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Abstract
We consider the problem of counting the linear extensions of an n-element poset whose cover
graph has treewidth at most t. We show that the problem can be solved in time Õ(nt+3), where
Õ suppresses logarithmic factors. Our algorithm is based on fast multiplication of multivariate
polynomials, and so differs radically from a previous Õ(nt+4)-time inclusion–exclusion algorithm.
We also investigate the algorithm from a practical point of view. We observe that the running
time is not well characterized by the parameters n and t alone, fixing of which leaves large variance
in running times due to uncontrolled features of the selected optimal-width tree decomposition.
For selecting an efficient tree decomposition we adopt the method of empirical hardness models,
and show that it typically enables picking a tree decomposition that is significantly more efficient
than a random optimal-width tree decomposition.

2012 ACM Subject Classification Theory of computation→ Algorithm design techniques, The-
ory of computation → Parameterized complexity and exact algorithms

Keywords and phrases Algorithm selection, empirical hardness, linear extension, multiplication
of polynomials, tree decomposition

Digital Object Identifier 10.4230/LIPIcs.IPEC.2018.5

Funding This work was partially supported by the Academy of Finland, Grant 276864, “Supple
Exponential Algorithms.”

Acknowledgements We thank the anonymous reviewers for constructive suggestions, most of
which are implemented in the present version of the paper.

1 Introduction

Consider a partially ordered set (V,≺), or poset for short, formed by an n-element set V
and an irreflexive and transitive binary relation ≺ on V , called a partial order. Another
partial order < on V is a linear extension of ≺ if it contains ≺ and for any distinct elements
x, y ∈ V either x < y or y < x. The problem of counting linear extensions (#LE) asks the
number of linear extensions of a given poset; equivalent to #LE is the problem of counting
the topological sorts of a given directed (acyclic) graph. The problem has applications in
numerous areas, for example, in sequence analysis [22], sorting [27], preference reasoning [21],
convex rank tests [24], partial order plans [25], and learning graphical models [32, 26].
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5:2 A Faster Tree-Decomposition Based Algorithm for Counting Linear Extensions

The #LE problem is #P-complete [11] but admits a fully polynomial approxima-
tion scheme [13]. The best known asymptotic bounds for the expected running time are
O(ε−2n3 log2 ` logn) [6] and O(ε−2n5 log2 n) [30], where ` is the number of linear extensions
and ε the allowed relative error. These bounds, while polynomial, become prohibitively large
in practice if, say, one requires an accuracy of ε = 0.01 and n is around one hundred.

Exact and parameterized algorithms offer an alternative approach to design practical
algorithms for the problem. For the required number of arithmetic operations, the best known
worst-case bound is O(2nn) in general, which is achieved by a simple dynamic programming
algorithm. For several special instance classes better bounds are known: O(nww) for width-w
posets, O(n2) for series–parallel posets [23], and O(n2) also for posets whose cover graph is
a forest [5]; the cover graph of a poset (V,≺) is the directed graph (V,E) where the edge set
E is the transitive reduction of ≺ (a.k.a. Hasse diagram). If parameterized by the treewidth
of the cover graph, t, the problem can be solved with O(nt+3) arithmetic operations by an
inclusion–exclusion algorithm [17]. On the other hand, the problem parameterized by t is
W [1]-hard [14], and so it may be difficult, or even impossible, to find an algorithm that runs
in time O(f(t)nd) for some computable function f and constant d.

1.1 Theoretical contributions
In this paper, we give a new algorithm that exploits small treewidth. Write Õ(f) as a
shorthand for f(log f)O(1). We prove the following in Section 3.

I Theorem 1 (Main). The linear extensions of a given n-element poset can be counted with
Õ(nt+3) bit-operations, where t is the treewidth of the cover graph of the poset.

We state the bound in terms of bit-complexity to emphasize the fact that the dominating
computations deal with large integers. Indeed, the bounds stated in the previous paragraph
refer to the number of arithmetic operations. Thus, in particular, our bound improves the
previous bound of Kangas et al. [17] by a factor of n. For large n and small t the improvement
is relatively significant; for instance, for t = 2 the bound is reduced from Õ(n6) to Õ(n5).

