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Abstract
In classical secret sharing schemes a dealer shares a secret among a set of participants in such
a way that qualified subsets can reconstruct the secret, while forbidden ones do not get any
kind of information about it. The basic parameter to optimize is the size of the shares, that
is, the amount of secret information that the dealer has to give to participants. In this paper
we formalize a notion of probabilistic secret sharing schemes, in which qualified subsets can
reconstruct the secret but only with a certain controlled probability. We show that, by allowing
a bounded error in the reconstruction of the secret, it is possible to drastically reduce the size
of the shares the participants get (with respect to classical secret sharing schemes). We provide
efficient constructions both for threshold access structures on a finite set of participants and for
evolving threshold access structures, where the set of participants is potentially infinite. Some of
our constructions yield shares of constant size (i.e., not depending on the number of participants)
and an error probability of successfully reconstructing the secret which can be made as close to 1
as desired.
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1 Introduction

Secret sharing. A secret sharing scheme is a method through which a dealer shares a piece
of information (a secret) among a set of participants, according to a specific privacy policy.
Specifically, each participant, during the sharing phase, receives and securely stores a piece
of information, called share. Then, in the reconstruction phase, prescribed subsets, called
qualified subsets, by pooling together their shares or by sending them to a trusted combiner,
can recover the secret through the computation of an appropriate reconstruction function.
All the other remaining subsets of participants, called forbidden subsets, analyzing the shares
they have, and applying any computation on them, do not get any information whatsoever
about the secret. The collection of qualified subsets forms the access structure to the secret.

The notion of secret sharing and the first constructions were introduced in 1979, independ-
ently by Shamir [34] and Blakley [6]. Both of them considered threshold access structures,
usually referred to as (k, n)-threshold schemes, where the set of participants has size n, any
subset of size greater than or equal to k is qualified, and any subset of size less than k is
forbidden. General access structures were later considered in [22, 23, 23, 4, 35, 25].

Secret sharing schemes have been widely used in cryptographic protocol design and have
been extended in many ways in order to exhibit additional properties. For a detailed overview
of the field and of the open problems the reader is referred to [2] and to [14].

Visual cryptography (visual secret sharing). Visual cryptography, introduced independ-
ently and in different forms in [31, 24], is a sharing technique in which the secret is an image,
the shares are images printed on transparencies and the reconstruction is performed by the
human visual system by looking at the superposed shares. Notice that, while the image can
be seen as a sequence of black and white pixels and thus can encode arbitrary sequences
of bits, the reconstruction function is fixed to be the or of the shares. Hence, any visual
cryptography scheme can be used as a regular secret sharing scheme, i.e., as a scheme that
uses the or function to reconstruct the secret; on the other hand, the converse is not true,
unless the scheme uses the or function on the corresponding bits of the shares to reconstruct
the secret. In the context of visual cryptography, the notion of probabilistic reconstruction
has been widely studied, e.g., [36, 13, 19], since the erroneous reconstruction of a limited
number of pixels does not significantly affect the recognizability of the reconstructed secret
image.

Evolving access structures. An interesting new variant of secret sharing schemes has been
introduced recently in [26, 27]. The authors have considered a setting in which the set of
participants is infinite and the access structure is defined through a collection of access
structures, not known at the beginning. More precisely, at any time t, a new participant
arrives and new qualified subsets – if any – are added to the existing access structure At−1,
obtaining the new one At. The authors of [26, 27] design secret sharing schemes in such a
new scenario for threshold access structures, denoted as (k,∞)-threshold schemes, and for
general access structures. The authors of [26, 27] have also shown a nice equivalence between
(2,∞)-threshold schemes and prefix-free codes for the integers. Further results have been
provided in [32, 28].

