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Abstract
We investigate the problem #IndSub(Φ) of counting all induced subgraphs of size k in a graph G
that satisfy a given property Φ. This continues the work of Jerrum and Meeks who proved
the problem to be #W[1]-hard for some families of properties which include, among others,
(dis)connectedness [JCSS 15] and even- or oddness of the number of edges [Combinatorica 17].
Using the recent framework of graph motif parameters due to Curticapean, Dell and Marx
[STOC 17], we discover that for monotone properties Φ, the problem #IndSub(Φ) is hard for
#W[1] if the reduced Euler characteristic of the associated simplicial (graph) complex of Φ is
non-zero. This observation links #IndSub(Φ) to Karp’s famous Evasiveness Conjecture, as every
graph complex with non-vanishing reduced Euler characteristic is known to be evasive. Applying
tools from the “topological approach to evasiveness” which was introduced in the seminal paper
of Khan, Saks and Sturtevant [FOCS 83], we prove that #IndSub(Φ) is #W[1]-hard for every
monotone property Φ that does not hold on the Hamilton cycle as well as for some monotone
properties that hold on the Hamilton cycle such as being triangle-free or not k-edge-connected
for k > 2. Moreover, we show that for those properties #IndSub(Φ) can not be solved in time
f(k) · no(k) for any computable function f unless the Exponential Time Hypothesis (ETH) fails.
In the final part of the paper, we investigate non-monotone properties and prove that #IndSub(Φ)
is #W[1]-hard if Φ is any non-trivial modularity constraint on the number of edges with respect
to some prime q or if Φ enforces the presence of a fixed isolated subgraph.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and
exact algorithms, Theory of computation → Problems, reductions and completeness, Mathemat-
ics of computing → Combinatorics, Mathematics of computing → Graph theory, General and
reference → General literature

Keywords and phrases counting complexity, Euler characteristic, homomorphisms, parameter-
ized complexity, simplicial complexes

Digital Object Identifier 10.4230/LIPIcs.IPEC.2018.24

Related Version https://arxiv.org/abs/1807.01920

Acknowledgements We are very grateful to Cornelius Brand, Radu Curticapean, Holger Dell
and Johannes Lengler for helpful advice and fruitful discussions. Furthermore we wish to point
out that Sloane’s OEIS [1] was very useful in the course of this work.

1 The second author was supported by the grants SNF-200020162928 and ERC-2017-AdG-786580-MACI.

© Marc Roth and Johannes Schmitt;
licensed under Creative Commons License CC-BY

13th International Symposium on Parameterized and Exact Computation (IPEC 2018).
Editors: Christophe Paul and Michał Pilipczuk; Article No. 24; pp. 24:1–24:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mroth@mmci.uni-saarland.de
mailto:johannes.schmitt@math.ethz.ch
https://doi.org/10.4230/LIPIcs.IPEC.2018.24
https://arxiv.org/abs/1807.01920
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


24:2 Counting Induced Subgraphs: A Topological Approach to #W[1]-hardness

1 Introduction

In their work about the parameterized complexity of counting problems [11] Flum and Grohe
introduced the parameterized analogue of the theory of computational counting as layed
out by Valiant in his seminal paper about the complexity of computing the permanent [28].
Since then parameterized counting has evolved into a well-studied subfield of parameterized
complexity theory. In particular, there has been remarkable progress in the classification of
problems that require to count small structures in large graphs. It turned out that many
families of such counting problems allow so-called dichotomy results, that is, every problem
in the family is either fixed-parameter tractable or hard for the class #W[1] — the counting
equivalent of W[1]. One result of that kind is the dichotomy for counting homomorphisms
[10, 13]. Here one is given a graph H from a class of graphs H and an arbitrary graph G and
the task is to compute the number of homomorphisms from H to G. When parameterized
by |H| this problem is fixed-parameter tractable if there exists a constant upper bound on
the treewidth of graphs in H and #W[1]-hard otherwise. Similar results have been shown
for the problems of counting subgraph embeddings [9], induced subgraphs [7] and locally
injective homomorphisms [26]. As results like Ladner’s theorem (see e.g. [19, 2]) rule out
such dichotomies in the general case one might ask why all of the above problems indeed do
allow such complexity classifications. The answer to that question was given very recently
by Curticapean, Dell and Marx [8] who proved that, in some sense, all of those problems
are the same. To this end, they defined the problem of computing linear combinations of
homomorphisms which they called graph motif parameters. Here one is given a graph G

and a function a of finite support that maps graphs to rational numbers and the task is to
compute∑

H

a(H) ·#Hom(H,G) , (1)

where the sum is over all (unlabeled) simple graphs and #Hom(H,G) denotes the number of
homomorphisms from H to G. A result of Lovász (see e.g. Chapt. 5 in [20]) implies that the
number of subgraph embeddings #Emb(H,G) as well as the number of induced subgraphs
#IndSub(H,G) can be expressed as a linear combination of homomorphisms. In case of
embeddings the result states that

