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—— Abstract

The (WEIGHTED) SUBSET FEEDBACK VERTEX SET problem is a generalization of the classical
FEEDBACK VERTEX SET problem and asks for a vertex set of minimum (weight) size that inter-
sects all cycles containing a vertex of a predescribed set of vertices. Although the two problems
exhibit different computational complexity on split graphs, no similar characterization is known
on other classes of graphs. Towards the understanding of the complexity difference between
the two problems, it is natural to study the importance of a structural graph parameter. Here
we consider graphs of bounded independent set number for which it is known that WEIGHTED
FEEDBACK VERTEX SET can be solved in polynomial time. We provide a dichotomy result with
respect to the size of a maximum independent set. In particular we show that WEIGHTED SUBSET
FEEDBACK VERTEX SET can be solved in polynomial time for graphs of independent set number
at most three, whereas we prove that the problem remains NP-hard for graphs of independent
set number four. Moreover, we show that the (unweighted) SUBSET FEEDBACK VERTEX SET
problem can be solved in polynomial time on graphs of bounded independent set number by
giving an algorithm with running time n®(@ where d is the size of a maximum independent set
of the input graph. To complement our results, we demonstrate how our ideas can be extended
to other terminal set problems on graphs of bounded independent set size. Based on our findings
for SUBSET FEEDBACK VERTEX SET, we settle the complexity of NODE MuLTIWAY CUT, a ter-
minal set problem that asks for a vertex set of minimum size that intersects all paths connecting
any two terminals, as well as its variants where nodes are weighted and/or the terminals are
deletable, for every value of the given independent set number.
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SFVS on Graphs of Bounded Independent Set Size

1 Introduction

Given a (vertex-weighted) graph G = (V, E) and a set S C V, the (WEIGHTED) SUBSET
FEEDBACK VERTEX SET problem, introduced by Even et al. [13], asks for a vertex set
of minimum (weight) size that intersects all cycles containing a vertex of S. Cygan et al.
[10] and Kawarabayashi and Kobayashi [25] independently showed that SUBSET FEEDBACK
VERTEX SET is fixed-parameter tractable (FPT) parameterized by the solution size, while
Hols and Kratsch provided a randomized polynomial kernel for the problem [21]. There has
been a considerable amount of work to obtain faster, still exponential-time, algorithms even
when restricted to particular graph classes [5, 16, 15, 19]. As a generalization of the classical
FEEDBACK VERTEX SET for which S = V, the problem remains NP-hard on bipartite
graphs [36] and planar graphs [17]. On the positive side, WEIGHTED SUBSET FEEDBACK
VERTEX SET can be solved in polynomial time on interval graphs, permutation graphs, and
cobipartite graphs [31], the latter being a subclass of graphs of independent set size at most
two. However a notable difference between the two problems regarding their complexity
status is the class of split graphs: FEEDBACK VERTEX SET is known to be polynomial-time
solvable on split graphs [7, 34], whereas SUBSET FEEDBACK VERTEX SET remains NP-hard
on split graphs [16].

In order to obtain further (in)tractability results for SUBSET FEEDBACK VERTEX SET,
it is reasonable to consider structural parameters of graphs that may lend themselves to
provide a unified approach. In terms of parameterized complexity FEEDBACK VERTEX SET
is known to be FPT, when parameterized by tree-width [8] and clique-width [2] which implies
that FEEDBACK VERTEX SET can be solved in polynomial time on graphs of bounded such
parameters. Although FEEDBACK VERTEX SET is W[1]-hard parameterized by the size of
the independent set, it can be solved in polynomial time on graphs of bounded maximum
induced matching (i.e., FEEDBACK VERTEX SET belongs in XP parameterized by the size of
a maximum induced matching) [24]. Only very recently, Jaffke et al. proposed an algorithm
that solves WEIGHTED FEEDBACK VERTEX SET in time n®®) where w is the mazimum
induced matching width of the given graph [23]. Despite their relevant name, graphs of
bounded maximum induced matching (or graphs of bounded independent set number) are
not related to graphs of bounded maximum induced matching width as indicated in [35].

The approach of [23] provides a powerful mechanism, as it unifies polynomial-time
algorithms for WEIGHTED FEEDBACK VERTEX SET on several graph classes such as interval
graphs, permutation graphs, circular-arc graphs, and Dilworth-k graphs for fixed k, among
others. Such a mechanism raises the question of whether the algorithm given in [23] can
be extended to the more general setting of WEIGHTED SUBSET FEEDBACK VERTEX SET.
However the proposed algorithm is based on the crucial fact that the forest of a solution has
bounded number of internal nodes which is not necessarily true for the S-forest of WEIGHTED
SUBSET FEEDBACK VERTEX SET. Thus it seems difficult to control the size of the solution
whenever S C V. As this observation does not rule out any positive answer, here we develop
the first step towards such an approach by considering graphs of bounded independent set
number which form candidate relevant graphs. Although WEIGHTED FEEDBACK VERTEX
SET can be solved in time n®®) on graphs of maximum induced matching at most p [24],
SUBSET FEEDBACK VERTEX SET is already NP-complete on graphs of maximum induced
matching equal to one (i.e., split graphs) [16].