Motivations of the present work. Since their introduction, secret sharing schemes have
represented a relevant research area in Cryptography. Secret sharing schemes are an important
tool by themselves, as well as a building block both in the general solutions for multi-party
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computation and in the design of ad-hoc protocols. A central issue in the area has been to
provide constructive results and non-existential results towards the possibility of obtaining
secret sharing schemes that provide to the users shares short in size. For threshold access
structures and ramp schemes tight bounds have been provided in [11] and in [9].

Unfortunately, for general access structures what can be done is still an open problem:
for many access structures the known constructions deliver to the users shares of exponential
size in the number n of participants [5] (see also [30] for recent important improvements).
The best lower bound on the size of the shares is instead sublinear as it was proved in [8, 15]
using the information theoretic approach introduced in [10]. For the subclass of linear general
secret sharing schemes recent results of [33] provide exponential lower bounds.

Several papers have considered secret sharing schemes in which the privacy condition has
been relaxed, both in a statistical sense, i.e., the privacy is not information-theoretic but
there is a probability of information leakage, and in a computational sense, i.e., the privacy is
only guaranteed with respect to computationally bounded adversaries, e.g., [29]. In [16, 20]
secret sharing schemes are seen as joint probability distributions of the shares and the secret.
This particular view is introduced to study the case of infinite participants and to deal with
infinite domains for the shares. The approach leads to a probabilistic notion of security
allowing information leakage. So, it is quite different from the approach pursued in this
paper. To our knowledge, although the relaxation of the property that qualified subsets can
correctly recover the secret has been mentioned in a few papers, no study has focused on the
analysis and the design of secret sharing schemes in which the secret can be reconstructed
only with a prescribed high probability. Exceptions consist for the specific case of visual
cryptography [17] and, notably, the secret sharing scheme of [21]. We remark that the model
used in [21], that allows public information, is different from the one considered in this paper.

Hence, it seems natural to ask the following question:

Can we reduce the size of the shares held by the participants if we allow a small
probability of error in the reconstruction phase?

In this paper we show that it is possible to give an answer to the above question by
providing, among other results, a quantitative trade-off between the probability of a correct
reconstruction and the size of the shares.

Our contribution. We proceed as follows: in Section 2, we introduce a formal definition of
probabilistic secret sharing schemes that intends to capture the intuition given above. We
consider both access structures on a finite set of participants and evolving access structures
defined over an infinite set of participants. Then, in Section 3, we discuss probabilistic
constructions for the finite case and, in Section 4, we propose a probabilistic construction
for a (2,∞)-threshold secret sharing scheme. In Section 5, we describe and analyze some
methods to build more general schemes from simpler ones. Our techniques are of general
interest since they apply to both deterministic and probabilistic secret sharing schemes. Then,
in Section 6, we describe and analyze a direct construction for probabilistic secret sharing
schemes, which gives to participants shares of constant size, with respect to the number of
participants, and enables the dealer to set the probability of reconstruction as high as he
needs. Finally, in Section 7, we provide conclusions and briefly discuss some open problems.

Overview of results and techniques. We define and provide constructions for α-probabilistic
secret sharing schemes for threshold access structures, where α denotes the probability of
a correct reconstruction, both for the finite and the infinite cases, by using a variety of
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techniques. Throughout the paper, unless otherwise stated, we assume that the secret is a
single bit.

Focusing on the finite case, where the set of participants is fixed and has size n, we
leverage on a nice connection in visual secret sharing schemes between deterministic and
probabilistic schemes. We show how a probabilistic visual secret sharing scheme can be
turned easily into an α-probabilistic secret sharing scheme for the same access structure.
To deal with evolving access structures, we design a (2,∞)-threshold 1+p