#Emb(H,G) =
∑
ρ≥∅

µ(∅, ρ) ·#Hom(H/ρ,G) , (2)

where the sum is over the partition lattice of the vertices of H, µ is the Möbius function over
that lattice and H/ρ is obtained from H by identifying vertices along ρ. Now, intuitively,
the main result of Curticapean, Dell and Marx states that computing a linear combination of
homomorphisms is precisely as hard as computing the hardest term in the linear combination.
Together with the dichotomy for counting homomorphisms this implies that every problem
expressible as a linear combination of homomorphisms is either fixed-parameter tractable
or #W[1]-hard. The purpose of this work is a thorough investigation of the problem of
counting induced subgraphs through the lense of the framework of graph motif parameters.
Chen, Thurley and Weyer [7] proved that the problem #IndSub(H) of, given a graph H ∈ H
and an arbitrary graph G, computing #IndSub(H,G), is fixed-parameter tractable when
parameterized by |H| if and only if H is finite and #W[1]-hard otherwise. While this result
resolves the parameterized complexity of problems such as computing the number of induced
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cycles of length k,2 it is not applicable to problems such as computing the number of connected
induced subgraphs of size k. For this reason, Jerrum and Meeks [15, 14, 22, 16] introduced
and studied the following problem: Let Φ be a (computable) graph property, then the problem
#IndSub(Φ) asks, given a graph G and a natural number k, to count all induced subgraphs
of size k in G that satisfy Φ.3 In other words, the goal is to compute

∑
H∈Φk

#IndSub(H,G),
where Φk is the set of all (unlabeled) graphs with k vertices that satisfy Φ. The generality
of #IndSub(Φ) allows to count almost arbitrary substructures in graphs, subsuming lots of
parameterized counting problems that have been studied before, and hence the problem
deserves a thorough complexity analysis with respect to the property Φ. Jerrum and Meeks
proved it to be #W[1]-hard for the property of connectivity [15], for the property of having
an even (or odd) number of edges [16] as well as for some other properties (see Section 1.2).
As noted in [8], the theory of graph motif parameters immediately implies that for every
property Φ, the problem #IndSub(Φ) is either fixed-parameter tractable or #W[1]-hard.
However, for a concrete Φ it might be highly non-trivial to prove for which graphs H the
term #Hom(H,G) is contained with a non-zero coefficient in the equivalent expression as
linear combination of homomorphisms. Unfortunately, this is precisely what needs to be
done to find out whether #IndSub(Φ) is fixed-parameter tractable or #W[1]-hard. In our
investigation we will focus on the coefficient of #Hom(Kk, G), where Kk is the complete
graph on k vertices. We will see that for monotone properties, non-zeroness of this coefficient
is sufficient for the property to be evasive.

1.1 Results and techniques
The framework of graph motif parameters [8] implies that for every property Φ and natural
number k, there exists a function a from graphs to rationals such that for all graphs G it holds
that

∑
H∈Φk

#IndSub(H,G) =
∑
H a(H) ·#Hom(H,G). Our most important observation is

concerned with the coefficient of the complete graph.

I Theorem 1 (Intuitive version). Let Φ, k and a be as above. Then it holds that a(Kk) = 0
if and only if

∑
A∈EΦ

k
(−1)#A = 0, where EΦ

k is the set of all edge-subsets A of the labeled
complete graph with k vertices such that Φ holds for the graph induced by A.

We will provide an introduction to the theory of graph motif parameters as well as the
proof of Theorem 1 in Section 3. In Section 4 we turn towards monotone properties, i.e.,
properties that are closed under the removal of edges, and observe that in this case the
term

∑
A∈EΦ

k
(−1)#A is equal to the reduced Euler characteristic χ̂ of the simplicial graph

complex ∆(Φk) of Φk. Recall that a simplicial complex is a set of sets that is closed under
taking non-empty subsets and a simplicial graph complex is a simplicial complex whose
elements are subsets of the edges of the labeled complete graph. We will make this formal
in Section 2. As computing the number of cliques of size k is #W[1]-complete [11] and
computing a linear combination of homomorphisms is precisely as hard as computing its
hardest term [8], the complexity of #IndSub(Φ) is resolved whenever Φ is monotone and the
reduced Euler characteristic of ∆(Φk) is known to be non-zero for infinitely many k.

2 This problem can be equivalently expressed as #IndSub(C), where C is the class of all cycles.
3 Strictly speaking, #IndSub(Φ) is the unlabeled version of p-#INDUCED SUBGRAPH WITH

PROPERTY(Φ), both of which have been introduced in [15]. However, as Jerrum and Meeks point out,
those problems are equivalent for graph properties that are invariant under relabeling of vertices (see
Section 1.3.1 in [15]), which is true for all properties we are concerned with in this work.

IPEC 2018
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I Corollary 2. Let Φ be a monotone graph property such that χ̂(∆(Φk)) 6= 0 for infinitely
many k. Then the problem #IndSub(Φ) is #W[1]-hard.

We will also obtain a matching lower bound under the Exponential Time Hypothesis (ETH)
if the set of all k for which χ̂(∆(Φk)) 6= 0 satisfies a certain density condition (see Section 2).