Perhaps more importantly, the design of our algorithm is very different from that of
the inclusion–exclusion algorithm. In the latter, the idea is to view a linear extension as a
bijective mapping and then remove the global bijectivity constraint by inclusion–exclusion,
similarly to previous applications to matrix permanent [29], Hamiltonian path [18], and set
partitioning [19], but incurring only a polynomial overhead. Once the bijectivity constraint
is removed, what remains is a collection of simpler subproblems with local constraints. The
subproblems can be handled by standard routines that exploit small treewidth [7, 12]; see
Section 2.4 for some additional details.

The present algorithm, in contrast, takes care of the bijectivity constraint within dynamic
programming along a tree decomposition and is, with this respect, similar to a folklore
tO(t)n-time algorithm for the Hamiltonian path problem. However, #LE being W[1]-hard
one may expect it to require a significantly larger dynamic programming table. We give a
formulation, where each node of a tree decomposition is associated with Θ(nt+1) counts.
This formulation leads to a challenge: a step in the dynamic program that combines two (or
more) arrays of such counts appears to require a quadratic number of arithmetic operations,
Θ(n2t+2), if implemented in a straightforward manner. Fortunately, we discover that the key
ingredient of the step takes a form of multidimensional convolution, which we can compute
efficiently using known (deep) results for fast multiplication of multivariate polynomials.

Concerning space complexity we only make a couple of observations here: Both our
algorithm and the inclusion–exclusion algorithm by Kangas et al. [17] require Õ(nt+2) bits of
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space; this can be reduced by a factor about linear in n by carrying the computations modulo
several small relative primes and constructing the final output using the Chinese remainder
theorem. The simple dynamic programming algorithm requires Õ(2n) bits of space.

1.2 Empirical contributions

In the second part of the paper we address the practical value of the algorithm. Given that
the present algorithm is technically more convoluted than the inclusion–exclusion algorithm,
it is natural to ask, whether the improvement in the asymptotic worst case time requirement
can be realized in practice. Our interest is particularly in instances where t is small (at most
four) and n ranging up to a few hundred.

A well known challenge in practical implementation of tree-decomposition based algorithms
is that finding an optimal-width tree decomposition may be insufficient for minimizing the
computational cost: the running time of the dynamic programming algorithm can be sensitive
to the shape of the tree decomposition. Bodlaender and Fomin [9] addressed this issue from
a theoretical viewpoint by studying the complexity of finding a tree decomposition that
minimizes a sum of costs associated with each node of a tree decomposition. In their f -cost
framework the cost of a node is allowed to depend only on the width of the node (i.e., the size
of the associated bag; see Section 2). Recently, Abseher et al. [1, 2] presented a more general
and more practical heuristic approach. Their htd library [1] allows a user to generate a
variety of optimal-width tree decompositions and also (locally) optimize a given cost function.
Moreover, they proposed and evaluated [2] a method to learn an appropriate cost function,
or regression model, from collected empirical data on running times on varying instances.
The method can be viewed as an instantation of the method of empirical hardness models
[20] for the algorithm selection problem [28].

Following these ideas we have implemented and tested our algorithm for #LE using
a collection of synthetically generated instances (posets) together with a variety of tree
decompositions generated by htd for each instance. We will report on and discuss our
preliminary observations, which suggest that selecting the tree decomposition using a learned
regression model can make a difference, at least for the smallest treewidth (t = 2): compared
to the median running time over generated tree decompositions, the selected one typically
yields almost an order-of-magnitude speedup.

1.3 Organization

Some preliminary material is given in Section 2. Section 3 is devoted to proving Theorem 1.
In Section 4 we descibe some implementation details and report on empirical results. We
conclude in Section 5 by highlighting the main observations and some open questions.

2 Preliminaries

In this section we introduce some basic terminology, notation, and facts.