2 -probabilistic
secret sharing scheme, where (p, 1− p) is the probability distribution of the secret bit.
Our construction is inspired by the (2,∞)-threshold visual cryptography scheme provided
in [12], which seems to be the first paper that has considered the problem of constructing
a visual secret sharing scheme for an infinite set of participants. It is simple and allows
to share a 1-bit secret with shares of 1-bit.
Successively, in order to construct more general schemes from simpler ones, using a
recursive approach, we present two algorithms: the first builds a (k + 1,∞)-threshold α-
probabilistic secret sharing scheme from a (k,∞)-threshold β-probabilistic secret sharing
scheme. The second builds a (k + 1,∞)-threshold α-probabilistic secret sharing scheme
from k schemes, i.e., by using, for j = 2, . . . , k, a (j,∞)-threshold αj-probabilistic
secret sharing scheme. We point out that the algorithms can be used to construct
both probabilistic schemes and deterministic schemes for evolving access structures. In
particular, for both of our methods, if we use the most efficient deterministic (2,∞)-
threshold secret sharing scheme provided in [26, 27] and apply to the scheme resulting
from the algorithms, the same domain reduction technique which is used in [26, 27], we get
deterministic schemes for evolving access structures which achieve the same asymptotic
share size of the ones obtained in [26, 27]. Hence, the new schemes can be seen as an
alternative way for constructing deterministic schemes. On the other hand, for both
of our algorithms, starting from our (2,∞)-threshold 1+p

2 -probabilistic secret sharing
scheme, we obtain (k,∞)-threshold α-probabilistic secret sharing schemes which achieve
asymptotically the same share size of the deterministic schemes.
Finally, through a direct construction, which uses the shares of Shamir’s scheme, we
provide a (k,∞)-threshold α-probabilistic secret sharing scheme which enables to share a
1-bit secret with shares of constant size. Moreover, the scheme exhibits a nice trade-off
between the probability α of successfully reconstructing the secret and the size of the
underlying field: indeed, α can approach 1 as much as desired by properly choosing the
size of Fq. For the case in which k is equal to 2, we explain the differences between this
construction and the (2,∞)-threshold 1+p

2 -probabilistic secret sharing scheme presented
in Section 4. Finally, we emphasize that our construction also applies to the case of a
finite number of participants, and we describe advantages and disadvantages associated
with it.

Hence, the probabilistic approach we suggest enables to beat the lower bounds on the size of
the shares the deterministic threshold schemes are subject to, both for the case of a finite set
of participants and for the infinite one.

Related work. Other models for secret sharing schemes have been introduced in the past
years in order to reduce the size of the shares held by the participants. More precisely, secret
sharing schemes in which the correctness property holds with no error, and the privacy
property holds with identical probability distributions on the shares held by the participants
of a forbidden subset, are called perfect. Non-perfect secret sharing schemes are less restrictive.
For example, in a (d, t, n)-ramp scheme [7], the first and most relevant case of non-perfect
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secret sharing schemes, forbidden subsets of size less than d do not get any information
about the secret, qualified subsets of size greater than or equal to t reconstruct the secret,
while subsets whose sizes are “in between” get some information about the secret. Note
that ramp schemes are a close but different class of non-perfect schemes, compared to the
probabilistic ones we introduce here. Similarly, computational secret sharing schemes [29]
are another class of non-perfect secret sharing schemes; in such schemes the privacy property
requires computationally indistinguishable probability distributions on the shares held by
the participants of a forbidden subset. In both cases, it is possible to design schemes with
shorter share size compared to the size of the shares in perfect secret sharing schemes.

2 The Models

In this section we introduce the models we work with. We essentially follow and extend the
treatment of [2, 26, 27].

Let Pn = {p1, . . . , pn} be a finite set of n participants, and let 2Pn be the set of all the
subsets of Pn. A collection of subsets A ⊆ 2Pn is monotone if, for each subsets B,C ∈ Pn

such that B ⊆ C, the condition B ∈ A implies C ∈ A.
An access structure is defined as follows:

I Definition 1. An access structure A on the set Pn = {p1, . . . , pn} is a monotone collection
of subsets of Pn, i.e., A ⊆ 2Pn . Subsets in A are called qualified. Subsets not in A are called
forbidden.