In this work we show that the complexity behaviour of the weighted version of the problem
is completely different from the behaviour of the unweighted variant on graphs with bounded
(@), where o(G) is the size of a maximum independent set in a graph G.
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We show that WEIGHTED SUBSET FEEDBACK VERTEX SET can be solved in polynomial
time on graphs with «(G) < 3.
Such graphs consist of the complements of triangle-free graphs; recall that for triangle-free
graphs FEEDBACK VERTEX SET remains NP-hard [36]. We solve WEIGHTED SUBSET
FEEDBACK VERTEX SET on such graphs, by exploiting a structural characterization of the
solution with respect to the vertices that are close to S.
We further provide a dichotomy result showing that WEIGHTED SUBSET FEEDBACK
VERTEX SET remains NP-complete on graphs with a(G) = 4.
Thus we enlarge our knowledge on the complexity difference of the two problems with respect
to a structural graph parameter.
In order to complement our results we show that SUBSET FEEDBACK VERTEX SET can
be solved in time n®@ | where a(G) < d.
Our findings concerning SUBSET FEEDBACK VERTEX SET are summarized in Table 1.
Moreover, we demonstrate how our ideas can be extended to other terminal set problems
on graphs of bounded independent set size. In the (unweighted) NODE MuLTIWAY CUT
problem, we are given a graph G = (V, E), a terminal set ' C V', and a nonnegative integer
k and the goal is to find a set X C V' \ T of size at most k such that any path between two
different terminals intersects X. NODE MULTIWAY CUT is known to be in FPT parameterized
by the solution size [4, 29] and even above guaranteed value [9]. For further results on variants
of NODE MULTIWAY CUT we refer to [3, 18, 27]. We completely characterize the complexity
of NODE MuLTIWAY CUT with respect to the size of the maximum independent set.
In particular, we show that for a(G) < 2 NODE MuLTIwWAY CUT can be solved in
polynomial time, whereas for a(G) = 3 it remains NP-complete by adopting the reduction
for WEIGHTED SUBSET FEEDBACK VERTEX SET with o(G) = 4.
We further consider a relaxed variation of NODE MULTIWAY CUT in which we are allowed to
remove terminal vertices, called NODE MULTIWAY CUT WITH DELETABLE TERMINALS (also
known as UNRESTRICTED NODE MuLTIwAY CUT).
We show that the (unweighted) NODE MULTIWAY CUT WITH DELETABLE TERMINALS
problem can be solved in polynomial time on graphs of bounded independent set number,
using an idea similar to the polynomial-time algorithm for the SUBSET FEEDBACK
VERTEX SET problem.
Regarding its node-weighted variation, we provide a complexity dichotomy result showing
that WEIGHTED NODE MULTIWAY CUT WITH DELETABLE TERMINALS can be solved in
polynomial time on graphs with «(G) < 2, whereas it becomes NP-complete on graphs
with a(G) = 3.
We note that the polynomial-time algorithm for the weighted variation is obtained by invoking
our algorithm for WEIGHTED SUBSET FEEDBACK VERTEX SET on graphs with a(G) < 3.

2 Preliminaries

We refer to [1, 11, 20] for our standard graph terminology. For X C V, Ng(X) =
Uvex Na(v) \ X and Ng[X] = Ng(X)U X. A weighted graph G = (V,E) is a graph,
where each vertex v € V is assigned a weight that is a positive integer number. We denote
by w(v) the weight of each vertex v € V. For a vertex set A C V, the weight of A, denoted
by w(A), is Y, 4 w(v).

Given a graph G, the independent set number, denoted by a(G), is the size of the
maximum independent set in G. In terms of forbidden subgraph characterization, note that
a(G) < d if and only if G does not contain (d 4+ 1)K; as an induced subgraph. We say that
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Table 1 Computational complexity results for FEEDBACK VERTEX SET (FVS) and SUBSET
FEEDBACK VERTEX SET (SFVS) on graphs of bounded independent set number and graphs of
bounded maximum induced matching. Note that every graph of independent set number d has
maximum induced matching of size at most d, while the converse is not necessarily true.

Bounded Structural Parameter

Max. Independent Set (d) Max. Induced Matching (p)

Weighted FVS n®® [24)
d<3 o Th 6
Weighted SFVS 2= n corem
d =4 NP-complete Theorem 7
Unweighted SFVS nC@ Theorem 8 NP-complete [16]

a graph G has bounded independent set size if there exists a positive integer d such that
a(G) < d. The cligue cover number of G, denoted by k(G), is the smallest number of cliques
needed to partition V(G) into Si,..., Sk such that G[S;] is a clique. A wvertex cover is a set
of vertices such that every edge of G is incident to at least one vertex of the set. A matching
is a set of edges having no common endpoint. An induced matching, denoted by pKs, is a
matching M of p edges such that G[V (M)] is isomorphic to pKy. The maximum induced
matching number, denoted by p(G), is the largest number of edges in any induced matching
of G. It is not difficult to see that for any graph G, x(G) > a(G) > p(G) holds.

