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Abstract
In this paper we consider the Target Set Selection problem. The problem naturally arises
in many fields like economy, sociology, medicine. In the Target Set Selection problem one
is given a graph G with a function thr : V (G) → N ∪ {0} and integers k, `. The goal of the
problem is to activate at most k vertices initially so that at the end of the activation process
there is at least ` activated vertices. The activation process occurs in the following way: (i) once
activated, a vertex stays activated forever; (ii) vertex v becomes activated if at least thr(v) of its
neighbours are activated. The problem and its different special cases were extensively studied
from approximation and parameterized points of view. For example, parameterizations by the
following parameters were studied: treewidth, feedback vertex set, diameter, size of target set,
vertex cover, cluster editing number and others.

Despite the extensive study of the problem it is still unknown whether the problem can be
solved in O∗ ((2− ε)n) time for some ε > 0. We partially answer this question by presenting
several faster-than-trivial algorithms that work in cases of constant thresholds, constant dual
thresholds or when the threshold value of each vertex is bounded by one-third of its degree. Also,
we show that the problem parameterized by ` is W[1]-hard even when all thresholds are constant.
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1 Introduction

In this paper we consider the Target Set Selection problem. In the problem one is given
a graph G with a function thr : V (G)→ N∪ {0} (a threshold function), and two integers k, `.
The question of the problem is to find a vertex subset S ⊆ V (G) (a target set) such that
|S| ≤ k and if we initially activate S then eventually at least ` vertices of G become activated.
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The activation process is defined by the following two rules: (i) if a vertex becomes activated
it stays activated forever; (ii) vertex v becomes activated if either it was activated initially
or at some moment there is at least thr(v) activated vertices in the set of its neighbours
N(v). Often in the literature by Target Set Selection people refer to the special case of
Target Set Selection where ` = |V (G)|, i.e. where we need to activate all vertices of the
graph. We refer to this special case as Perfect Target Set Selection.

Target Set Selection problem naturally arises in such areas as economy, sociology,
medicine. Let us give an example of a scenario [24, 6] under which Target Set Selection
may arise in the marketing area. Often people start using some product when they find out
that some number of their friends are already using it. Keeping this in mind, it is reasonable
to start the following advertisement campaign of a product: give out the product for free to
some people; these people start using the product, and then some friends of these people
start using the product, then some friends of these friends and so on. For a given limited
budget for the campaign we would like to give out the product in a way that eventually we
get the most users of the product. Or we may be given the desired number of users of the
product and we would like to find out what initial budget is sufficient. It is easy to see that
this situation is finely modelled by the Target Set Selection problem.

The fact that Target Set Selection naturally arises in many different fields leads
to a situation that the problem and its different special cases were studied under different
names: Irreversible k-Conversion Set [10, 16], P3-Hull Number [3], r-Neighbour
Bootstrap Percolation [4], (k, `)-Influence [5], monotone dynamic monopolies [27], a
generalization of Perfect Target Set Selection on the case of oriented graphs is known
as Chain Reaction Closure and t-Threshold Starting Set [1]. In [10], Centeno et al.
showed that Perfect Target Set Selection is NP-hard even when all threshold values
are equal to two.

There is an extensive list of results on Target Set Selection from parameterized and
approximation point of view. Many different parameterizations were studied in the literature
such as size of the target set, treewidth, feedback vertex set, diameter, vertex cover, cluster
editing number and others (for more details, see Table 1). Most of these studies consider
the Perfect Target Set Selection problem, i.e. the case where ` = |V (G)|. However,
FPT membership results for parameters treewidth [6] and cliquewidth [23] were given for the
general case of Target Set Selection. From approximation point of view, it is known
that the minimization version (minimize the number of vertices in a target set for a fixed
`) of the problem is very hard and cannot be approximated within O(2log1−ε n) factor for
any ε > 0, unless NP ⊆ DTIME(npolylog(n)). This inappoximability result holds even for
graphs of constant degree with all thresholds being at most two [11]. Also, the maximization
version of the problem (maximize the number of activated vertices for a fixed k) is NP-hard
to approximate within a factor of n1−ε for any ε > 0 [24].

Taking into account many intractability results for the problem, it is natural to ask
whether we can beat a trivial brute-force algorithm for this problem or its important subcase
Perfect Target Set Selection. In other words, can we construct an algorithm with
running time O∗ ((2− ε)n) for some ε > 0. Surprisingly, the answer to this question is
still unknown. Note that the questions whether we can beat brute-force naturally arise in
computer science and have significant theoretic importance. Probably, the most important
such question is SETH hypothesis which informally can be stated as:

I Hypothesis 1 (SETH). There is no algorithm for SAT with running time O∗ ((2− ε)n)
for any ε > 0.

Another example of such question is the following hypothesis:
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Table 1 Some known results on different parameterizations of Perfect Target Set Selection.
In the Thresholds column we indicate restrictions on the threshold function under which the results
were obtained. Here t denotes the maximum threshold value.