To avoid overburdening the notation, when it is clear from the context, we use the
letter which denotes a subset of participants also to denote the subset of the indices of the
participants. We define a probabilistic secret sharing scheme as follows.

I Definition 2. Let S be a set of secrets such that |S| ≥ 2, and let α be a positive real value
such that 0 < α ≤ 1. An α-probabilistic secret sharing scheme Π for an access structure A on
the set of participants Pn and set of secrets S consists of a pair of probabilistic polynomial
time algorithms (Share,Recon) where

Share gets as input a secret s ∈ S and outputs n shares sh1, . . . , shn

Recon gets as input the shares of a subset A ⊆ Pn, denoted by {shi}i∈A, and outputs a
string

such that the following two requirements are satisfied:
1. α-correctness: for every s ∈ S and every qualified subset A ∈ A, it holds that

Prob[Recon({shi}i∈A) = s] ≥ α.

2. perfect privacy: for every forbidden subset B /∈ A and for every two secrets s1, s2 ∈ S,
it holds that the probability distributions {sh1

i }i∈B and {sh2
i }i∈B, associated to the

corresponding secrets, are the same.

I Remark. Notice that, when the parameter α is equal to 1, we get the traditional notion
of perfect secret sharing scheme, in which the secret is always reconstructed by qualified
subsets of participants.
I Remark. As pointed out in [2], the above definition can be easily relaxed to consider
less stringent privacy notions, in which the probability distributions on the set of shares of
forbidden subsets are not required to be identical but only statistically close or computationally
indistinguishable.

MFCS 2018
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The share size of the scheme is the maximum number of bits each participant holds in
the worst case, over all participants and all secrets.

In order to introduce evolving schemes, we need to modify the setting and extend some of
the previous notions. Basically, we define a sequence of access structures but require that the
access structures be monotone: parties are only added and qualified subsets remain qualified
in the future.
Let P = {p1, p2, . . . , } be an infinite set of participants.

I Definition 3. [26, 27] Let A be an access structure on Pn and let m be an integer such that
0 < m < n. We denote by A|m the restriction of A to Pm, i.e., to the first m participants.

The following result holds:

I Claim 4. [26, 27] If A is an access structure on Pn, then A|m is an access structure on
Pm.

I Definition 5. [26, 27] Let N be the set of the natural numbers. A (possibly infinite)
sequence of access structures {At}t∈N is called evolving if, for every t ∈ N, the following
conditions hold:
At is an access structure over Pt

At|t−1 is equal to At−1.

At this point, we can extend the definition of a probabilistic secret sharing scheme to
evolving access structures:

I Definition 6. Let S be a set of secrets such that |S| ≥ 2, and let α be a positive real
value such that 0 < α ≤ 1. An α-probabilistic secret sharing scheme Π for an evolving access
structure {At}t∈N on the infinite set of participants P and set of secrets S consists of a pair
of probabilistic polynomial time algorithms (Share,Recon) where

Share gets as input a secret s ∈ S and the shares sh1, . . . , sht−1, generated for participants
p1, . . . , pt−1, and outputs the share sht for the t-th participant
Recon gets as input the shares of a subset A ⊆ P, denoted by {shi}i∈A, and outputs a
string

such that the following two requirements are satisfied:
1. α-correctness: for every s ∈ S, for every t ∈ N, and for every qualified subset A ∈ At,

it holds that

Prob[Recon({shi}i∈A) = s] ≥ α.

2. perfect privacy: for every t ∈ N, for every forbidden subset B /∈ At and for every two
secrets s1, s2 ∈ S, it holds that the probability distributions {sh1

i }i∈B and {sh2
i }i∈B,

associated to the corresponding secrets, are the same.