2.1 Basic notation

We denote by N the set of natural numbers {0, 1, 2, . . .}. For two sets S and U we write SU
for the set of functions from U to S. If m ∈ N we write [m] for the set {1, . . . ,m}. By Sm
we denote the set of m-tuples a = (ai)mi=1 with ai ∈ S.

IPEC 2018



5:4 A Faster Tree-Decomposition Based Algorithm for Counting Linear Extensions

The restriction of a function α : U → S to a subset A ⊂ U is defined in the standard
manner and denoted by α|A; conversely, we say that α is an extension of α|A. We also denote
by αv 7→i the extension of α that we obtain by mapping an added element v 6∈ U to i.

We use the Iverson’s bracket notation: for a proposition P , the expression [P ] evaluates
to 1 if P is true, and to 0 otherwise.

2.2 Factorials and multiplication of polynomials
Let a = (a1, . . . , ak) ∈ Nk. We denote a! := a1! · · · ak! and |a| := a1 + · · ·+ ak. Since |a|!/a!
is a multinomial coefficient, we have the following.

I Fact 2. If a is a tuple of nonegative integers, then a! divides |a|!.

Another fact we need concerns the complexity of multiplying two multivariate polynomials
that are sparse in the sense that their total degree is given an upper bound, while the degrees
of the individual variables may be large (not larger than the total degree, of course). We
assume that a polynomial is represented by a list of its coefficients. The following result can
be obtained by a straightforward specialization of a more general and detailed bound due to
van der Hoeven and Lecerf [31, Cor. 4].

I Fact 3. Two k-variate polynomials with Õ(n)-bit integer coefficients and total degree at
most n can be multiplied with Õ

((
n+k
k

)
(n+ k)

)
bit-operations.1

For univariate polynomials the bound is quadratic in n because the coefficients can be large.

2.3 Tree decomposition
I Definition 4 (Tree decomposition). A tree decomposition of a graph G = (V,E) is a pair
(T,B) where T = (I, F ) is a tree and B maps each x ∈ I to a bag Bx ⊆ V such that
1. for each v ∈ V , the set {x ∈ I : v ∈ Bx} induces a nonempty connected subtree of T ,
2. for each uv ∈ E, there exists x ∈ I with u, v ∈ Bx.
The width of the tree decomposition is the size of its largest bag minus one, maxx∈I |Bx| − 1,
and the treewidth of a graph is the minimum width over all its tree decompositions.

For a graph of treewidth t, we can find a tree decomposition of width t in time tO(t3)n

using Bodlaender’s algorithm [8] or in time Õ(nt+2) using the approach of Arnborg et al. [4].
A tree decomposition is rooted if the edges of the tree are directed so that there is a

unique node, the root, that has no parent. Clearly, one obtains a rooted tree decomposition
by simply choosing one node as the root and directing the edges accordingly.

I Definition 5 (Nice tree decomposition). A rooted tree decomposition (T,B) of a graph
G = (V,E) is nice if each node x of T is of one of the following types:
(leaf) x has no children and |Bx| = 1;
(introduce) x has a unique child y and Bx = By ∪ {v} for some v ∈ V \By;
(forget) x has a unique child y and Bx = By \ {v} for some v ∈ By;
(join) x has exactly two children y, z and Bx = By = Bz.

We can convert a given tree decomposition of width t and O(n) nodes into a nice tree
decomposition of width t and O(tn) nodes in time tO(1)n [10].