Parameter Thresholds Result Reference
Bandwidth b general O∗

(
bO(b log b)) Chopin et al. [12]

Clique Cover Number c general NP-hard for c = 2 Chopin et al. [12]
Cliquewidth cw constant O∗

(
(cw · t)O(cw·t)) Hartmann [23]

Cluster Editing Number ζ general O∗
(
16ζ
)

Nichterlein et al. [26]
Diameter d general NP-hard for d = 2 Nichterlein et al. [26]

Feedback Edge Set Number f general O∗
(
4f
)

Nichterlein et al. [26]
Feedback Vertex Set Number general W[1]-hard Ben-Zwi et al. [6]
Neighborhood Diversity nd majority O∗

(
ndO(nd)) Dvořák et al. [17]

general W[1]-hard Dvořák et al. [17]

Target Set Size k constant W[P]-complete Abrahamson et al. [1],
Bazgan et al. [5]

Treewidth w constant O∗
(
tO(w logw)) Ben-Zwi et al. [6]

majority W[1]-hard Chopin et al. [12]
Vertex Cover Number τ general O∗

(
2(2τ+1)·τ) Nichterlein et al. [26]

I Hypothesis 2. [29] For every hereditary graph class Π that can be recognized in polynomial
time, the Maximum Induced Π-Subgraph problem can be solved in O∗ ((2− ε)n) time for
some ε > 0.

There is a significant number of papers [9, 28, 19, 18, 14, 30, 22, 13, 15, 7, 20] with the
main motivation to present an algorithm faster than the trivial one.

As in the stated hypotheses and mentioned papers, our goal is to come up with an
algorithm that works faster than brute-force. We partially answer this question by presenting
several O∗ ((2− ε)n) running time algorithms for Target Set Selection when thresholds,
i.e. the values of thr(v), are bounded by some fixed constant and in case when the values
of thr(v)− deg(v), so-called dual thresholds, are bounded by some fixed constant for every
v ∈ V (G). We think that this result may be interesting mainly because of the following two
reasons. Firstly, the result is established for a well-studied problem with many applications
and hence can reveal some important combinatorial or algorithmic structure of the problem.
Secondly, maybe by resolving the asked question we could make progress in resolving
hypotheses 1, 2.

Our results. In this paper, we establish the following algorithmic results.
Perfect Target Set Selection can be solved in
O∗ (1.90345n) if for every v ∈ V (G) we have thr(v) ≤ 2;
O∗ (1.98577n) if for every v ∈ V (G) we have thr(v) ≤ 3;
O∗ ((2− εd)n) randomized time if for every v ∈ V (G) we have thr(v) ≥ deg(v)− d.

Target Set Selection can be solved in
O∗ (1.99001n) if for every v ∈ V (G) we have thr(v) ≤ ddeg(v)

3 e;
O∗ ((2− εt)n) if for every v ∈ V (G) we have thr(v) ≤ t.

We also prove the following lower bound.
Target Set Selection parameterized by ` is W[1]-hard even if
thr(v) = 2 for every v ∈ V (G).

IPEC 2018
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2 Preliminaries

2.1 Notation and problem definition

We use standard graph notation. We consider only simple graphs, i.e. undirected graphs
without loops and multiple edges. By V (G) we denote the set of vertices of G and by E(G)
we denote the set of its edges. We let n = |V (G)|. N(v) denotes the set of neighbours of
vertex v ∈ V (G), and N [v] = N(v) ∪ {v}. ∆(G) = maxv∈V (G) deg(v) denotes the maximum
degree of G. By G[F ] we denote the subgraph of G induced by a set F of its vertices. Define
by degF (v) the degree of v in the subgraph G[F ].

By X1 tX2 t . . . tXm we denote the disjoint union of sets X1, X2, . . . , Xm, i.e. X1 t
X2 t . . . tXm = X1 ∪X2 ∪ . . . ∪Xm with the additional restriction that Xi ∩Xj = ∅ for
any distinct i, j.

For a graph G, threshold function thr and X ⊆ V (G) we put S0(X) = X and for every
i > 0 we define Si(X) = Si−1(X) ∪ {v ∈ V (G) : |N(v) ∩ Si−1(X)| ≥ thr(v)}. We say that
v becomes activated in the ith round, if v ∈ Si(X) \ Si−1(X), i.e. v is not activated in the
(i − 1)th round and is activated in the ith round. By activation process yielded by X we
mean the sequence S0(X),S1(X), . . . ,Si(X), . . . ,Sn(X). Note that Sn(X) = Sn+1(X) as
Si(X) ⊆ Si+1(X) and n rounds is always enough for the activation process to converge. By
S(X) we denote the set of vertices that eventually become activated, and we say that X
activates S(X) in (G, thr). Thus, S(X) = Sn(X).

We recall the definition of Target Set Selection.