The share size of the scheme is the maximum number of bits the t-th participant holds
in the worst case, over all secrets and previous share assignments.
I Remark. When the parameter α is equal to 1, we get the notion of perfect evolving
secret sharing scheme, in which the secret is always reconstructed by qualified subsets of
participants, given in [26, 27]. Notice also that the above definition, when P is finite and
A is fixed and known at the beginning, i.e., P = Pn for a certain n and {At}t∈N = A, it
formally does not coincide with Definition 2. Indeed, the former generates the shares in
one-shot, while the latter generates the shares sequentially. However, it is easy to see they
are equivalent. Moreover, the considerations we have done on relaxing the privacy notion
apply also here.
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Notice that in [3] a unified framework for secret sharing schemes has been introduced.
It enables to model together perfect, statistically a computationally secure secret sharing
schemes. It also models the notion of robustness, i.e., the possibility of reconstructing a secret
even if some shares are missing or corrupted, assuming an honest dealer. We point out that
the 36 notions the authors have provided do not consider any relaxation of the correctness
condition. Moreover, we have preferred to follow [2, 26, 27] in modeling the notion instead of
extending [3] because it is easy to work with [2, 26, 27] and, perhaps, results in an abstract
easier to read.

3 Probabilistic schemes for the threshold finite case

Visual cryptography schemes are a special type of secret sharing schemes for which, roughly
speaking, the Recon algorithm is the or function1. Several models of visual cryptography
have been studied: Kafri and Keren [24] introduced the so-called random grid model, Naor
and Shamir [31] coined the term “visual cryptography” providing a deterministic model,
Yang [36] introduced the probabilistic model, which actually is equivalent to the model of
Kafri and Keren, and Cimato et al. [13] generalized the probabilistic model. Finally, De
Prisco and De Santis [19] proved that all these models are related to each other and, thus,
they can be seen simply as different ways of looking at the same object. The interested reader
is referred to [17] for a recent survey on models, issues, applications and new directions in
visual cryptography and to the references therein quoted.

The particular “view” that is of interest in the context of this paper is the probabilistic
one: in that model we already have the notion of a probabilistic reconstruction, where a
secret pixel is correctly reconstructed only with a given probability. Nevertheless, notice that
in the context of visual cryptography the error is less critical than in the context of general
secret sharing: indeed, the whole secret which is visually reconstructed consists of many
pixels, often thousands, and, even if some of them are incorrectly reconstructed, the only
tangible effect is that the secret is reconstructed on a different, usually darker, background.

Anyway, being visual cryptography a special type of secret sharing, we can use visual
cryptography schemes as secret sharing schemes. Since there is basically no research on
probabilistic secret sharing, it is useful to start by taking probabilistic visual secret sharing
scheme and “translating” them into probabilistic secret sharing schemes. We said “translating”
instead of “using” because an obvious improvement that can be made is that of using a
different Recon function, since in regular secret sharing we are not constrained to using the
or performed by the human visual system in the reconstruction process.

In [19] it has been proved that any deterministic visual cryptography scheme can be
transformed into a probabilistic visual cryptography scheme. By using this result we can
transform any deterministic visual cryptography scheme into a probabilistic secret sharing
scheme. We explain the technique using an example.

1 In visual cryptography schemes, the bits of the shares are pixels printed on transparencies and the
reconstruction consists in superposing the transparencies; the human visual system performs the or
operation on the “bits” in the corresponding positions.
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Consider a (3, 4)-threshold scheme. The following deterministic scheme has been presented
in [1]. The scheme is described by two base matrices, B0 and B1:

B0 =


000111
001011
001101
001110

 B1 =


000111
100110
010110
001110


The two base matrices define the collections C0 and C1, where Cb, b = 0, 1, contains all

the matrices that can be obtained by permuting in all possible ways the columns of Bb. In
order to share the secret the dealer (randomly) chooses a specific permutation and gives to
each participant a row of the corresponding matrix of the collection Cb, where b is the secret
bit. More specifically, participant i gets the ith row of the selected matrix (permutation).

