xl, wl+1, t, b, a) in G′ \S, a contradiction. This completes the proof. J

Now, we present the main result of this section in the following theorem.

I Theorem 21. P??
≤3-CF-OCT does not admit a polynomial kernel. unless NP ⊆ coNP

poly .
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6 Conclusion

In this paper we studied kernelization complexity of Dd-CF-FVS and Dd-CF-OCT. We
showed that the former admits a polynomial kernel of size kO(d), while Dd-CF-OCT does not
admit any polynomial kernel unless NP ⊆ coNP

poly . In fact, the later does not admit polynomial
kernel even for much more specialized problem, namely P??

≤3-CF-OCT. Using much more
involved marking scheme we can show that Dd-CF-ECT admits polynomial kernel of size
kO(d). Similarly, we can extend the known polynomial kernel for OCT to CF-OCT when
the conflict graph H has maximum degree at most one. Two most interesting questions that
still remain open form our work are following: (a) does CF-FVS admit uniform polynomial
kernel on graphs of bounded expansion; and (b) does CF-OCT admit a polynomial kernel
when H is disjoint union of paths of length at most 2.
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