Target Set Selection
Input: A graph G with thresholds thr : V (G)→ N ∪ {0}, integers

k, `.
Question: Is there a set X ⊆ V (G) such that |X| ≤ k and |S(X)| ≥ `?

We call a solution X of Target Set Selection a target set of (G, thr).
By Perfect Target Set Selection we understand a special case of Target Set

Selection with ` = n. We call X a perfect target set of (G, thr), if it activates all vertices
of G, i.e. S(X) = V (G).

Most of the algorithms described in this paper are recursive algorithms that use branching
technique. Such algorithms are described by reduction rules, that are used to simplify a
problem instance, and branching rules, that are used to solve an instance by recursively
solving smaller instances. If a branching rule branches an instance of size n into r instances
of size n− t1, n− t2, . . . , n− tr, we call (t1, t2, . . . , tr) a branching vector of this branching
rule. By a branching factor of a branching rule we understand a constant c that is a solution
of a linear reccurence corresponding to some branching vector of this rule; such constants
are used to bound the running time of an algorithm following the rule with cn. Note that a
branching rule may have multiple corresponding branching vectors and multiple corresponding
branching factors. By the worst branching factor of a branching rule (or multiple branching
rules, if they are applied within the same algorithm) we understand the largest among its
branching factors. We refer to [21] for a more detailed explanation of these aspects.

In our work we also use the following folklore result.

I Lemma 1. For any positive integer n and any α such that 0 < α ≤ 1
2 , we have

bαnc∑
i=0

(
n
i

)
≤

2H(α)n, where H(α) = −α log2(α)− (1− α) log2(1− α).
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Algorithm: minimal_pvcs(G,F,A,Z)
Input: Graph G with ∆(G) < t, vertex subsets F,A,Z such that F tAtZ = V (G).
Output: All minimal partial vertex covers S of G such that S ∩ (A t Z) = A.

if ∃v : N [v] ⊆ F then
foreach R ( N [v] do

minimal_pvcs(G,F \N [v], A tR,Z t (N [v] \R))

else
foreach R ⊆ F do

if A tR is a minimal partial vertex cover of G then
output A tR

Figure 1 Algorithm enumerating all minimal partial vertex covers of a graph.

2.2 Minimal partial vertex covers
I Definition 2. Let G be a graph. We call a subset S ⊆ V (G) of its vertices a T -partial
vertex cover of G for some T ⊆ E(G), if the set of edges covered by vertices in S is exactly
T , i.e. T = {uv : {u, v} ∩ S 6= ∅, uv ∈ E(G)}.

We call a T -partial vertex cover S of G a minimal partial vertex cover of G if there is no
T -partial vertex cover S′ of G with S′ ( S. Equivalently, there is no vertex v ∈ S so that
S \ {v} is a T -partial vertex cover of G.

The following theorem bounds the number of minimal partial vertex covers in graphs of
bounded degree. We note that somewhat similar results were proven by Björklund et al. [8].

I Theorem 3. For any positive integer t, there is a constant ωt < 1 and an algorithm that,
given an n-vertex graph G with ∆(G) < t as input, outputs all minimal partial vertex covers
of G in O∗ (2ωtn) time.

Proof. We present a recursive branching algorithm that lists all minimal partial vertex covers
of G. Pseudocode of the algorithm is presented in Figure 1. As input, the algorithm takes
three sets F,A,Z such that F tAtZ = V (G). The purpose of the algorithm is to enumerate
all minimal partial vertex covers that contain A as a subset and do not intersect with Z. So
the algorithm outputs all minimal partial vertex covers S of G satisfying S ∩ (A t Z) = A.
It easy to see that then minimal_pvcs(G,V (G), ∅, ∅) enumerates all minimal partial vertex
covers of G.

The algorithm uses only the following branching rule. If there is a vertex v ∈ F such
that N(v) ⊆ F then consider 2|N [v]| − 1 branches. In each branch, take some R ( N [v] and
run minimal_pvcs(G,F \N [v], A tR,Z t (N [v] \R)). In other words, we branch on which
vertices in N [v] belong to minimal partial vertex cover and which do not. Note that if S
is a minimal partial vertex cover then it cannot contain N [v], since otherwise S \ {v} is its
proper subset and covers the same edges. Hence, above branching consider all possible cases.
Since ∆(G) < t, the worst branching factor is (2t − 1) 1

t .
If the branching rule cannot be applied then we apply brute-force on all possible variants

of the intersection of the minimal partial vertex cover S and the set F . So we consider all
2|F | variants of S ∩ F , and filter out variants that do not correspond to a minimal partial
vertex cover. Minimality of a partial vertex cover can be checked in polynomial time, so
filtering out adds only a polynomial factor.

IPEC 2018
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Note that we run brute-force only if every vertex in F has at least one neighbour in AtZ,
in other words, A t Z is a dominating set of G. Since ∆(G) < t, any dominating set of G
consists of at least n

t vertices. Hence, |F | ≤ (t−1)n
t . This leads to the following upper bound

on the running time of the algorithm:((
2t − 1

) 1
t

)n
t

· 2
(t−1)n

t · nO(1).