1 In fact, this result assumes we have access to a Ω̃(n)-bit prime p and to a primitive element (i.e.,
generator) of F∗

p, a multiplicative field of order p. Finding such numbers seem hard, theoretically: no
deterministic polynomial time algorithm is known for the former, and no polynomial time algorithm is
known for the latter. The result thus concerns the non-uniform model of computational complexity.
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2.4 Counting linear extensions via inclusion–exclusion
Kangas et al. [17] showed that the number of linear extensions of a poset (V,≺) whose cover
graph is G = (V,E) is given by the formula

n∑
k=1

(
n

k

)
(−1)n−k

∑
τ

∏
uv∈E

[τ(u) < τ(v)] ,

where τ runs over all functions from V to [k].
Supposing G has treewidth t, it is well known that there is an elimination ordering

v1, . . . , vn of the vertices, such that when removing the vertices from the graph in this order
and always connecting the neighbors of the removed vertex, the size of the largest clique in
the obtained graphs is t+ 1. The n-dimensional inner summation over the variables τ(vi),
for i ∈ [n], can be processed iteratively along such an ordering, the ith one-dimensional
summation over τ(vi) requiring O(nikt+1) additions and multiplications of O(n logn)-bit
numbers, for some n1, . . . , nn that sum up to O(n). In total, the evaluation of the inclusion–
exclusion formula thus requires Õ(nt+4) bit-operations. We omit a more detailed treatment
of the algorithm, as the method applied for computing the inner summation is standard.
(The original analysis of Kangas et al. [17] use a looser bound of ni = O(n) for each i, arriving
at a bound that is larger by a factor of n.)

3 The algorithm – proof of Theorem 1

We implement a standard recipe of designing a tree-decomposition based algorithm. The
outline of the algorithm is as follows.

A1 Compute the cover graph of the input poset.
A2 Find a minimum-width nice tree decomposition of the cover graph.
A3 Run dynamic programming over the nice tree decomposition.

We will next consider each step in detail. We will see that the last step dominates our
asymptotic running time bounds.

3.1 Computing the cover graph
The cover graph G = (V,E) is obtained by computing the transitive reduction of the input
poset (V,≺). The transitive reduction can be computed in time O(|V | · |≺ |) [3], which is
O(nt+2) for all t ≥ 1.

3.2 Finding a minimum-width nice tree decomposition
As mentioned in Section 2, if the cover graph has treewidth t, then a width-t nice tree
decomposition of the cover graph can be found in Õ(nt+2) time.

3.3 Dynamic programming
Suppose now that a width-t nice tree decomposition (T,B) of the cover graph G is available.
Our idea will be to associate each node of T with an array of numbers such that (i) the
numbers at the root node are sufficient for computing the number of linear extensions and
(ii) the array of a node can be computed from the arrays of its child nodes.

IPEC 2018
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The following notation will be useful. Denote by Vx the set of vertices covered by the
subtree of T rooted at x, that is, Vx is the union of the bags By of nodes y to which there is
a directed path from x. Write nx for the size |Vx| and Ex for set of edges in the induced
graph G[Vx].

Now, for each node x ∈ T and injection α ∈ [nx]Bx , define `x(α) as the number of
bijections π ∈ [nx]Vx such that π(v) = α(v) for all v ∈ Bx, and π(u) < π(v) whenever
uv ∈ Ex. In other words, `x(α) is the number of ways to extend α to a linear extension of
the induced poset (Vx,≺ ∩(Vx × Vx)), where we view a linear extension as a bijection from
Vx to [nx] that satisfies the ordering constraints.

We begin by showing that the values `x(α) are sufficient for computing the number of
linear extensions of the poset, that is, they satisfy the listed conditions (i) and (ii). After
that we consider the time requirement of computing the values `x(α) for each node of the
nice tree decomposition.

Consider first the root node.

I Lemma 6 (Root). We have `(V ) =
∑
α `r(α), where α runs over all injections in [nx]Br .

Proof. Since Vr = V , Er = E, and nr = n, we have that∑
α

`r(α) =
∑
π

∏
uv ∈E

[π(u) < π(v)] = `(V ) ,

where α and π run over all injections in [n]Br and [n]V , respectively. J

Next we will show separately for each node type of the nice tree decomposition, how the
values `x(α) are determined by the corresponding values for the child node or child nodes of
x. For all but join nodes the results are immediate, and we omit the proofs.

I Lemma 7 (Leaf). If x is a leaf node, then `x(α) = 1 for the unique injection α in [nx]Bx .