The (WEIGHTED) SUBSET FEEDBACK VERTEX SET (SFVS) problem asks for a given
(vertex-weighted) graph G = (V, E), a set S C V, and an integer k, whether there exists a
set X with | X| < k (w(X) < k) such that no cycle in G — X contains a vertex of S. As
remarked, we distinguish between the weighted and the unweighted version of the problem.
In the unweighted version of the problem note that all weights are equal and positive. The
classical FEEDBACK VERTEX SET (FVS) problem is a special case of SUBSET FEEDBACK
VERTEX SET with § = V. A vertex of S is simply called S-vertez. An induced cycle of G is
called S-cycle if an S-vertex is contained in the cycle. We define an S-forest F = (Vp, EF)
to be the subgraph of G induced by the vertex set Vi C V for which no cycle in G[VF] is an
S-cycle. It is not difficult to see that the problem of computing a minimum weighted subset
feedback vertex set is equivalent to the problem of computing a maximum weighted S-forest.

Let us give a couple of observations on the nature of SUBSET FEEDBACK VERTEX SET on
graphs of bounded independent set size. Let G be a graph and let d be a positive integer such
that every independent set of G has at most d vertices. Firstly note that the bounded-size
independent set is a hereditary property, meaning that for every induced subgraph H of G,
we have a(H) < d. Moreover for any clique C of G, any S-forest of G contains at most two
vertices of SN C.

» Observation 1. Let G be a graph with a(G) < d and let S C V.
(1) For any set X of 2d + 1 vertices, there is a cycle in G[X].

(2) Any S-forest of G has at most 2d vertices from S.

We note that Observation 1 directly implies that any 2d + 1 vertices of G[S] induce an

S-cycle, which allows us to construct by brute force all possible subsets of S belonging to

any S-forest in time n@(@,
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Fgl

Ay = {vi,v2}
Ay = {vg,v3}
Az = {vs}
F>1

Figure 1 Illustrating an S-distance partition (F<1, F~1) of an S-forest F' with S = {s1, s2,s3}
that shows the connected components C1,C2,Cs of F~1. The edges inside F>; are not drawn in
order to highlight that the cut satisfies the given tuple (A1, A2, As).

3 Weighted SFVS on Graphs of Bounded Independent Set

Here we consider the WEIGHTED SUBSET FEEDBACK VERTEX SET and we show a dichotomy
result with respect to the size of the maximum independent set. We first provide a polynomial-
time algorithm on graphs of independent set size at most three and then we show that
WEIGHTED SUBSET FEEDBACK VERTEX SET is NP-complete on graphs of independent set
size equal to four.

Let (G, S, k) be an instance of WEIGHTED SUBSET FEEDBACK VERTEX SET for which
G is a graph of independent set size at most d. In the forthcoming arguments, instead of
directly computing a solution for WEIGHTED SUBSET FEEDBACK VERTEX SET, we consider
the equivalent problem of computing an S-forest of G having weight at least w(V') — k.

Let F = (Vp, Er) be an induced subgraph of G. Recall that an S-forest is an induced
subgraph of G. We partition the graph F' into two induced subgraphs F<; and F%; as
follows:

F<; is the subgraph of F' induced by the vertices of N[S N Vg]; the vertices of F<; are at

distance at most one from S N Vr and are denoted by S<;.

F, is the graph F' — S<; and contains vertices that are at distance at least two from

SNVg.

Such a partition is called the S-distance partition of F', denoted by (F<i, F>1). The set of
edges of F' having one endpoint in F<; and the other in F\; are called the cut with respect
to F<1 and F;. Notice that a vertex of F<; that is adjacent to a vertex of F'; belongs to
S<1\ S.

Let {C1,...,Cyq} be the partition of the vertices of F5; such that each C;, 1 <i < d,
induces a connected component in F5;. Because Fs; is an induced subgraph of G, it is clear
that d’ < d. Let (A41,...,Aq) be a tuple of d’ subsets of S<1 \ S, i.e., each A; C (S<1\ 5)
holds. We say that the cut satisfies the tuple (Aq,..., Ay ) if for any vertex v € C;, we have
(Ng(v) N S<1) C A;. The notion of an S-distance partition of F' with the corresponding cut
is illustrated in Figure 1.

We now utilize the S-distance partition of F' in order to construct an algorithm that
solves WEIGHTED SUBSET FEEDBACK VERTEX SET on graphs of independent set size at
most d and subsequently show that this algorithm is efficient for d < 3. Our general approach
relies on the following facts:

By Observation 1 (2) we try all subsets S” of S with at most 2d vertices and keep those

sets that induce a forest. This step is used in constructing the graph F<;. In particular,
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for each such set S, we construct all F<; such that SNV (F<1) = 5’. We will show that
the number of such subsets produced is bounded by n®(®).

For each of the potential subsets S’ constructed in the previous step, and for each d’' < d,
we determine all possible tuples (A1,..., Ay ) in F<; with A; C (N[S’]\ S) that are
satisfied by cuts of S-distance partitions. We show why considering only these tuples is
sufficient in Lemma 2.