Hence, we can put ωt = 1
t2 log (2t − 1) + t−1

t < 1. J

3 Algorithms for bounded thresholds

3.1 Algorithm for thresholds bounded by fixed constant
In this subsection we prove the following theorem.

I Theorem 4. Let t be a fixed constant. For Target Set Selection with all thresholds
bounded by t there is a O∗ ((2− εt)n)-time algorithm, where εt is a positive constant that
depends only on t.

Our algorithm consists of three main stages. In the first stage we apply some simple
reduction and branching rules. If the instance becomes small enough we then apply brute-
force and solve the problem. Otherwise, we move to the second stage of the algorithm. In
the second stage we perform branching rules that help us describe the activation process.
After that we move to the third stage in which we run special dynamic program that finally
solves the problem for each branch. Let us start the description of the algorithm.

3.1.1 Stage I
In the first stage our algorithm applies some branching rules. In each branch we maintain the
following partition of V (G) into three parts A,Z, F . These parts have the following meaning:
A is the set of vertices that are known to be in our target set, Z — the set of vertices that
are known to be not in the target set, F — the set of all other vertices (i.e. vertices about
that we do not know any information so far). At the beginning, we have A = Z = ∅ and
F = V (G).

We start the first stage with exhaustive application of reduction rule 1 and branching
rule 1.

I Reduction rule 1. If there is any vertex v ∈ S(A), but v /∈ A t Z, then assign v to Z.

Reduction rule 1 is correct as there is no need to put a vertex in a target set if it will
become activated eventually by the influence of its neighbours.

I Branching rule 1. If there is a vertex v ∈ F such that degF (v) ≥ thr(v) then arbitrarily
choose a subset T ⊆ N(v) ∩ F such that |T | = thr(v) and branch on the following branches:
1. For each subset of vertices S ⊆ T ∪{v} of size less than thr(v) consider a branch in which

we put S into A and we put other vertices T ∪ {v} \ S into Z;
2. Additionally consider the branch in which we assign all vertices from T to A and v is

assigned to Z.

It is enough to consider only above-mentioned branches. All other possible branches
assign at least thr(v) vertices from T ∪ {v} to A, and we always can replace such branch
with the branch assigning T to A, since it leads to the activation of all vertices in T ∪ {v}
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and adds at most the same number of vertices into a target set. Branching rule 1 considers
2thr(v)+1− thr(v)− 1 options for thr(v) + 1 vertices, thus it gives the biggest branching factor
of (2t+1 − t− 1)

1
t+1 (here and below t = maxv∈V (G) thr(v)).

I Branching rule 2. If |F | ≤ γn, where γ is a constant to be chosen later, then simply apply
brute-force on how vertices in F should be assigned to A and Z.

If branching rule 2 is applied in all branches then the running time of the whole algorithm
is at most 2γn(2t+1− t− 1)

(1−γ)n
t+1 and we do not need to use stages II and III, as the problem

is already solved in this case.

3.1.2 Stage II
After exhaustive application of reduction rule 1 and branching rules 1 and 2, in each branch
we either know the answer or we have the following properties:
1. ∆(G[F ]) < t;
2. |F | > γn;
3. S(A) ⊆ A t Z.

Now, in order to solve the problem it is left to identify the vertices of a target set that
belong to F . It is too expensive to consider all 2|F | subsets of F as F is too big. Instead of
this direct approach (brute-force on all subsets of F ) we consider several subbranches. In
each such branch we almost completely describe the activation process of the graph. For
each branch, knowing this information about the activation process, we find an appropriate
target set by solving a special dynamic program in stage III.

Let X be an answer (a target set). X can be expressed as X = AtB where B ⊆ F . At the
beginning of the activation process only vertices in S0(X) = X = AtB are activated, after the
first round vertices in S1(AtB) are activated, and so on. It is clear that S(AtB) = Sn(AtB).
Unfortunately, we cannot compute the sequence of Si(A tB) as we do not know B. Instead
we compute the sequence P0, P1, . . . , Pn = P such that Pi \ B = Si(X) \ B and Pi ⊆ Pi+1
for any i.

First of all, using Theorem 3 we list all minimal partial vertex covers of the graph G[F ].
For each minimal partial vertex cover C we create a branch that indicates that C ⊆ B and,
moreover, C covers exactly the same edges in G[F ] as B does. In other words, any edge in
G[F ] has at least one endpoint in B if and only if it has at least one endpoint in C. Note
that such C exists for any B. One can obtain C by removing vertices from B one by one
while it covers the same edges as B. When no vertex can be removed, then, by definition,
the remaining vertices form a minimal partial vertex cover.