For an introduce node, we simply restrict the injection α to the bag in question and check
that the ordering constraint holds.

I Lemma 8 (Introduce). If x is an introduce node with child y, then

`x(α) = `y(α|By
)

∏
u,v ∈Bx:uv ∈E

[α(u) < α(v)] .

For a forget node, we extend the injection α to the larger bag by mapping the new vertex to
some value.

I Lemma 9 (Forget). If x is a forget node with child y and Bx = By \ {v}, then

`x(α) =
ny∑
a=1

`y(αv 7→a) .

To handle a join node, we introduce some convenient notation. Let α be an injection
from a k-element set S to a range of integers [m]. Label the elements of S such that
α(v1) < · · · < α(vk). For i = 1, . . . , k − 1, denote by αi the number of integers between
α(vi) and α(vi+1), that is, αi := α(vi+1) − α(vi) − 1; in addition, denote α0 := α(v1) − 1
and αk := m − α(vk). Observe that α0 + · · · + αk = m − k. Furthemore, if β is another
injection from S′ to [m′], write β ∼ α if β and α specify the same linear order on S ∩ S′,
that is, β(u) < β(v) if and only if α(u) < α(v) for all u, v ∈ S ∩ S′.
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I Lemma 10 (Join). If x is a join node with children y and z, then

`x(α) =
∑
β

∑
γ

[α ∼ β ∼ γ]
|Bx|∏
i=0

[αi = βi + γi]
(
αi
βi

)
`y(β) `z(γ) ,

where β and γ run over all injections in [ny]By and [nz]Bz , respectively.

Proof. By definition,

`x(α) =
∑
π

∏
uv∈Ex

[π(u) < π(v)] ,

where π runs over all bijections from Vx to [nx] that extend α. Observe that by the tree
decomposition properties, the sets Vy \Bx and Vz \Bx are disjoint and their union is Vx \Bx.
Thus we may represent any bijection π : Vx → [nx] that extends α uniquely by a pair of
injections β′ : Vy → [nx] and γ′ : Vz → [nx] whose restrictions to Bx are equal to α and
whose images β′(Vy) and γ′(Vz) cover [nx].

`x(α) =
∑
β′

∑
γ′

[
β′(Vy) ∪ γ′(Vz) = [nx]

] ∏
uv∈Ey

[
β′(u) < β′(v)

] ∏
uv∈Ez

[
γ′(u) < γ′(v)

]
,

where β′ and γ′ run over all injections that extend α in [nx]Vy and [nx]Vz , respectively.
Consider then a mapping that “compresses” any such injection β′ into a bijection β′′ :

Vy → [ny] by letting β′′(v) := |{u ∈ Vy : β′(u) ≤ β′(v)}|; let γ′′ denote the bijection obtained
similarly from an injection γ′. Let β denote the restriction of β′′ to Bx and γ the restriction
of γ′′ to Bx. We have that β′ and γ′ extend α if and only if β ∼ α and γ ∼ α. Thus we get
that

`x(α) =
∑

β′′:β∼α

∑
γ′′:γ∼α

|Bx|∏
i=0

[αi = βi+γi]
(
αi
βi

) ∏
uv∈Ey

[
β′′(u) < β′′(v)

] ∏
uv∈Ez

[
γ′′(u) < γ′′(v)

]
,

where β′′ and γ′′ run over all bijections in [ny]By and [nz]Bz , respectively. The product of the
binomial coefficients

(
αi

βi

)
is the number of pairs (β′, γ′) that map to the same pair (β′′, γ′′),

that is, the number of interleavings of the βi + γi elements to the range of αi elements.
To complete the proof, it suffices to write the summation over β′′ as a double-summation:

the outer summation being over all injections β : By → [ny] and the inner summation being
over all bijections β′′ : Vy → [ny] that extend β; similarly for the summation over γ′′. J

I Example 11 (Join in a tree). Consider the example illustrated in Figure 1. The cover
graph is a tree with vertex set V = {a, b, c, d, e, f, g}. In a nice tree decomposition (not
shown) the root node x is a join of nodes y and z, with By = Bz = Bx = {c, f}. The vertex
sets associated with the nodes are Vx = V , Vy = {a, c, d, e, f}, and Vz = {b, c, f, g}. For the
shown injection α, the value of `x(α) is obtained by a sum of `y(β) · `z(γ) over valid pairs
(β, γ), multiplied by the number of possible interleavings, which is given by a product of
binomial coefficient. Shown is one pair (β, γ), for which `y(β) = 1 and `z(γ) = 1 and the
number of interleavings is equal to

(2
1
)(2

2
)(1

0
)

= 4.