For example, considering, for simplicity, the identity permutation, if the secret pixel is
b = 0, that is a white pixel, then participant 1 gets a share where the first three subpixels are
white and the last three are black, described with the binary string 000111, while participant
2 gets a share described by 001011, that is, the subpixels are white-white-black-white-black-
black; etc. Superposing three shares for the reconstruction, it is guaranteed that, if the secret
pixel is white, then the reconstructed version has 4 black subpixels out of 6; while, if the
secret pixel is black, then the reconstructed version has 5 black subpixels out of 6. The fact
that all permutations are considered ensures security.

A probabilistic visual cryptography scheme can be easily derived from the above determ-
inistic scheme (see [19] for more details). In such a scheme, the secret pixel (bit) is shared by
giving to each participant a white (0) or black (1) pixel (bit) according to the following sets2:

C0 =




0
0
0
0

 ,


0
0
0
0

 ,


0
1
1
1

 ,


1
0
1
1

 ,


1
1
0
1

 ,


1
1
1
0


 ,

C1 =




0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1

 ,


1
1
1
1

 ,


1
1
1
1

 ,


1
0
0
0


 .

More precisely, if the secret pixel is b, with b ∈ {0, 1}, the 4 participants are given shares
according to one of the vectors in the set Cb, where the specific vector is chosen uniformly at
random in the set. The reconstruction function is the or of 4 bits. Looking at this scheme
as a visual cryptography scheme, we have that a secret white (0) pixel is reconstructed
correctly 1/3 of the times, while a secret black (1) pixel is reconstructed correctly 5/6 of the
times. Assuming a uniform distribution of the secret pixel, the reconstruction is correct with
probability 7/12.

On the other hand, using the xor function as Recon we have that in both cases the secret
pixel is reconstructed correctly 5/6 of the times. This provides a 5/6-probabilistic scheme
for sharing one bit, regardless of the distribution of the secret bit.

2 Notice that these sets are easily constructed from the base matrices since each member of the set
corresponds to a column of the base matrix.
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The above “transform” of a visual cryptography scheme into a probabilistic secret sharing
scheme can be applied to any visual cryptography scheme. In particular, it is possible
to construct schemes for threshold and general access structures defined on a finite set of
participants.Unfortunately, the constructions do not extend to the evolving case. So, we
would like to find schemes that allow to manage an evolving set of participants.

As a side note, we point out an interesting fact: in the recent years, it has been shown that
visual cryptography schemes can be used for secure computation in non standard settings, in
which it is desirable to reduce the trust in digital devices [19, 18]. Here, we are going the
other way around: we are using visual cryptography schemes for building probabilistic secret
sharing schemes which can be used in standard digital computation.

4 A probabilistic (2,∞)-threshold construction

In this section we present a construction of a probabilistic threshold scheme for the case
of k = 2. The construction works both for a finite set of participants and for an infinite
set of participants; the sharing phase is similar to the one described in Algorithm 2 of [12].
We present it as a (2,∞)-threshold scheme, although the same construction works for a
(2, n)-threshold scheme, when n is fixed in advance.

Let s be a secret bit. Let pi be the i-th participant, with i potentially growing to ∞ (or
up to a fixed n).

I Construction 7. The construction works as follows.
The Share algorithm takes as input the index i and produces a share for pi as follows:
for the first participant, that is for i = 1, the share is a random bit b1; for the other
participants, that is, for i > 1, if the secret is s = 0 then the share is b1, the same bit
given to p1, whereas if the secret is s = 1 the share is a new random bit bi. In other
words, if the secret is s = 0, then only one random bit is produced and all participants get
that random bit as their share, while if the secret is 1 then each participant gets a new
random bit.
The Recon algorithm takes in input two shares, that is two bits bi and bj and outputs 0 if
bi = bj (the two shares are equal), and 1 if bi 6= bj (the two shares are different).

I Theorem 8. Construction 7 builds a 1+p
2 -probabilistic (2,∞)-threshold scheme, where

(p, 1− p) is the distribution of the secret bit.