Put P0 = A t C. It is correct since S0(X) \B = A = P0 \B. We now show how to find
Pi+1 having Pi. Recall that to do such transition from Si(X) to Si+1(X) it is enough to find
vertices with the number of neighbours in Si(X) being at least the threshold value of that
vertex. As for Pi and Pi+1, it is sufficient to check that the number of activated neighbours
has reached the threshold only for vertices that are not in B. Thus any transition from Pi to
Pi+1 can be done by using a procedure that, given Pi and any vertex v /∈ Pi, checks whether
v becomes activated in the (i+ 1)th round or not, under the assumption that v /∈ B.

Given Pi it is not always possible to find a unique Pi+1 as we do not know B. That is
why in such cases we create several subbranches that indicate potential values of Pi+1.

Let us now show how to, for each vertex v /∈ Pi, figure out whether v is in Pi+1 (see
pseudocode in Figure 2). Since we know Pi and Pi ⊆ Pi+1, we assume that v /∈ Pi.

If |N(v) ∩ Pi| ≥ thr(v) then we simply include v in Pi+1. We claim that this check is
enough for v ∈ F .

IPEC 2018
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I Claim 1. If v ∈ F \B, then v becomes activated in the ith round if and only if |N(v)∩Pi| ≥
thr(v).

Proof. We show that by proving that Si(X) ∩N(v) = Pi ∩N(v) for every v ∈ F \B. Note
that Si(X)\B = Pi \B by definition of Pi. So it is enough to prove that Si(X)∩N(v)∩B =
Pi ∩N(v)∩B, which is equivalent to N(v)∩B = Pi ∩N(v)∩B, as B ⊆ Si(X). Since v /∈ B,
then any uv ∈ E(G[F ]) is covered by B if and only if u ∈ B. C covers the same edges in
G[F ] as B does, and also v /∈ C, hence C ∩N(v) = B ∩N(v). Thus, since C ⊆ P0 ⊆ Pi, we
get Pi ∩B ∩N(v) = Pi ∩ C ∩N(v) = C ∩N(v) = B ∩N(v). J

If v ∈ B, the decision for v does not matter. Thus if v ∈ F and |N(v) ∩ Pi| < thr(v), we
may simply not include v in Pi+1.

If v ∈ Z, at this point, we cannot compute the number of activated neighbours of v
exactly as we do not know what neighbours of v are in B. Note that we do not need the
exact number of such neighbours if we know that this value is at least thr(v). Thus we
branch into thr(v) + 1 subbranches corresponding to the value of min{|N(v) ∩B|, thr(v)},
from now on we denote this value as dg(v).

On the other hand, we know all activated neighbours of v that are in V (G) \ F since
Si(X)∩ (V (G) \F ) = Pi ∩ (V (G) \F ), as B ⊆ F . Let this number be m = |N(v)∩ (Pi \F )|.
So the number of activated neighbours of v is at least m+ dg(v). Also there may be some
activated neighbours of v in N(v) ∩ Pi ∩ F . However, we cannot simply add |N(v) ∩ Pi ∩ F |
to m+ dg(v) since vertices in Pi ∩B will be computed twice. So we are actually interested
in the value of |(N(v) ∩ Pi ∩ F ) \B|. That is why for vertices from N(v) ∩ Pi ∩ F we simply
branch whether they are in B or not. After that we compare m+dg(v)+ |(N(v)∩Pi∩F )\B|
with thr(v) and figure out whether v becomes activated in the current round or not.

Note that once we branch on the value of min{|N(v) ∩B|, thr(v)}, or on whether v ∈ B
or not for some v, we will not branch on the same value or make a decision for the same
vertex again as it makes no sense. Once fixed, the decision should not change along the whole
branch and all of its subbranches, otherwise the information about B would just become
inconsistent.

Let us now bound the number of branches created. There are three types of branchings
in the second stage:
1. Branching on the value of the minimal partial vertex cover C. By Theorem 3, there is at

most O∗
(
2ωt|F |

)
such branches.

2. Branching on the value of dg(v) = min{|N(v) ∩B|, thr(v)} with v ∈ Z. There is at most
(t+ 1)|Z| such possibilities since t ≥ min{|N(v) ∩B|, thr(v)} ≥ 0.

3. Branching on whether vertex u is in B or not. We perform this branching only for vertices
in the set N(v) ∩ Pi ∩ F with v ∈ Z only when its size is strictly smaller than thr(v) ≤ t.
Hence we perform a branching of this type on at most (t− 1)|Z| vertices.

Hence, the total number of the branches created in stage II is at most

2ωt|F | · (t+ 1)|Z| · 2(t−1)|Z| · nO(1).