The (reduced) Euler characteristic is well-understood for many graph complexes. For
example, Chapt. 10.5 in the book of Jonsson [17] provides a large list of graph properties,
each of whose reduced Euler characteristics are non-zero infinitely often. For those properties
Corollary 2 is hence applicable. The study of the (reduced) Euler characteristic is, among
others, motivated by Karp’s famous evasiveness conjecture, stating that every non-trivial
monotone graph property is evasive. A property Φk on graphs with k vertices is evasive if
every decision-tree algorithm that branches on the presence or absence of edges of a given
graph G needs to perform

(
k
2
)
branches in the worst case to correctly decide whether Φk

holds on G. We refer the reader to Miller’s survey [23] for a detailed introduction. While
the conjecture is still unresolved, there has been a major breakthrough due to Khan, Saks
and Sturtevant [18] who proved the conjecture to be true whenever k is a prime power.
Their paper “A Topological Approach to Evasiveness” was, as the name suggests, the first
one to use topological tools such as fixed-point complexes under group operations to prove
evasiveness of a given graph complex. One of their results reads as follows:

I Theorem 3 ([18]4). Let Φk be a non-trivial monotone graph property. If χ̂(∆(Φk)) 6= 0
then Φk is evasive.

Unfortunately, the converse of this theorem does not hold. A counterexample is given
in Chapt. 10.6 in Jonsson’s book [17]. Nevertheless it turns out that some tools of the
topological approach to evasiveness suit as well for a topological approach to #W[1]-hardness
of #IndSub(Φ). The most important ingredient in our proofs is a theorem that goes back
to Smith [27] (see also [24] and Chapt. 3 in [3]), intuitively stating that, given a simplicial
complex ∆ and a p-power group Γ for some prime p that operates on the ground set of ∆ in
a way that leaves the complex stable, it holds that χ̂(∆) ≡ χ̂(∆Γ) mod p, where ∆Γ is the
fixed-point complex of ∆ with respect to Γ. Again, this will be made formal in Section 2.
Applying this theorem to a rather simple group, we will be able to prove our main result
which reads as follows:

I Theorem 4. Let Φ be a non-trivial monotone graph property. Then #IndSub(Φ) is #W[1]-
hard and, assuming ETH, can not be solved in time f(k) ·no(k) for any computable function f
if at least one of the following conditions is true
1. Φ is false for odd cycles.
2. Φ is true for odd anti-holes.
3. There exists c ∈ N such that for all H it holds that Φ(H) = 1 if and only if H is not

c-edge-connected.
4. There exists a graph F such that for all H it holds that Φ(H) = 1 if and only if there is

no homomorphism from F to H.

We remark that Rivest and Vuillemin [25] implicitly proved that the reduced Euler
characteristic of a graph complex does not vanish if the first condition is true. Furthermore

4 In fact, Khan, Saks and Sturtevant show that any non-evasive complex is collapsible. However, every
collapsible complex has a reduced Euler characteristic of zero (see e.g. [21]). Hence the contraposition
implies the theorem as stated.
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we note that (non-)triviality of a monotone property needs to be defined with some care
to exclude properties that depend only on the number of vertices of a graph. Details are
given in Section 4. Examples of properties that satisfy the first condition are the ones of
being bipartite, cycle-free, disconnected and non-hamiltonian. One example for the second
condition is the property of having a chromatic number smaller or equal than half of the size
of the graph (rounded up) and the third condition includes the properties of exclusion of a
fixed complete graph as a subgraph.

In Section 5 we turn to non-monotone properties and illustrate that Theorem 1 itself is a
useful criterion when it comes to establishing #W[1]-hardness of #IndSub(Φ). In particular,
we will prove hardness whenever Φ is a non-trivial modularity constraint on the number of
edges with respect to some prime or if Φ enforces the presence of a fixed isolated subgraph.

1.2 Related work

Jerrum and Meeks introduced and studied the problem #IndSub(Φ) for the following proper-
ties. In [15] they prove the problem to be #W[1]-hard if Φ is the property of being connected,
which immediately follows from Theorem 4 as #IndSub(Φ) and #IndSub(¬Φ) are equivalent5
and the property of being disconnected is monotone and false for every cycle. In [16] hardness
is established for the property of having an even (or odd) number of edges, which follows from
Theorem 1 as every term in the sum

∑
A∈EΦ

k
(−1)#A will have the same sign. In [14] Jerrum

and Meeks prove the problem to be #W[1]-hard whenever the edge-density of graphs in Φk
grows asymptotically slower than k2 and in [22] Meeks shows that whenever Φ is co-monotone,
i.e., ¬Φ is monotone, and the set of (edge-)minimal elements of Φ has unbounded treewidth,
the problem is hard as well. Those latter results are independent from ours in the sense that
ours do not imply theirs and vice versa. One example of a property whose hardness does not
follow from the results of Jerrum and Meeks is bipartiteness: The edge-densities of both,
the properties of being bipartite and not bipartite grow asymptotically as fast as k2 and
the edge-minimal non-bipartite graphs are odd cycles, hence having treewidth 2. However
hardness for the property of being bipartite follows from the first condition of Theorem 4 as
odd cycles are not bipartite. Moreover, we point out that Meeks’ reduction in [22] uses the
Excluded Grid Theorem and hence does not imply a tight lower bound under ETH. Finally
we remark that due to space constraints some proofs are only sketched or omitted and we
refer the interested reader to the related version of this paper.