Up to that point we can show that all steps can be executed in polynomial time regardless
of d < 3. However for the next and final step we can only achieve polynomial running
time if we restrict ourselves to d < 3 due to the number of connected components of Fs .
For each tuple computed in the previous step, we find connected components C4,...,Cy
of maximum weight such that the cut of (G[S'], G|C1 U ---U Cy]) satisfies the tuple. For
doing so, we take advantage of the small number of connected components (d’ < 3) and
an efficient way of computing a vertex-cut between such components.

We begin by showing that the S-distance partition of F' provides a useful tool towards
computing a maximum S-forest. Given a set of vertices X C N[S] and d’ subsets 4; of X'\ S,
we construct the graph G that is obtained from G[X] by adding d’ vertices wy, ..., wg such
that every vertex w; is adjacent to all the vertices of A;. In what follows, we always assume
that G is a graph having independent set size at most d.

» Lemma 2. Let F' be an S-forest of G with S-distance partition (F<1,Fs1) such that
S<1NS # . Then for d < d, there is a tuple (A1, ..., Aq) with A; C (S<1\ S) such that
(i) the cut of (F<1,Fs1) satisfies (A1,...,Ag) and
(ii) every induced subgraph H of G with S-distance partition (H[S<1], H—S<1) that satisfies
(Ai,...,Aq) is an S-forest.

Proof. Let {C1,...,Cy} be the partition of the vertices of F~1 such that every C; induces
a connected component in Fs;. We define a tuple (Ay,...,Ay) in which every A; =
N(C;) N S<y, for 1 <i < d'. Clearly A; C (S<1\ S) since every vertex Fs; is at distance
at least two from S<; NS. Thus, by construction, the cut of (F<1, F\1) satisfies the tuple
(Al,...,Ad/). R

For the next claim, we first show that G with respect to S<; and the tuple (A;,..., Ag)
is an S-forest. Assume for contradiction that there is an S-cycle C' in G. Since F<; does
not contain any S-cycle, C contains a vertex w; and at least two vertices u;,v; from A;,
1 < i< d. By the fact that A; = N(C;) N S<1, there is a vertex z in C; of F-; that is
adjacent to u; and there is a vertex y in C; of F.; that is adjacent to v;. Together with
a path between z and y in the connected component C;, we construct a path in G with
endvertices u; and v; that is completely contained in C;. This means that if we replace every
vertex w; of C by a path with internal vertices of C; then we obtain an S-cycle in F', leading
to a contradiction. Thus, G is an S-forest.

Let H be an induced subgraph of G with S-distance partition (H[S<1], H — S<1) that
satisfies (A1,..., Ag). Observe that H[S<1] = F<; as they are induced subgraphs of the
same vertex set of G. Thus H[S<1] does not contain any S-cycle, because F' is an S-forest.
Since the cut of (H[S<1], H — S<1) satisfies (A1, ..., Aq), there is a partition {T4,...,Ty } in
H — S<; such that T; is a connected component of H — S<q and N(T;) C A;, for 1 < ¢ < d'.
We show that H is indeed an S-forest. For contradiction, assume an S-cycle C in H. There
are no S-cycles in H[S<1] which implies that C NT; # @ for some 1 <i < d’. For every such
set we replace the part C' NT; by a vertex w,. Denote by H' the resulting graph. Notice that
H'[C] is a subgraph of G[C] because Np:(w;) € Ng(w;). This, however, implies an S-cycle
in G which gives the desired contradiction. Therefore, H is an S-forest. <
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Notice that G — S is trivially an S-forest of G. Thus, if F' is an S-forest of G such that
S<1 NS = & then F does not contain any vertex of S and F' = G — S. Next, we assume
that S<; NS # @ and show how to bound the vertex set S<; of F<;.

» Lemma 3. Let F be an S-forest of G with S-distance partition (F<1,F>1) such that
S<1nNS #@.

1. If ‘Sgl n S| < 2d — 2 then |S§1‘ <4d — 2.

2. If ‘Sgl n S| >2d — 1 then |S§1‘ < 2d.

Proof. Let F be such an S-forest of G with |S<; N.S| > 1. By Observation 1 (2), we know
that |[S<1 N S| < 2d. To ease the presentation, we let S = S<; \ S. We consider separately
the two cases of the claim.

Case 1. Let 1 < [S<1NS| < 2d—2. Assume for contradiction that |S’| > 4d—[S<1NS|—2. We
show that F'[S’] contains a matching with at least d edges. Observe that |S’|+|S<1 N S| >
4d — 2. Applying Observation 1 (1) shows that there is a cycle C' in F[S<q]. Since F'

is an S-forest, this is not an S-cycle, so all vertices contained in C' are vertices of S".

Iteratively removing the two endpoints of an edge from C, as long as |S’| +]S<1 N S| > 2d,
constructs d edges of S’ having no common endpoints by Observation 1 (1). Thus, F[S’]
contains a matching M with at least d edges.