3.1.3 Stage III
Now, for each branch our goal is to find the smallest set X which activates at least ` vertices
and agrees with all information obtained during branching in a particular branch. That is,

A ⊆ X,Z ∩X = ∅ (branchings made in stage I);
C ⊆ X (branching of the first type in stage II);
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Algorithm: is_activated(G, thr, A, Z, F, Pi, v)
Input: G, thr, A, Z, F as usual, Pi such that Pi \B = Si(AtB) \B for some B, and

a vertex v /∈ Pi.
Output: True, if v /∈ B and v ∈ Si+1(A tB);

False, if v /∈ B and v /∈ Si+1(A tB);
any answer, otherwise.

if |N(v) ∩ Pi| ≥ thr(v) then
return True

else if v ∈ F then
return False

m←− |N(v) ∩ (Pi \ F )|
branch on the value of dg(v) = min {|N(v) ∩B|, thr(v)}
m←− m+ dg(v)
foreach u ∈ Pi ∩N(v) ∩ F do

branch on whether u ∈ B
if u /∈ B then

m←− m+ 1

return m ≥ thr(v)

Figure 2 Procedure determining whether a vertex becomes activated in the current round.

information about min{|N(v) ∩B|, thr(v)} (second type branchings in stage II);

additional information whether certain vertices belong to X or not (third type branchings
in stage II).

From now on we assume that we are considering some particular branching leaf. Let A′
be the set of vertices that are known to be in X for a given branch and Z ′ be the set of
vertices known to be not in X (note that A ⊆ A′ and Z ⊆ Z ′). Let Z = {v1, v2, . . . , vz}
and F ′ = V (G) \A′ \ Z ′ = {u1, u2, . . . , uf ′}. So actually it is left to find B′ ⊆ F ′ (in these
new terms, B = (A′ \ A) t B′) such that |A′ t B′| ≤ k, |P ∪ A′ ∪ B′| ≥ ` and for each
i ∈ {1, 2, . . . , z} the value min{thr(vi), |N(vi) ∩ B|} equals dg(vi). This is true since the
information obtained during branching completely determines the value of P .

In order to solve the obtained problem we employ dynamic programming. We create
a table TS of size f ′ × ` × (t + 1)z. For all B′1 such that |(B′1 ∪ P ) ∩ {u1, u2, . . . , ui}| = p

and min{thr(vj), |N(vj) ∩ ((A′ \ A) t B′1)|} = dj , in the field TS(i, p, d1, d2, . . . , dz) we
store any set B′2 of minimum size such that A′ t B′1 t B′2 is a potential solution, i.e.
|S(A′ tB′1 tB′2)| = |(P ∪B′1 ∪B′2)| = |P ∩ (V (G) \ F ′)|+ p+ |B′2| ≥ ` and for every j we
have min{thr(vj), |N(vj)∩ ((A′ \A)tB′1 tB′2)|} = min{thr(vj), |N(vj)∩B′2|+dj} = dg(vj).
Note that the choice of B′2 depends only on values i, p, d1, d2, . . . , dz, but not on the value
of B′1 directly. In other words, TS(i, p, d1, d2, . . . , dz) stores one of optimal ways of how the
remaining f ′− i vertices in F ′ should be chosen into B′ if the first i vertices in F ′ was chosen
correspondingly to the values of p and dj .

Note that for some fields in the TS table there may be no appropriate value of B′2 (there
is no appropriate solution). In such cases, we put the corresponding element to be equal to
V (G). It is a legitimate operation since we are solving a minimization problem. Note that
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the desired value of B′ will be stored as

TS(0, 0,min{|N(v1) ∩ (A′ \A)|, thr(v1)}, . . . ,min{|N(vz) ∩ (A′ \A)|, thr(vz)}).

We assign TS(f ′, p, dg(v1), dg(v2), . . . dg(vz)) = ∅ for every p such that p+ |P ∩ (V (G) \
F ′)| ≥ `. We do this since values p, dg(v1), dg(v2), . . . dg(vz) indicate that A′ tB′1 is already
a solution. In all other fields of type TS(f ′, ·, · · · , ·) we put the value of V (G). We now show
how to evaluate values TS(i, p, d1, d2, . . . , dz) for any i ≥ 0 smaller than f ′. We can evaluate
any TS(i, ·, ·, . . . , ·) in polynomial time if we have all values TS(i+1, ·, ·, . . . , ·) evaluated. For
each j ∈ {1, 2, . . . , z}, let di+1

j = min {thr(vj), dj + |N(vj) ∩ {ui+1}|}. In order to compute
TS(i, p, d1, d2, . . . , dz), we need to decide whether ui+1 is in a target set or not. If ui+1 is taken
into B′ then dj becomes equal to di+1

j for each j, if it is not, none of dj should change. Hence,
TS(i, p, 〈dj〉) = min

[
TS(i+ 1, p+ 1, 〈di+1

j 〉) ∪ {ui+1}, TS(i+ 1, p+ |P ∩ {ui+1}|, 〈dj〉)] .
Since 0 ≤ dj ≤ dg(vj) for any j, the TS table has O∗

(
(t+ 1)|Z|

)
fields. Each field of

the table is evaluated in polynomial time. So the desired B′ is found (hence, the solution is
found) in O∗