2 Preliminaries

First we will introduce some basic notions. Given a finite set S, we write #S for the
cardinality of S. We say that a set K of natural numbers is dense if there exists a constant
c > 0 such that for all but finitely many k ∈ N there exists k′ ∈ K such that k ≤ k′ ≤ c · k.
Given a function a from a (not necessarily finite) set S to rational numbers, the support of a
is the set of elements s ∈ S such that a(s) 6= 0. We write supp(a) for the support of a. Given
a natural number k, we write [k] for the set {0, . . . , k − 1}. Given a finite group Γ of order
ps for some prime p and natural number s, we say that Γ is a p-power group.

5 We just need to substract one from
(

n
k

)
to get the other.

IPEC 2018
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Graph theory

In this work all graphs are considered to be undirected, simple and to not contain self-loops.
Given a graph G we write V (G) for the vertices and E(G) for the edges of G. We denote the
complete graph on ` vertices as K`. A labeled graph is a graph G with a bijective labeling
` : V (G)→ [#V (G)] of the vertices and we will sloppily identify vertices with their labels.
A subgraph of G is a graph obtained from G by deleting vertices (including incident edges)
and/or edges. Given a subset S ⊆ V (G), the induced subgraph G[S] is the graph with vertices
S and edges E(G) ∩ S2. A homomorphism from a graph H to a graph G is a function
ϕ : V (H) → V (G) that is edge-preserving, i.e. for every edge {u, v} ∈ E(H) it holds that
{ϕ(u), ϕ(v)} ∈ E(G). We write Hom(H,G) for the set of all homomorphisms from H to G.
A homomorphism ϕ is called an embedding if ϕ is injective. We write Emb(H,G) for the
set of all embeddings from H to G. An isomorphism from a graph H to a graph G is a
bijective homomorphism. We say that H and G are isomorphic, denoted by H ∼= G, if such
an isomorphism exists and we denote G as the set of all (isomorphism types of) graphs. An
automorphism of a graph H is an isomorphism from H to H. We write Aut(H) for the set
of all automorphisms of H. An embedding ϕ from H to G is called a strong embedding if
for all vertices u, v ∈ V (H) it holds that {u, v} ∈ E(H)⇔ {ϕ(u), ϕ(v)} ∈ E(G). We write
StrEmb(H,G) for the set of all strong embeddings from H to G. Given graphs H and G, we
write Sub(H,G) for the set of all subgraphs of G that are isomorphic to H and IndSub(H,G)
for the set of all induced subgraphs of G that are isomorphic to H.

I Fact 5. For all graphs H and G it holds that #Emb(H,G) = #Sub(H,G) ·#Aut(H) and
that #StrEmb(H,G) = #IndSub(H,G) ·#Aut(H).

A graph property Φ is a function from graphs to {0, 1} such that Φ(G) = Φ(G′) whenever
G and G′ are isomorphic. We say that Φ holds on G if Φ(G) = 1 and we are not going not
distinguish between Φ and the set of graphs for which Φ holds as this will be clear from
the context. We write Φk for the set of all (isomorphism types of) graphs with k vertices
on which Φ holds. For technical reasons we define EΦ

k to be the set of all edge-subsets A of
the labeled complete graph with k vertices such that Φ holds on the graph with the same
vertices and edges A. A graph property is called monotone if it is closed under the removal
of edges, that is, if G′ is obtained from G by removing edges and Φ holds for G, then Φ holds
for G′ as well. A property is called co-monotone if its complement is monotone6.

Transformation groups and simplical (graph) complexes

Let Ω be a finite set. A simplicial complex over the ground set Ω is a set ∆ of non-empty
subsets of Ω such that whenever a set A is contained in ∆ and A′ is a non-empty subset of A,
then A′ is contained in ∆ as well. An element A of ∆ is called a simplex and the dimension
of A, denoted as dim(A), is defined to be #A− 1. The Euler characteristic χ of a simplical
complex ∆ is defined to be χ(∆) :=

∑
i≥0(−1)i ·#{A ∈ ∆ | dim(A) = i} and the reduced

Euler characteristic of ∆ is defined to be χ̂(∆) := 1− χ(∆).

I Fact 6. χ̂(∆) =
∑
i≥0(−1)i ·#{A ∈ ∆ ∪ {∅} | #A = i}.

Given a simplicial complex ∆ and a finite group Γ that operates on the ground set Ω of
∆, we say that ∆ is a Γ-simplicial complex if the induced action of Γ on subsets of Ω

6 We remark that in some literature, e.g. [22, 25], the notions of monotonicity and co-monotonicity are
reversed.
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preserves ∆. More precisely, if A ∈ ∆ and g ∈ Γ then the set g . A := {g . a | a ∈ A} is
contained in ∆ as well. If this is the case we can define the fixed-point complex ∆Γ as follows.
Let O1, . . . ,Ok be the orbits of Ω with respect to Γ. Then

∆Γ :=
{
S ⊆ {1, . . . , k}

∣∣∣∣∣ S 6= ∅ ∧ ⋃
i∈S
Oi ∈ ∆

}

The following theorem, which is due to Smith [27] (see also [24] and Chapt. 3 in [3]), will
be of crucial importance in Section 4.