Let C1,...,Cgq be the connected components of F[S<; N S]. Notice that d’ < d because
F[S<1 N S] is an induced subgraph of a graph with maximum independent set size at

most d. By construction, every vertex of S’ is adjacent to at least one vertex of S<1 N S.

If the endpoints of an edge of M in S’ are adjacent to vertices of the same component
C;, 1 < < d', then there is an S-cycle in F since every vertex of C; belongs to S. Thus
the endpoints of every edge of M are adjacent to different connected components of
F[S<1NS]. Now obtain a bipartite graph by contracting every component C; into a single
vertex and every edge of M into a single vertex and keep only the adjacencies between the
components and the edges of M. Let (A, B) be the bipartition of the resulting bipartite
graph such that A contains the components of F[S<; N S| and B contains the edges of
M. Since |A| < |B| and every vertex of B is adjacent to at least two vertices of A, there
is a cycle in the bipartite graph. Then, it is not difficult to see that the cycle of the
contracted vertices corresponds to an S-cycle in F'. Therefore there is an S-cycle in an
S-forest, leading to a contradiction.

Case 2. Let 2d — 1 < |[S<1 N S| < 2d. Assume for contradiction that |S’| > 2d — [S<1 N S|.

This means that S’ contains at least one vertex. We pick a nonempty subset W of
S’ as follows. If |S<; NS| = 2d — 1 then W consists of any two vertices of S’. If
|S<1 N S| = 2d then W consists of an arbitrary vertex of S’. In both cases, notice that
|S<1 N S|+ |W]| > 2d by the fact 2d — 1 < [S<1 NS|. Then Observation 1 (1) implies that
there is a cycle in F[(S<1 NS)UW]. Since W has at most two vertices, we conclude that
the induced cycle of F[(S<1NS)UW] has at least one vertex from S, hence it is an S-cycle
in F. Therefore we reach a contradiction which implies that |[S’| <2d —|S<1 N S|. <

Lemma 3 shows that we can compute all possible candidates for S<; in polynomial time
as follows.

We first try, by brute force, all subsets S’ of S having at most 2d vertices, according to
Observation 1 (2).

Then, for each such subset S’, we incorporate a set X' C N(S’) for which either
| X'+ |8"| <4d —2, or | X'| +]5"| < 2d, according to Lemma 3.

Given the described sets S” and X', we check if G[S” U X'] induces an S-forest and, if so,
we include them into a list L; containing all candidates for S<;.
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The correctness follows from Observation 1 and Lemma 3. Regarding the running time,
notice that we create at most n°(?) subsets for each of S’ and X’ C N(S’). Thus, in time
nP@ we can compute a list L; that contains all possible subsets of the vertices corresponding
to S<1. Notice that such vertices are enough to build the part F<;.

Let S<1 be a set of L. We now focus on the graph G’ = G — (S<; U S) that contains
the vertices that are at distance of at least two from S<; N S. Observe that for any S-forest
F', the set of all vertices in F' which are at distance of at most one from the vertices of
SNV(F), are present as an element of L;. Let d’ be the number of connected components
of G'. Tt is clear that d’ < d. In fact, if S<; N S contains at least one vertex then d’ < d,
since the vertices of G’ are at distance of at least two from S<; N.S. Moreover, observe that
if S<1 NS = @ then G — S is a trivial solution, since we try all subsets of S, having at most
2d vertices, for the set S<1. From now on, we assume that |S<; 0S| > 1 so that d’ < d.

By brute force, we find all tuples (Aj,..., Ag) such that the following hold:

(i) A; C(S<1\9), for every 1 <i<d', and

(ii) the graph G with respect to S<i and (A41,...,Ay) is an S-forest.
Notice that by Lemma 2 (ii) it is sufficient to consider only such tuples. Since A; C S<q,
d' < d, and |S<;| < 4d, the number of tuples is d°(¥), so that we can obtain the desired set
of tuples that satisfy both conditions in polynomial time.

In what follows, we consider the case for d < 3. By the previous arguments, we are given
a set S<1 € N[S] and tuples of the form A; or (A;, A2) which are subsets of S<; \ S. Our
task is to compute a subset V' of the vertices of G’ such that the vertices of S<; UV induce
a maximum S-forest and the cut (G[S<1], G[V']) satisfies Ay or (A1, Az), respectively. We
distinguish the two cases with the following two lemmas.

» Lemma 4. Let X C N[S] and let Ay be a subset of X \ S such that both F<1 = G[X]
and G with respect to X and Ay are S-forests. There exists a polynomial-time algorithm
that computes a mazimum S-forest F' with an S-distance partition (F<1,Fs1) having a cut
satisfying Ay .

Proof. Since F<; is a fixed S-forest of F', we need to determine the vertices of V'\ (X U S)
that are included in F%;. By the desired cut of (F<1, F-1), we are restricted to the vertices
of V'\ (X US) that have neighbors in F<; only to A;. Those vertices can be described as
follows:

Bi=(V\(XUS)\{weV:Nw)n(X\(SUA)) #£a}.