Proof. We start by proving that the scheme is secure, that is any forbidden set does not
have information about the secret bit. Indeed, let B = {pi} be a forbidden set, a set with
a single participant, and let s1, s2 ∈ S be two secret bits. The probability distribution of
the share that pi gets for s1 is the same as the one that pi gets for s2. Indeed the share is
always a random bit, so in both cases the probability distribution is (0.5, 0.5) over the two
possible values.

Next we prove that a qualified subset can reconstruct the secret with (1+p)/2-correctness.
Let A be a qualified subset. In order to compute Prob[Recon({shi}i∈A) = s], consider the
two possible cases, s = 0 and s = 1. The first one occurs with probability p and the second
one with probability (1− p). Thus, we have that:

Prob[Recon({shi}i∈A) = s] = p · Prob[Recon({shi}i∈A) = 0|s = 0]+
(1− p) · Prob[Recon({shi}i∈A) = 1|s = 1].

When s = 0, all the shares are equal, thus Recon gives 0 as output and the reconstruction
is always correct. Hence, Prob[Recon({shi}i∈A) = 0|s = 0] = 1. On the other hand, when
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s = 1, all the shares are independent random bits, thus Recon gives in output 1 only half of
the times, which means that Prob[Recon({shi}i∈A) = 1|s = 1] = 1/2.

Therefore, we have that:

Prob[Recon({shi}i∈A) = s] = p · 1 + (1− p) · 1
2 = 1 + p

2 . J

For p = 0.5, we get a scheme with 3
4 -correctness. Notice also that, when p 6= 0.5, since

we can easily swap 0 and 1, we can always change p to be 1− p to get a better correctness
probability.
Finally, it is also easy to see that the above protocol can be strengthened, by using shares of 2
or more bits, constructed along the same line of the former, in order to make the probability
of error as low as desired. Precisely, for sharing 0, the dealer chooses c bits uniformly at
random and gives them to all participants. On the other hand, for sharing 1, to each new
participant are provided c bits, chosen uniformly at random each time.

5 Transforms for general schemes from simpler ones

Once we have provided a probabilistic (2,∞)-threshold construction it is a natural problem
to extend it to the probabilistic (k,∞)-threshold case. In this section we provide two different
constructions for the general threshold case. The first one builds on an auxiliary probabilistic
(k,∞)-threshold construction which is used in a black-box way to build a probabilistic
(k + 1,∞)-threshold scheme. The probability α of correct reconstruction is preserved. For
the second construction we use a family of probabilistic (j,∞)-threshold schemes, for j ≤ k,
to obtain a probabilistic (k+ 1,∞)-threshold scheme. The new scheme correctly reconstructs
with probability at least the worse reconstruction probability of the schemes from the family.

The interesting aspect of the second construction lies in the fact that parties are grouped
in generations of increasing size. The sizes of these generations are left as parameters of
the construction and choosing them carefully leads to improvements in the share size with
respect to the first construction.

Note that, if all auxiliary schemes provide 1-correctness, then the compiled constructions
are also 1-correct; therefore, we are providing alternative constructions for the deterministic
evolving (k,∞)-threshold schemes presented in [26, 27]. In addition, if we apply to our
constructions the same domain reduction technique which is used in [26, 27] to reduce the
size of the shares, we get deterministic schemes for evolving access structures which achieve
the same asymptotic share size of the ones obtained in [26, 27].

We denote by [n] the set {1, . . . , n} and, for consistency of some formulas, [0] denotes the
empty set.

5.1 From (k,∞)-threshold to (k + 1,∞)-threshold
Let s ∈ {0, 1} be the secret. The idea behind this construction is that at the arrival of party
t, he receives the value s⊕ r, where r is a freshly and uniformly random generated bit. The
bit r is then shared by using the (k,∞) scheme with every party arriving after that moment.