I Theorem 7. Let Γ a group of order ps for some prime p and natural number s and let ∆
be a Γ-simplicial complex. Then χ(∆) ≡ χ(∆Γ) mod p and hence χ̂(∆) ≡ χ̂(∆Γ) mod p.

Now let Φ be a monotone graph property. Then EΦ
k \{∅} is a simplicial complex, called the

graph complex of Φk. The ground set is the set of all edges of the complete labeled graph Kk

on k vertices and we emphasize EΦ
k \ {∅} being a simplicial complex for monotone properties

by denoting it as ∆(Φk). If Γ is any permutation group on the set [k] then Γ induces a group
operation on the ground set of Φk, i.e. the edges of the labeled complete graph of size k, by
relabeling the vertices according to the group element. In particular, ∆(Φk) is a Γ-simplicial
complex as Φk is invariant under relabeling of vertices. We write ∆Γ(Φk) for the fixed-point
complex ∆(Φk)Γ under this operation.

Parameterized (counting) complexity

We will follow the definitions of Chapt. 14 of the textbook of Flum and Grohe [12]. A
parameterized counting problem is a function F : {0, 1}∗ → N together with a computable
parameterization κ : {0, 1}∗ → N. (F, κ) is called fixed-parameter tractable (FPT) if there
exists a deterministic algorithm A and a computable function f such that A computes F
in time f(κ(x)) · |x|O(1) for any input x. Given two parameterized counting problems (F, κ)
and (F ′, κ′), a parameterized Turing reduction from (F, κ) to (F ′, κ′) is an FPT algorithm
w.r.t. κ that has oracle access to F ′ and that on input x computes F (x) with the additional
restriction that there exists a computable function g such that for any oracle query y it holds
that κ′(y) ≤ g(κ(x)). We write (F, κ) ≤TP (F ′, κ′).

The parameterized counting problem #Clique aks, given a graphG and a natural number k,
to compute the number of complete subgraphs of size k in G and the problem is parameterized
by k. The class #W[1] contains all problems (F, κ) such that (F, κ) ≤TP #Clique holds.
Given a recursively enumerable class of graphs H the problems #Hom(H), #Emb(H),
#Sub(H), #StrEmb(H) and #IndSub(H) ask, given a graph H ∈ H and an arbitrary
(unlabeled) graph G, to compute #Hom(H,G), #Emb(H,G), #Sub(H,G), #StrEmb(H,G)
and #IndSub(H,G), respectively. All problems are parameterized by |H|. As stated in the
introduction, there are dichotomy results for each of the aforementioned problems [10, 13, 9, 7].
We emphasize on the following, which is crucial for the framework of graph motif parameters.

I Theorem 8 ([10, 13]). The problem #Hom(H) is fixed-parameter tractable if there exists
b ∈ N such that the treewidth7 of every graph in H is bounded by b. Otherwise, the problem
is #W[1]-hard.

7 We remark that the graph parameter of treewidth is not used explicitely in this work. Hence we refer
the reader e.g. to Chapt. 11 in [12].

IPEC 2018
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In this work we deal with a generalization of #IndSub(H). Let Φ be a computable graph
property. The problem #IndSub(Φ) asks, given a graph G and a number k ∈ N to compute∑
H∈Φk

#IndSub(H,G). The parameter is k.

3 Graph motif parameters

In [8] Curticapean, Dell and Marx generalized the problem #Hom(H) to linear combinations,
called graph motif parameters. To this end, let A be a recursively enumerable set of functions
a : G → Q such that supp(a) is finite. Then the problem #Hom(A) asks, given a ∈ A
and a graph G, to compute

∑
H∈G a(H) ·#Hom(H,G). The parameter is the description

length of a, denoted by |a|. Their main result states that computing a linear combination of
homomorphisms is as hard as computing all terms with non-zero coefficients:

I Theorem 9 ([8]). There exists a deterministic algorithm that, on input a function
a : G → Q with finite support, a graph F ∈ supp(a) and a graph G and given oracle
access to the function G 7→

∑
H∈G a(H) · #Hom(H,G), computes #Hom(F,G) in time

g(|a|) ·#V (G)O(1) and additionally satisfies that the number of vertices of every graph G′
for which the oracle is queried is of size bounded by maxH∈supp(a) #V (H) ·#V (G).

Using this result, Curticapean, Dell and Marx proved that the problem #Hom(A) is
fixed-parameter tractable if there is a constant upper bound on the treewidth of all graphs
that occur in the support of a function a ∈ A, and #W[1]-hard otherwise. After that
they showed that all of the problems #Emb(H), #StrEmb(H), ... are expressible as linear
combinations of homomorphisms, immediately implying the existence of dichotomy results
for those problems. However, establishing a concrete criterion for fixed-parameter tractability
requires to find out which graphs are contained in the support of a function a when the
problem is translated to a linear combination of homomorphisms, and this can be highly
non-trivial.