Notice that B; contains vertices that are at distance at least two from the S-vertices of
X NS. Since the cut satisfies a single subset A1, we have at most one connected component
of G[B;] in Fs1. In order to choose the correct connected component of G[By], we try to
include each of them in FL; and select the one having the maximum total weight. Notice
that adding any component of G[Bj] into F~1 cannot create any S-cycle, because G with
respect to X and A;j is an S-forest. Thus, by Lemma 2, we correctly compute a maximum
S-forest with the desired properties. Clearly the set By can be constructed in polynomial
time. Since the number of connected components G[B1] is at most two, all steps can be
executed in polynomial time. |

» Lemma 5. Let X C N[S] and let Ay, Ay be subsets of X \ S such that both F<; = G[X]
and G with respect to X and (A1, As) are S-forests. There exists a polynomial-time algorithm
that computes a mazimum S-forest F' with an S-distance partition (F<1, F~1) having a cut
satisfying (Aq, As).
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Proof. Similar to the proof of Lemma 4, we first construct the sets By, By that contain
vertices of V' \ (X U S) and satisfy the cut obtained from X:

Bi=(V\(XUS)\{weV:Nw)n(X\(SUA)) #o} and
By = (VAN XU\ {w eV :Nw)N(X\(SUA,)) # 2},

As the desired cut of (F<1, F1) satisfies (A1, Az), there are two connected components of Fsq
which are subsets of the two sets By and Bs, respectively. Let C'y and Cs be the connected
components of F5; such that C; C By and Cy C By. Now observe that there should be
two non-adjacent vertices wy € By and wy € By that belong to C; and Cs, respectively. We
iterate over all possible pairs of non-adjacent vertices w; € By N Cy and we € Bo N Cy in
O(n?) time. Assuming a given choice for w; and wy, observe the following:

Since wy and ws are vertices of different connected components of F. 1, the components

themselves are further restricted to be subsets of By \ N[ws] and Bs \ N[w1], respectively.

That iS7 Cl - (Bl \N[’LUQ]) and 02 - BQ \ N[wl]

Since F' has at least one vertex of S, wi,ws € V' \ (X U S) are non-adjacent, and by

the fact d < 3, we have that By \ N]ws] and By \ N[wi] induce cliques in G. Thus

B; \ N[ws] € Nfw;] and Bs \ N[w1] C N[ws], respectively.
Then by the second statement it is not difficult to see that B; \ N|ws] and By \ N|w;] are
disjoint. Let Bf = (By \ N[wz]) \ {w1} and B} = (B2 \ N[wi]) \ {w2}. Now in order to find
the maximum induced S-forest under the stated conditions and our assumption that w; and
wy belong to the two connected components of F<1, it suffices to find the maximum subset
Cy U Cy of By U Bj such that there are no edges between the vertices of C; N B} and the
vertices of Cy N BY. This boils down to compute a minimum weighted vertex cover on the

bipartite graph G’ obtained from G[Bj U Bj] and removing the edges inside G[B{] and G[Bj].

By maximum flow standard techniques, we compute a minimum weighted vertex cover U on
G’ in polynomial time [30]. Therefore, G[B] U B5] — U contains the connected components
Cy \ {w1} and Cy \ {wa}, as required. <

Now we are equipped with our necessary tools in order to obtain our main result, namely
a polynomial-time algorithm that solves WEIGHTED SUBSET FEEDBACK VERTEX SET on
graphs of independent set of size at most 3.

» Theorem 6. WEIGHTED SUBSET FEEDBACK VERTEX SET on graphs of independent set
of size at most 3 can be solved on time n®W).

Proof. Let us briefly explain such an algorithm for computing a maximum S-forest F' of a

graph G having independent set size at most three. Let d = 3. Initially we set F* =G — S.

Then, for every set X C N[S] with |X| < 4d such that G[X] is an S-forest, we try by brute
force all subsets A; and (A;, Ay) with A; € (X \ S) such that G with respect to X and A,
or (A1, Ag) is an S-forest. For each of such subsets, we find a maximum S-forest F' with
an S-distance partition (G[X], F~1) having a cut satisfying A; or (A;, As), respectively, by
applying the algorithms described in Lemma 4 and Lemma 5. At each step, we maintain the
maximum weighted S-forest F* by comparing F' with F'*. Finally we provide the vertices
V\ V(F*) as the set with the minimum total weight that are removed from G.

By Lemma 3, it is sufficient to consider the described subsets X. Since every induced
subgraph of G — X contains at most two connected components, Lemma 2 implies that

all possible subsets A; or (Ap, As) with the described properties are enough to consider.

Thus, the correctness follows from Lemmata 3-5. Regarding the running time, notice that
whether a graph contains an S-cycle can be tested in linear time. Thus we can construct all
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described and valid subsets in n®() time. Therefore the total running time of the algorithm
O since each of the algorithms given in Lemma 4 and Lemma 5, respectively, requires
polynomial time. |

isn

Let us now show that extending Theorem 6 to graphs of larger independent sets is
not possible. More precisely, with the following result we show that WEIGHTED SUBSET
FEEDBACK VERTEX SET is para-NP-complete parameterized by «(G).

» Theorem 7. WEIGHTED SUBSET FEEDBACK VERTEX SET is NP-complete on graphs of
independent set of size at most 4.