It remains to bound the running time of the algorithm.

I Lemma 12 (Time complexity). Given a width-t nice tree decomposition of the cover graph
of an n-element poset, the linear extensions can be counted in Õ(nt+3) bit-operations.

IPEC 2018



5:8 A Faster Tree-Decomposition Based Algorithm for Counting Linear Extensions

a

c

e

d

f b

g

Injection 1 2 3 4 5 6 7
α a b c d e f g

β a c d e f

γ b c f g

Figure 1 An illustration of the recurrence for a join node; see Example 11 for a description.

Proof. Let x be a node in the nice tree decomposition. For brevity, denote k := |Bx|. If x is
a leaf node, introduce node, or forget node, then the values `x(α) for all injections α ∈ [nx]Bx

can clearly be computed using O(knk) = O(tnt+1) basic operations, some of which are
additions of two O(n logn)-bit numbers, thus using Õ(nt+2) bit-operations (observe that the
factor t is O(lognt+2) and can thus be omitted).

Consider then the remaining case: x is a join node. Let y and z be the two children of x.
Recall that Bx = By = Bz.

Represent an injection α in [nx]Bx as a pair (σ, a), where a = (ai)k+1
i=1 with ai = αi−1 and

σ is a bijection from Bx to [k] that captures the specified linear order, that is, σ(u) < σ(v) if
α(u) < α(v). Clearly, the mapping α 7→ (σ, a) is a bijection when we require that ai ∈ N
and |a| = nx − k. Using this representation and Lemma 10, write

`x(σ, a) =
∑
b

∑
c

k∏
i=0

[ai = bi + ci]
(
ai
bi

)
`y(σ, b) `z(σ, c) ,

where b and c run over Nk+1. By writing `′x(σ, a) := `x(σ, a)/a!, we get the convolution form

`′x(σ, a) =
∑
a=b+c

`′y(σ, b) `′z(σ, c) .

To treat this as a multiplication of multivariate polynomials, consider a fixed bijection σ
and let Px(r1, . . . , rk) be the k-variate polynomial where the coefficient of ra1

1 · · · r
ak

k equals
n! · `′x(σ, a); we define Py and Pz similarly. Note that k variables suffice, since ak+1 is
determined by the fixed |a|. Here we multiplied by the factorial n! to get integer coefficients
(by Fact 2, since n ≥ |a|, |b|, |c|). We have that n! · Px = PyPz, that is, we obtain Px by
multiplying Py and Pz and dividing each coefficient of the resulting polynomial by n!.

We bound the bit-complexity of the polynomial multiplication using Fact 3. The total
degrees of the polynomials are at most n−k. Each coefficient of the polynomials is a Õ(n)-bit
integer. Thus the multiplication takes Õ(

(
n
k

)
n) bit-operations.

Multiplying the obtained bound by the number of bijections σ, we get that all `x(σ, a)
can be computed using Õ(nk+1) = Õ(nt+2) bit-operations.

Because there are O(tn) nodes in the nice tree decomposition, Õ(nt+3) bit-operations
suffice in total. J

4 Experiments

This section is devoted to empirical results. We first describe our implementation of the
algorithm and the test instances used in the experiments. Then we show how the performance
on the algorithm depends on the way we choose the tree decomposition.
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4.1 Implementation
We have implemented the algorithm described in Section 3 in a C++ program Countle.2 For
multiplication of polynomials we used a C library FLINT [16]. For finding an optimal tree
decomposition we used the C++ library htd [1]. We ran all experiments on machines with
Intel Xeon E5540 CPUs; the same machines were used by Kangas et al. [17], which makes
their running time measurements directly comparable to the present results.