In what follows, we will establish a concrete criterion for properties Φ such that the
coefficient of Kk is non-zero when the function G 7→

∑
H∈Φk

#IndSub(H,G) is translated to
a linear combination of homomorphisms. This is motivated by the fact that, in this case,
Theorem 9 allows us to compute the number #Hom(Kk, G) which is equal to k! times the
number of cliques of size k in G. As #Clique can not be solved in time f(k) ·#V (G)o(k)

for any computable function f under the Exponential Time Hypothesis [5, 6], we will not
only obtain #W[1]-hardness but also a tight lower bound under the lense of fine-grained
complexity theory.

I Theorem 10 (Theorem 1 restated). Let Φ be a graph property, let k be a non-zero natural
number and let a : G → Q be the function such that for all graphs G the following is true∑

H∈Φk

#IndSub(H,G) =
∑
H

a(H) ·#Hom(H,G) .

Then |k! · a(Kk)| = |
∑
A∈EΦ

k
(−1)#A|.

Proof. Using the principle of inclusion-exclusion we can express the number of strong
embeddings in terms of the number of embeddings (see e.g. Chapt. 5.2.3 in [20]):

#StrEmb(H,G) =
∑
H′⊇H

V (H)=V (H′)

(−1)#E(H′)−#E(H) ·#Emb(H ′, G) , (3)
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where H ′ ranges over all graphs obtained from H by adding edges. Next we collect terms in
(3) that correspond to isomorphic graphs. To this end we let #{H ′ ⊇ H} denote the number
of possibilities to add edges to H such that the resulting graph is isomorphic to H ′. Note
that #{Kk ⊇ H} = 1 if H has k vertices. We obtain

#StrEmb(H,G) =
∑
H′∈G

(−1)#E(H′)−#E(H) ·#{H ′ ⊇ H} ·#Emb(H ′, G) . (4)

Next we translate the number of embeddings to a linear combination of homomorphisms.
This can be done using Möbius inversion8 (see [8] or Chapt. 5.2.3 in [20]):

#Emb(H ′, G) =
∑
ρ≥∅

µ(∅, ρ) ·#Hom(H ′/ρ,G) , (5)

where the sum and the Möbius function µ are over the partition lattice of V (H ′) and H ′/ρ
is obtained from H ′ by contracting every pair of vertices that is contained in the same block
in ρ. We observe that the coefficient of #Hom(Kk, G) in the above sum is µ(∅, ∅) = 1 if H ′
is isomorphic to Kk and zero otherwise as every vertex contraction of a graph with k vertices
that is not the complete graph can not result in the complete graph with k vertices. Hence
the coefficient of #Hom(Kk, G) in Equation (4) is precisely (−1)#E(Kk)−#E(H). Next we use
Fact 5 and obtain that∑

H∈Φk

#IndSub(H,G) =
∑
H∈Φk

#StrEmb(H,G) ·#Aut(H)−1 . (6)

It follows that the coefficient a(Kk) of #Hom(Kk, G) in Equation (6) satisfies

a(Kk) =
∑
H∈Φk

(−1)#E(Kk)−#E(H) ·#Aut(H)−1 . (7)

We now multiply this equation by k!, which we interpret as the number #Symk of elements
of the symmetric group of the k vertices. Taking also the absolute value on both sides allows
us to drop the constant factor (−1)#E(Kk) and we obtain

|k! · a(Kk)| =

∣∣∣∣∣ ∑
H∈Φk

(−1)#E(H) · #Symk

#Aut(H)

∣∣∣∣∣ . (8)

For any graph H in the above sum choose a set A0 of edges of the labeled complete graph Kk

on k vertices such that the corresponding subgraph G(A0) is isomorphic to H. The group
Symk acts on the vertices and thus on the edges of Kk and by the definition of a graph
automorphism, the stabilizer of the set A0 has exactly #Aut(H) elements. On the other hand
the orbit of A0 under Symk is the collection of all sets A such that G(A) ∼= H. By the Orbit
Stabilizer theorem we have #Symk

#Aut(H) = #{A ⊆ E(Kk) | G(A) ∼= H}. Inserting in equation (8)
we obtain |k! · a(Kk)| = |

∑
H∈Φk

∑
A⊆E(Kk)
G(A)∼=H

(−1)#E(H)| = |
∑
A∈EΦ

k
(−1)#A|. J

Theorem 10 implies the following sufficient criterion for hardness of #IndSub(Φ) which we
will use in the remainder of the paper.

8 We omit the formal introduction to Möbius inversion as we will only need that µ(∅, ∅) = 1. We refer
the interested reader to [20], where the concept is introduced and Equation (5) is proved.
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I Corollary 11. Let Φ be a graph property and let K = {k ∈ N |
∑
A∈EΦ

k
(−1)#A 6= 0}. If K

is infinite, then #IndSub(Φ) is #W[1]-hard. If additionally K is dense, #IndSub(Φ) can not
be solved in time f(k) ·#V (G)o(k) for any computable function f , unless ETH fails.

Due to space constraints the proof is deferred to the related version of the paper. However,
let us give the rough idea: By Theorem 9 and Theorem 10 there exists a (tight) reduction
from the problem #Clique(K) of counting cliques of size k where k ∈ K is promised.

As K is infinite we can apply a standard technique using colors and the inclusion-
exclusion principle to reduce #Clique to #Clique(K), the former of which is #W[1]-complete
and, assuming ETH, cannot be solved in time f(k) · no(k) for any computable function f
[5, 6]. This immediately yields #W[1]-hardness of #Clique(K) and hence #IndSub(Φ). If
additionally K is dense, the reduction is tight and the lower bound under ETH transfers as
well.