(
(t+ 1)|Z|

)
time for any branch fixed in stage II. Stages II and III together run

in 2ωt|F | · (t+ 1)|Z| · 2(t−1)|Z| · (t+ 1)|Z| · nO(1) time for any fixed subbranch of stage I.
Actually, the (t+ 1)2|Z| multiplier in the upper bound can be improved. Recall that it

corresponds to the number of possible variants of dg(vj) and the number of possible variants
of dj . However, note that dj ≤ dg(vj). So after each of dg(vj) is fixed in stage II, for dj
there is only dg(vj) + 1 options in stage III. Hence, each of the pairs (dj , dg(vj)) can be
presented only in

(
t+2

2
)
variants. This gives an improvement of the (t+ 1)2|Z| multiplier to a(

t+2
2
)|Z| multiplier. So, the upper bound on the running time in stages II and III becomes

O∗
(

2ωt|F | ·
(
t+2

2
)|Z| · 2(t−1)|Z|

)
.

We rewrite this upper bound in terms of n and |F |. Since |Z| ≤ n− |F |, the upper bound
is

2ωt|F | ·
(
t+ 2

2

)n−|F |
· 2(t−1)(n−|F |) · nO(1).

Now we are ready to choose γ. We set the value of γ so that computation in each branch
created at the end of stage I takes at most O∗ (2γn) time. Note that the upper bound on
the running time required for stages II and III increases while the value of |F | decreases.
So we can find γ as the solution of equation 2γn = 2ωtγn ·

(
t+2

2
)(1−γ)n · 2(t−1)(1−γ)n. Hence,

γ = (t−1)+log2 (t+2
2 )

(t−ωt)+log2 (t+2
2 ) < 1, as ωt < 1. So the overall running time is

2γn(2t+1 − t− 1)
(1−γ)n
t+1 · nO(1),

which is O∗ ((2− εt)n) for some εt > 0 since γ < 1.

3.2 Two algorithms for constant thresholds in the perfect case
Here, we present two algorithms for special cases of Perfect Target Set Selection with
thresholds being at most two or three. These algorithms use the idea that cannot be used in
the general case of Target Set Selection, so the running times of these algorithms are
significantly faster than the running time of the algorithm from the previous subsection. We
provide their full descriptions in the full version of our paper.

I Theorem 5. Perfect Target Set Selection with thresholds being at most two can be
solved in O∗ (1.90345n) time.
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I Theorem 6. Perfect Target Set Selection with thresholds being at most three can
be solved in O∗ (1.98577n) time.

3.3 Algorithm for thresholds bounded by one-third of degrees
Here, we prove the following.

I Theorem 7. Let G be a connected graph with at least three vertices. Assume that thr(v) ≤
ddeg(v)

3 e for every v ∈ V (G). Then there is a perfect target set of (G, thr) of size at most
0.45|V (G)|.

I Corollary 8. Target Set Selection with thresholds bounded by one-third of degree
rounded up can be solved in O∗ (1.99001n) time.

In our proofs we use a combinatorial model proposed by Ackerman et al. in [2]. We
provide these proofs in the full version of our paper.

4 Algorithm for bounded dual thresholds

Let (G, thr) be a graph with thresholds. By dual threshold of vertex v ∈ V (G) we understand
the value thr(v) = deg(v)− thr(v). In terms of dual thresholds, v becomes activated if it has
at most thr(v) not activated neighbours. For bounded dual thresholds we prove the following
theorem.

I Theorem 9. For any non-negative integer d, Perfect Target Set Selection with dual
thresholds bounded by d can be solved in O∗ ((2− εd)n) randomized time for some εd > 0.

This result follows from the result of Pilipczuk and Pilipczuk in [28], where they presented
an algorithm for the Maximum d-Degenerate Induced Subgraph problem with the
same running time. One may find the detailed proof in the full version of our paper.

5 Lower bounds

5.1 ETH lower bound
First of all, we show a 2o(n+m) lower bound for Perfect Target Set Selection, where
m denotes the number of edges in the input graph. We have not found any source that
claims this result. Thus, for completeness, we state it here. The result follows from the
reduction given by Centeno et al. in [10]. They showed a linear reduction from a special
case of 3-SAT, where each variable appears at most three times, to Perfect Target Set
Selection where thresholds are equal to two and maximum degree of the graph is constant.
Note that in their work they refer to the problem as IRR2-Conversion Set.

I Theorem 10. Perfect Target Set Selection cannot be solved in 2o(n+m) time unless
ETH fails, even when thresolds are equal to two and maximum degree of the graph is constant.

One can find the detailed proof in the full version of our paper.

5.2 Parameterization by `

We now look at Target Set Selection from parameterized point of view. In [5], Bazgan
et al. proved that Target Set Selection ` is W[1]-hard with respect to parameter `, when
all dual thresholds are equal to 0. This result also follows from the proof of W[1]-hardness
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of Cutting ` Vertices given by Marx in [25], with a somewhat different construction.
Inspired by his proof, we show that this result holds even when all thresholds are constant.