Two implementation details are worth mentioning. First, for multiplication of multivariate
polynomials, we transformed the polynomials into univariate polynomials using an appropriate
Kronecker substitution. Specifically, separately for each node x of the tree decomposition and
the considered vertex ordering (bijection) σ, we encode a k-variate polynomial in variables
r1, . . . , rk as a univariate polynomial in variable s by substituting rj := s(d1+1)···(dj−1+1),
where each di is an upper bound for the degree of ri in the polynomial. Using knowledge
associated with the node x and ordering σ, we aim at finding a value di that is smaller than
the trivial upper bound nx − k. To this end, we set di to the sum of the largest realized
exponents of ri in the already computed polynomials for the two child nodes of x.

Second, we wish to ignore any impossible ordering σ at a node x of the tree decomposition,
and so save both time and space. The key observation is that, even if the value `x(σ, a) is
nonzero, we can ignore it if σ assigns some two vertices in the bag Bx an order that violates
the partial order ≺, that is, for some u, v ∈ Bx we have u ≺ v and σ(u) > σ(v).

4.2 Instances
We generated random instances (posets) of different sizes for small values of treewidth t. We
varied the number of elements n from 10 to 199 (t = 2), 109 (t = 3), and 59 (t = 4). For each
pair (t, n) we generated 5 posets; following Kangas et al. [17], we let each poset be a “grid
tree,” constructed by randomly joining t-by-t grids along the (boundary) edges, orienting the
edges so that no directed cycles are introduced, and finally taking the transitive closure.

4.3 Results
Because the running time of Countle may be sensitive to the particular (nice) tree decom-
position selected, we ran the program on 50 optimal-width tree decompositions, which we
generated using htd; we checked that for every encountered instance, htd indeed generated
tree decompositions of optimal width. We allowed each individual run to take up to 20
minutes of CPU time and 30 GB of memory.

First we considered the scaling of Countle in terms of the number of elements n and
treewidth t. We observed that, while the growth of the running time follows the rate suggested
by the worst case bound, there is significant variance in the running times for any fixed (n, t),
due to differences in the five posets and the 50 tree decompositions per poset (compare median
to best in Figure 2). Compared to an implementation of the inclusion–exclusion algorithm by
Kangas et al. [17], VEIE, we find that Countle is an order of magnitude faster. For example,
Countle can solve a typical (median) poset with a typical (median) tree decomposition in
about 20 seconds if n = 100 and t = 2, or if n = 50 and t = 3, while VEIE requires about
200 seconds on such instances [17, Fig. 8] (not reproduced here). We have observed that
the same pattern also holds for t = 4; we omit the detailed results here, as such posets are
handled faster by another, exponential time algorithm of Kangas et al. [17, Fig. 8].

2 Countle is free and publicly available at https://bitbucket.org/samsalo/countledist/.
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Figure 2 The running time of Countle (in seconds) on random “grid tree” posets of treewidth 2
and 3, with a varying number of elements n. For each poset, we generated 50 optimal-width tree
decompositions and collected the median running time and the running times for the selected and
the best tree decomposition. Shown are the medians of these three statistics over five independent
posets for each value of n.

Then we investigated whether one can efficiently select a near-optimal tree decomposition
from a collection of generated candidates. The observed variance in running times suggests
that, if successful, this could lead to a significant expedition of Countle, by up to one order
of magnitude. To constuct a “selector” we applied the method of Abseher et al. [2] in a
straightforward manner:
C1 We collected a data set of measured running times for multiple pairs of posets and tree

decompositions. We used the procedure described in the previous section, except that we
used a single poset (instead of five) for each combination of n and t. If a run was not
completed within the 20-minute time limit, we simply discarded the instance (and thus
introduced some bias).