4 Monotone properties

Recall that monotone graph properties are closed under the removal of edges. In what follows
we assume every monotone graph property to hold on the independent set, i.e., the graph
containing no edges, because otherwise the property would be trivially false. For technical
reasons we say that a property is non-trivial if it is false on Kk for all but finitely many
k ∈ N.9 Due to space constraints we might omit or only sketch proofs and defer the details to
the related version of the paper. We start by refining Theorem 10 for monotone properties.

I Lemma 12. Let Φ be a monotone graph property and let k be a non-zero natural number.
Then it holds that

∑
A∈EΦ

k
(−1)#A = χ̂(∆(Φk)).

I Corollary 13 (Corollary 2 restated). Let Φ be a monotone graph property and let

K = {k ∈ N | χ̂(∆(Φk)) 6= 0} .

If K is infinite, then #IndSub(Φ) is #W[1]-hard. If additionally K is dense, #IndSub(Φ) can
not be solved in time f(k) ·#V (G)o(k) for any computable function f , unless ETH fails.

Proof. Follows immediately from Lemma 12 and Corollary 11. J

The above criterion yields hardness of #IndSub(Φ) for every monotone graph property Φ
whose graph complex is well-understood with respect to the (reduced) Euler characteristic.
The thesis of Jonsson (see Chapt. 10.5 in [17]) provides a large list of graph complexes
including e.g. disconnectivity, colorability and coverability, only to name a few, whose
reduced Euler characteristics are non-zero infinitely often and to which Corollary 13 is hence
applicable. We would also like to point out the work of Chakrabarti, Khot and Shi [4] who
proved the reduced Euler characteristic of a large family of graph complexes to be odd. Their
result will be used to prove the fourth condition of Theorem 4 and reads as follows — we
state it in terms of homomorphisms.

I Lemma 14 ([4]). Let F be a graph and let Φ[F ] be the graph property that holds true
on a graph G if and only if Hom(F,G) = ∅, i.e., there is no homomorphism from F to G.
Furthermore let TF := min{22t − 1 | 22t ≥ #V (F )} and let k ∈ N such that k ≡ 1 mod TF .
Then it holds that χ(Φ[F ]

k ) ≡ 0 mod 2 and hence χ̂(Φ[F ]
k ) ≡ 1 mod 2.

9 This is required to exlude properties like Φ(G) = 0⇔ #V (G) ≡ 1 mod 2 which indeed is monotone as
it is closed under the removal of edges.
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Figure 1 Non-empty unions of orbits on the operation of Z7 on the edge set of the labeled
graph with 7 vertices. If Φ is trivially true then ∆Z7(Φ7) contains all of the above subsets of
orbits. If Φ holds only for bipartite graphs then none of the above subsets is contained in ∆Z7(Φ7).
If Φ is planarity then ∆Z7(Φ7) = {O1,O2,O3}. More exotically, if Φ is the property of not being
5-edge-connected then ∆Z7(Φ7) contains every subset of orbits except for O1 ∪ O2 ∪ O3.

Unfortunately, as the proof of the above lemma shows, it is often quite tedious to argue
about the (reduced) Euler characteristic of the graph complex induced by a more complicated
property Φ and hence proving hardness of #IndSub(Φ). In the remainder of this section
we will therefore demonstrate that Corollary 13 together with Theorem 7 yields a fruitful
topological approach to prove #W[1]-hardness and conditional lower bounds for #IndSub(Φ),
given that Φ is a monotone graph property. We outline the approach in the following lemma.

I Lemma 15. Let Φ be a monotone graph property, let K be an infinite subset of N and let
Γ = {Γk | k ∈ K} be a set of permutation groups such that for every k ∈ K the group Γk
is a pk-power group for some prime pk. If χ̂(∆Γ(Φk)) 6≡ 0 mod pk holds for every k ∈ K
then #IndSub(Φ) is #W[1]-hard. If additionally K is dense, #IndSub(Φ) can not be solved
in time f(k) ·#V (G)o(k) for any computable function f , unless ETH fails.

Proof. Follows immediately from Corollary 13 and Theorem 7. J

Intuitively, Lemma 15 states that instead of analyzing χ̂(∆(Φk)) which might be tedious,
it suffices to prove that the reduced Euler characteristic of the fixed-point complex of ∆(Φk)
with respect to a p-power group is not 0 modulo p. For our purposes it will suffice to use the
groups Zp for prime numbers p, explained as follows. Recall that the ground set of ∆(Φp) is
the set of all edges of the labeled complete graph on p vertices. Now b ∈ Zp is interpreted as
a relabeling x 7→ x+ b of the vertices10, which induces an operation on the edges by mapping
the edge {x, y} to the edge {x+ b, y + b}. We remark that this group was also used in an
intermediate step in [18]. It can easily be verified that this mapping is a group operation.
Furthermore ∆(Φp) is a Zp-simplicial complex with respect to this operation as Φ is invariant
under relabeling of vertices. Hence the fixed-point complex ∆Zp(Φp) is defined. Furthermore
observe that every orbit of the group operation is an Hamilton cycle. We illustrate ∆Z7(Φ7)
for some properties Φ in Figure 1.