I Theorem 11. Target Set Selection parameterized by ` is W[1]-hard even when all
thresholds are equal to two.

Proof. Let (G, k) be an instance of the Clique problem. In order to provide the reduction,
we construct a graph G′ in which each vertex corresponds to a vertex or an edge of graph G
i.e. V (G′) = V (G) t E(G). We add edges in G′ between vertices corresponding to v ∈ V (G)
and e ∈ E(G) if and only if v and e are incident in G.

We will refer to the vertex in G′ corresponding to an edge e ∈ E(G) as ve ∈ V (G′). If a
vertex from G′ corresponds to a vertex u ∈ G we refer to it as vu. Slightly abusing notation
we will refer to the set of vertices in G′ corresponding to the vertices V (G) as V and to the
set of vertices corresponding to the edges E(G) as E, V t E = V (G′). Consider now an
instance of Target Set Selection for G′, with the same k, ` = k +

(
k
2
)
and all thresholds

equal to t = 2.
If G has a clique of size k, then selecting corresponding vertices as a target set of G′ leads

to activation of the vertices corresponding to the edges of the clique. Hence, k +
(
k
2
)
vertices

will be activated in total.
Let us now prove that if G′ has a target set of size at most k activating at least ` = k+

(
k
2
)

vertices, then G has a clique on k vertices. Let S be such target set of G′. Denote
by kv = |S ∩ V | the number of vertices in S corresponding to the vertices of G and by
ke = |S ∩ E| the number of vertices in S corresponding to the edges of G, kv + ke ≤ k.

Now, we show how to convert any target set S of size at most k activating at least k+
(
k
2
)

vertices into a target set S′ such that |S′| ≤ k, S′ ⊆ V and S′ activates at least k +
(
k
2
)

vertices.
Observe that if there is an edge u1u2 = e ∈ E(G) such that ve ∈ S and vu1 ∈ S then

S′ = S \ {ve} ∪ {vu2} also activates at least k +
(
k
2
)
vertices and the size of S′ is at most k.

Thus we can assume that if vu1u2 ∈ S, then vu1 , vu2 6∈ S.
Observe that any initially not activated vertex in E becomes activated only if all two of

its neighbours are activated. It means that any such vertex does not influence the activation
process in future. Hence, since G′ is bipartite, the activation process always finishes within
two rounds, and no vertex in V becomes activated in the second round.

Let V1 be the set of vertices of V that become activated by S in the first round, i.e.
V1 = S1(S) \ S0(S) ∩ V . Note that these vertices are activated directly by ke vertices in
S ∩ E. Let SE,i be the set of vertices in S ∩ E that have exactly i endpoints in V1. Denote
by ke,i the size of SE,i. Then we have ke,0 + ke,1 + ke,2 = ke. Note that if there is a vertex
in S ∩ E with no endpoints in V1 then one can replace it with any neighbour and size of S
will not change and it will activate at least the same number of vertices in G′. Thus we can
assume that ke,0 = 0.

We show that |V1| ≤ ke,1
2 + ke,2. Indeed, in order to be activated, any vertex from V1

requires at least two vertices from E to be in the target set. Each vertex from SE,i contributes
to exactly i vertices from V1, and the total number of contributions is ke,1 + 2ke,2. This
number should be at least 2|V1|. Hence, |V1| ≤ ke,1

2 + ke,2.
Consider S′ = S \ E ∪ V1 i.e. we replace all ke vertices from E with all vertices from V1.

Note that |S′| ≤ |S| − ke,1
2 . Vertices from SE,2 become activated in the first round since

all of them have two endpoints in S′. Thus S′ is now a target set of size not greater than
k − ke,1

2 activating at least `− ke,1 vertices in G′.
Note that any vertex from SE,1 can be activated by adding one more vertex to S′.

Consider set H = N(SE,1) \ V1. If |H| ≤ ke,1
2 then consider S1 = H ∪ S′. S1 compared to S′
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will additionally activate all vertices in SE,1. Note that S1 is a target set S of size at most k
activating at least ` vertices.

If |H| > ke,1
2 then construct S1 from S′ by simply adding ke,1

2 arbitrary vertices from H.
Each of these vertices will additionally activate at least one vertex corresponding to edge,
thus S1 is a target set of size at most k activating at least ` vertices.

We have shown how to transform any target set S activating at least k +
(
k
2
)
vertices

in G′ into a target set S1 such that S1 ⊆ V and S1 activates at least the same number of
vertices in G′. As we have shown earlier, no vertex in E \ S1 influence the activation process
after becoming activated. Then, since S1 ∩E = ∅, S1 activates only vertices in E in the first
round and the process finishes. Hence, if the instance for G′ has a solution, then G has a
clique of size k. J
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