C2 We computed for each tree decomposition the values of several features, such as statistics
of bag sizes (by node type), node depths (by node type), and distances between join
nodes; for a full feature list, see Abseher et al. [2].

C3 We fitted a multivariate linear regression model, separately for each t = 2, 3, 4, with the
features as the predictor variables and the logarithm of the running time as the response
variable. We used the machine learning software WEKA 3.6.13 [15] with default options.

To select a tree decomposition for a given new poset, we first generated 50 candidate tree
decompositions for the poset, and then selected the one for which the model predicted the
shortest running time.

We observed (Figure 2) that, for t = 2, the model is almost always able to select a top-3
tree decomposition, which yields a nearly as good (i.e., short) running time as the best among
the 50 tree decompositions. For t = 3 the performance degrades: the model is usually able to
select a top-10 tree decomposition, which yields a running time that is systematically better
than for a typical (median) tree decomposition, yet not quite achieving the performance
of the best among the generated candidates. For t = 4 the performance degrades further,
yet being better than by selecting a random tree decomposition (results not shown). In
more quantitative terms, the proportions of tree decompositions (among 50) better than the
selected one were 2.5 %, 12 %, 28 % for t = 2, 3, 4, respectively; these numbers are medians
of averages over 5 test posets (one per fixed n and t).
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5 Concluding remarks

We have presented a new tree-decomposition based algorithm for counting linear extensions.
The algorithm relies on fast multiplication of multivariate polynomials, thus differing radically
from the inclusion–exclusion approach of Kangas et al. [17]. For any constant treewidth t
the obtained asymptotic speedup is about linear in the number of elements n.

A question not settled here is whether one could save another factor of n, that is, solve
the problem in time Õ(nt+2). The present authors find this question particularly intriguing
for two reasons: One is that for finding an optimal-width tree decomposition, the best known
time complexity bound is Õ(nt+2), assuming we let t grow at least logarithmically in n. The
other reason is that for posets whose cover graph is a tree (t = 1), Atkinson’s [5] algorithm
takes – at least seemingly – a different approach and runs in time Õ(n3). Furthermore,
Atkinson’s algorithm is monotonic in the sense that all arithmetic operations are carried out
with nonnegative numbers. This is in sharp contrast to both the present algorithm and the
inclusion–exclusion algorithm, which crucially rely on a richer algebraic structure.

Our preliminary empirical study confirmed that the improvement in the asymptotic
bound consistently transfers to the running times measured in practice. That said, the
observed speedup, for n around one hundred, was by one order of magnitude rather than two.
This “leak” of efficiency can, at least in part, be explained by the present algorithm’s higher
sensitivity to the shape of the selected tree decomposition. Indeed, we observed that the
best of 50 generated tree decompositions typically yields a 5- to 10-fold speedup in relation
to a median tree decomposition. We also showed that there is an efficient way to select the
best or close-to-best tree decomposition using a linear regression model that was fitted to a
collected data set of instances along with the measured running times, following the method
of Abseher et al. [2].

However, we observed that the performance of the regression method rapidly degraded as
the treewidth t increases. This suggests that the general-purpose method may not suit well
for the problem of counting linear extensions. A potential reason for suboptimal performance
is that the default set of features [2] does not include perhaps the most informative quantity
associated with a node x in a tree decomposition, namely the term nkx (or some variant of it),
which combines the size k of the bag of x with the number of vertices in the subtree rooted
at x. This issue could be addressed by extending the feature set accordingly, or, potentially,
by using some nonlinear regression model. On the other hand, we did inspect how well a
single feature can predict a well-performing tree decomposition. We observed that for t = 2
and t = 3 the average depth of join nodes alone yielded predictions that were almost as good
as the predictions by the full regression model that used all the features. Nevertheless, these
observations also encourage looking for a simpler solution: manually constructing a heuristic
function that approximates the actual running time by adding up estimated contributions of
each tree decomposition node. Note that here the f -cost framework [9] is insufficient, as in
that framework the contribution of each node can only depend on the size of the bag.
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