Note that, given a prime p > 2, the ground set of ∆Zp(Φp) consists of exactly 1
2 (p− 1)

elements. In particular those are the Hamiltonian cycles H1 = (0, 1, 2, . . . ), H2 = (0, 2, 4, . . . ),
H3 = (0, 3, 6, . . . ), . . . , H 1

2 (p−1) = (0, 1
2 (p − 1), p − 1, . . . ). Equivalently, Hi is the orbit

of the (labeled) edge {0, i} under the operation of Zp for i ∈ {1, . . . , 1
2 (p − 1)} and it can

easily be verified that those are all orbits of the group operation. In what follows, given a
non-empty set P ⊆ {1, . . . , 1

2 (p− 1)}, we write HP for the graph with vertices (labeled with)
{0, . . . , p− 1} and edges

⋃
i∈P Hi.

I Fact 16. Let P be non-empty subset of {1, . . . , 1
2 (p− 1)}. Then P ∈ ∆Zp(Φp)⇔ HP ∈ Φp.

10 Here + is addition modulo p.
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Now we have everything we need to prove our main result. We start with monotone
properties that are false on odd cycles or true on odd antiholes.

I Lemma 17. Let Φ be a non-trivial monotone graph property. If Φ does not hold on
odd cycles or if Φ holds on odd anti-holes then there exists a constant N ∈ N such that
χ̂(∆Zp(Φp)) 6≡ 0 mod p for every prime p > N .

Proof sketch. If Φ does not hold on odd cycles then ∆Zp(Φp) = ∅ and hence we have
that χ̂(∆Zp(Φp)) = 1 − χ(∆Zp(Φp)) = 1 − 0 = 1 6≡ 0 mod p. As Φ is non-trivial there
exists N ∈ N such that Φ(Kk) = 0 for all k > N . Now if Φ holds on odd anti-holes then
∆Zp(Φp) = {P | ∅ ( P ( {1, . . . , 1

2 (p− 1)}} for all p > N since Φ is monotone and HP is an
anti-hole if and only if #P = p−1

2 − 1. Furthermore, Φ does not hold on H{1,..., 12 (p−1)}
∼= Kp

as p > N . Now it can be easily verified that χ̂(∆Zp(Φp)) = (−1) 1
2 (p−1)+1 6≡ 0 mod p. J

We continue with one more exotic property which illustrates the utility of the topological
approach by exploiting the simple structure of ∆Zp(Φp).

I Lemma 18. Let c ∈ N be an arbitrary constant and let Φ be the graph property of being
not (c+ 1)-edge-connected. Then χ̂(∆Zp(Φp)) 6≡ 0 mod p for every prime p > c+ 3.

Proof sketch. We rely on the observation that the graph HP is (c + 1)-edge-connected if
and only if #P > b c2c. Hence ∆Zp(Φp) = {P ⊆ {1, . . . , 1

2 (p− 1) | P 6= ∅ ∧#P ≤ b c2c}. Now
it can be easily verified that χ̂(∆Zp(Φp)) = (−1)b c

2 c ·
( 1

2 (p−1)−1
b c

2 c

)
6≡ 0 mod p. J

Finally, Theorem 4 follows from Lemma 15, 14, 17 and 18. Details are given in the related
version of the paper.

5 Non-monotone properties

In this section, we present #W[1]-hardness results for two non-monotone properties. For the
first one, we generalize [16] where hardness was established for counting induced subgraphs
with an even (or odd) number of edges. It turns out that any non-trivial modularity constraint
with respect to a prime induces #W[1]-hardness. To this end let q be a prime and Q be
a subset of {0, . . . , q − 1}. Then the property Mod[q,Q] holds on a graph H if and only
if (#E(H) mod q) ∈ Q. For the second property, let F be a connected graph. Then the
property Iso[F ] holds on a graph H if and only if H contains an isolated subgraph that is
isomorphic to F . Due to space constraints the proof of the following theorem is deferred to
the related version of the paper.

I Theorem 19. For all primes q, non-trivial subsets Q of {0, . . . , q − 1} and connected
graphs F , the problems #IndSub(Mod[q,Q]) and #IndSub(Iso[F ]) are #W[1]-hard and can
not be solved in time f(k) · no(k) for any computable function f , unless ETH fails.

6 Conclusion and future work

We used the framework of graph motif parameters to provide a sufficient criterion for #W[1]-
hardness of #IndSub(Φ). For monotone properties Φ this amounts to the reduced Euler
characteristic of the associated graph complex to be non-zero infinitely often. In particular,
our results provide a fine-grained reduction from the problem of counting cliques of size k
to counting induced subgraphs of size k with property Φ whenever Φ is monotone and
χ̂(∆(Φk)) 6= 0. Using a topological approach, we established hardness for a large class of
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non-trivial monotone graph properties. The obvious next question, whose answer would
settle the parameterized complexity of #IndSub(Φ) for monotone properties completely, is
whether for every non-trivial monotone property Φ the set of k such that χ̂(∆(Φk)) 6= 0 is
infinite.
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