Proof. We will provide a polynomial reduction from the VERTEX COVER problem on
tripartite graphs which is NP-complete [17] and asks whether a tripartite graph G contains
a vertex cover of weight at most k. Let G = (A, B, C, E) be a tripartite graph on n vertices,
where (4, B, C) is the partition of V(G). We construct a weighted graph G’ from G in
polynomial time as follows.

We turn the three independent sets A, B and C' into cliques by adding all necessary edges
and we give all vertices unary weight.

We add a vertex r4 that is adjacent to all of the vertices of A and we assign weight n to
r4. In a completely symmetric way, we add vertices rg and r¢o with respect to the sets
B and C| respectively.

We add a vertex s that is adjacent to all three vertices r4,rp, r¢c having weight n.
This completes the construction of G'. Observe that all vertices of V(G') \ {s,74,7r5,7c}
have weight equal to one. It is not difficult to verify that the constructed graph G’ is a graph
having an independent set at most 4, since the vertex set of G’ — {s} can be partitioned into
three cliques.

Next we claim that G has a vertex cover U of weight at most k& < n if and only if G’ with
S = {s} has a subset feedback vertex set of weight at most k. Assume a vertex cover U of G.
By definition, U covers all edges of G, so that G[(AU BUC)\ U] is an independent set. This
means that G’'[(AU BUC) \ U] is a vertex-disjoint union of cliques. Since s is non-adjacent
to any vertex of G and G'[r4,rp, 7] is an independent set, every cycle of G’ — U contains
a vertex of r4,rp and r¢o with at least two vertices from A, B and C, respectively. Thus,
G’ — U is a connected S-forest. Therefore, U is a subset feedback vertex set of (G', {s}) of
size at most k.

For the opposite direction, assume a subset feedback vertex set F of (G',{s}). If F is
not a subset of AU B U C, then its sum of weights is greater or equal to n. Then F' is not a
minimum subset feedback vertex set of (G’, {s}), since AU B U C minus a single vertex is
trivially a subset feedback vertex set of (G’, {s}) of total weight n — 1. Thus F is indeed a
subset of AU B UC'. Assume that F is not a vertex cover of G. By definition, there is an
edge of G that remains uncovered. Without loss of generality, assume that this edge has its
endpoints on the vertices © € A and y € B. Then (s,r4,2,y,7p) is an induced cycle of G’,
which contradicts the fact that I is a subset feedback vertex set of (G, {s}). Therefore F' is
a vertex cover of G. <

We stress that Theorem 7 further implies that the NP-completeness result carries along
to graphs of clique cover number at most four, since the constructed graph given in the proof
can be partitioned into four disjoint cliques.
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4 SFVS on Graphs of Bounded Independent Set

Here we show that despite the complexity dichotomy result for the WEIGHTED SUBSET
FEEDBACK VERTEX SET, whenever the weights of the vertices are equal SUBSET FEEDBACK

VERTEX SET can be solved in polynomial time on graphs of bounded independent set number.

» Theorem 8. SUBSET FEEDBACK VERTEX SET on graphs of independent set of size at

most d can be solved in time n®@

Proof. Let G = (V, E) be a graph with o(G) < d and let S C V. Denote by X C V a

minimum subset feedback vertex set of G. Let FF = G — X be a maximum S-forest of G.

By Observation 1 (2), the vertices of S that belong to F' are at most 2d. Thus for every
optimum solution X, the set S\ X has at most 2d vertices.

Now we claim that it is enough to try guessing all subsets X’ of X for which |X’| < 2d.

To see this, observe that if X \ S has order more than 2d, then G — S has more vertices
than G — X, leading to a contradiction to the optimality of X. Hence, X \ S has at most
2d vertices. In order to find an optimal solution, it suffices to consider all such candidates
S’ for S\ X and X’ for X \ S. To check whether an induced subgraph of G consists an
S-forest takes O(n + m) time. Since the number of such sets S’ is at most n?? and the
number of the considered sets X' is at most n??, the total running time is bounded by n
Therefore in time n°@ we compute a minimum subset feedback vertex set showing the
claimed result. |

Regarding the dependence of the exponent in the running time of the algorithm given
in Theorem 8, note that we can hardly avoid this fact, since FEEDBACK VERTEX SET is
W/1]-hard parameterized by the independent set number as explicitly given in [24]. At the
same time such an observation follows from the W[1]-hardness result from the construction
given in [22] with respect to the maximum induced matching width. In the full version of this
extended abstract [32], we provide a different and simpler reduction from the MULTICOLORED
INDEPENDENT SET problem [14, 33] which shows an interesting connection with graphs of
bounded independent set size.

5 Extending to other Terminal Set Problems

Let us now consider further terminal set problems that are related to SUBSET FEEDBACK
VERTEX SET. In these type of problems we are given a graph G = (V, E), a terminal set
T C V, and a nonnegative integer k and the goal is to find a set X C V with |X| < k which
intersects all “structures” (such as cycles or paths) passing through the vertices in 7' [6]. In
this setting, SUBSET FEEDBACK VERTEX SET is a particular terminal set problem when
the objective structure is a cycle. We show that the ideas that we developed for SUBSET
FEEDBACK VERTEX SET on graphs of bounded independent set size, can be extended to
further terminal set problems when the objective structure is a path instead of a cycle.
The (unweighted) NODE MULTIWAY CUT problem is concerned with finding a set
X CV\T of size at most k such that any path between two different terminals intersects
X. Notice that in this problem we are not allowed to remove any terminal. For graphs
having bounded independent set size, we completely characterize the complexity of NODE
MuLTiwAYy CUT. In particular, for a(G) = 3 we can adopt the reduction given in Theorem 7.

» Theorem 9. Let G be a graph of independent set of size at most d. If d < 2 then
NODE MULTIWAY CUT can be solved on time n®®) . Otherwise, NODE MULTIWAY CUT is
NP-complete on graphs of independent set of size at most 3.

O(d)_
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Due to the difficulty of NODE MULTIWAY CUT even for the unweighted version and
with small independent set number, we consider a relaxed variation in which we are allowed
to remove terminal vertices. The NODE MULTIWAY CUT WITH DELETABLE TERMINALS
problem seeks for a solution X with X C V (instead of X C V' \ T'). Next we show that the
(unweighted) NODE MULTIWAY CUT WITH DELETABLE TERMINALS problem can be solved
in polynomial time on graphs of bounded independent set number, using an idea similar to
the one given in Theorem 8.

» Theorem 10. NoDE MuLTIWAY CUT WITH DELETABLE TERMINALS on graphs of inde-
pendent set of size at most d can be solved in time n®(@®

Proof. Let (G, T, k) be an instance of NODE MULTIWAY CUT WITH DELETABLE TERMINALS
where G is a graph having independent set size at most d. Observe that every solution X
has size at most |T'|. Assume first that |T| < d. Then we can enumerate all subsets having

o(T)

at most |T| vertices in time n and pick the smallest subset that separates all terminals.

Thus in time n®@ we output a valid solution X, if it exists.

Next assume that d < |T'|. We consider the graph G[T]. As an induced subgraph of G,
GI[T] has independent set size at most d. Thus, G[T] contains at least one edge. If both
endpoints of an edge in G[T] do not belong to solution X, then there is a path between
terminal vertices. This means that there is a vertex cover U of G[T] such that U C X. To
compute such a set U, we enumerate all independent sets T" C T of size at most d in time
|T|°(4) and construct U = T'\ T". For each constructed U, we consider the graph G’ = G —U
with terminals T”. Since T” is an independent set in G’, we know that |T7| < d. Thus in
time nCUT'D we can compute a set X’ of minimum size such that all terminals of G’ — X’
are separated. Therefore, the total running time is bounded by |T|°(® . n@UT'D which is
bounded by n®@ | because |T| < n and |T’| < d. <

Let us also stress that we can hardly avoid the dependence of the exponent in the running
time given in Theorem 10. This comes from the fact that NODE MULTIWAY CUT WITH
DELETABLE TERMINALS with 7' = V(G) is equivalent to asking whether the graph contains
an independent set of size at least k. That is, we have to solve the INDEPENDENT SET which
is known to be W[1]-hard parameterized by the size of the independent set [12].

Regarding the node-weighted variant of NODE MULTIWAY CUT WITH DELETABLE
TERMINALS, we provide a dichotomy result with respect to a(G). In fact, for a(G) < 2
we can invoke the algorithm for the WEIGHTED SUBSET FEEDBACK VERTEX SET given in
Theorem 6, by adding a new vertex with a large weight that is adjacent to all terminals.
Moreover, due to its close connection to the NODE MuLTIiwAy CuUT, for a(G) > 2 we can
assign appropriate weights to the terminals in a way that they become undeletable.

» Theorem 11. Let G be a graph of independent set of size at most d. If d < 2 then
WEIGHTED NODE MULTIWAY CUT WITH DELETABLE TERMINALS can be solved in time
nPW . Otherwise, WEIGHTED NODE MULTIWAY CUT WITH DELETABLE TERMINALS is
NP-complete on graphs of independent set of size at most 3.

6 Concluding Remarks

Despite the fact that the WEIGHTED SUBSET FEEDBACK VERTEX SET is NP-complete on
graphs with bounded independent set number, it is still interesting to settle the complexity
of SUBSET FEEDBACK VERTEX SET on graphs of maximum induced matching width by
extending the approach given in [23]. Moreover, FEEDBACK VERTEX SET is known to be
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polynomially-time solvable on cocomparability graphs [28], and, more generally, on AT-free
graphs [26]. To our knowledge, SUBSET FEEDBACK VERTEX SET has not been studied on
such graphs, besides the existence of a fast exponential-time algorithm for the unweighted
variant of the problem [6]. Furthermore, Theorem 9 shows that NODE MurLTiwAy CUT
remains NP-complete on graphs having maximum induced matching three. However, on
graphs of bounded maximum induced matching the complexity of NODE MULTIWAY CUT
WITH DELETABLE TERMINALS is still unknown.
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