More precisely, let Π denote the auxiliary (k,∞)-threshold scheme and let Λ be the
(k + 1,∞)-threshold we are about to construct. At the time of arrival of party t, the share
sht for the new scheme Λ is constructed in the following way:
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1. A bit rt ∈ {0, 1} is chosen uniformly at random.
2. For every j ∈ [t− 1] a new share wt,j of rj is computed with Π.
3. The share of party t for the scheme Λ is the following (ordered) set of values:

sht = {s⊕ rt} ∪ {wt,j}j∈[t−1]

For the Recon algorithm of Λ, assume that k + 1 parties Pt0 , Pt1 , . . . , Ptk
, which are

chronologically ordered, want to reconstruct. Then, the last k parties run the Recon algorithm
of Π with inputs (wt1,t0 , wt2,t0 , . . . , wtk,t0) in order to recover the value rt0 . Once rt0 is
recovered it is xored with the value s⊕ rt0 , held by Pt0 , to recover s.

I Theorem 9. If Π is an α-probabilistic scheme for the (k,∞)-threshold access structure
then Λ is an α-probabilistic scheme for the (k + 1,∞)-threshold access structure.

Proof. First we prove the security of Λ. Let F = {Pt1 , . . . , Ptl
} be a set of l ≤ k parties

which is chronologically ordered. The only value that party Ptj
holds which is related to the

secret is s⊕ rtj . But then, as rtj has only been shared with players arriving later than Ptj

and there are at most k− 1 of them, the value rtj
is a uniformly distributed random bit from

the perspective of F due to the perfect privacy of Π. Therefore, the value s⊕ rtj
is also a

uniformly distributed random bit for the set F . Thus, we have shown perfect privacy for Λ.
Next, for α-correctness, notice that the reconstruction algorithm of Π is used precisely

once when reconstructing with Λ. If the value rt0 is correctly reconstructed so it is the secret
s. Therefore, if rt0 is correctly reconstructed with probability at least α, then the same holds
for s. Our result for α-correctness follows from this fact. J

I Remark. Note that for α = 1 we get a transform for regular (i.e. non probabilistic) evolving
schemes.

Share size. Let sizeΠ(sht) denote the bitlength of the t-th share of the scheme Π. For the
scheme Λ the size of the t-th share verifies

sizeΛ(sht) = 1 +
t−1∑
j=1

sizeΠ(shj) ≤ 1 + (t− 1) · sizeΠ(sht−1)

where the last inequality holds if we assume that the shares are increasing in size, which is
usually the case.

5.2 From {(j,∞)-threshold}j=2,...,k to (k + 1,∞)-threshold
Let k ≥ 2 be an integer number. Assume that, for any j ∈ {2, . . . , k}, Πj is an auxiliary
(j,∞)-threshold scheme, and let Λ be the (k + 1,∞)-threshold scheme we are about to
construct. For consistency of notation, assume that Π1 is a scheme that provides the secret
to every participant. Let s ∈ {0, 1} be the secret. In this construction parties are grouped
together in generations. For every integer i ≥ 1, generation Gi is a set consisting of gi

consecutive participants. G1 starts with P1 while each subsequent generation starts with the
participant following the last participant of the previous generation. For generation sizes we
only require that they are an increasing sequence and all greater or equal than the target
threshold, that is, k < g1 ≤ g2 ≤ g3 ≤ . . . .

When a generation Gm starts, the following values are computed:

MFCS 2018



64:12 Probabilistic Secret Sharing

1. k random bits r(m)
1 , . . . , r

(m)
k are chosen.

2. For every j ∈ [k], the value s⊕ r(m)
j is shared by using a regular (j, gm)-threshold scheme,

e.g., Shamir’s scheme. Let u(m)
j,l denote the l-th share.

3. The secret s is shared by using a (k+ 1, gm)-threshold scheme. Let u(m)
k+1,l denote the l-th

share.

When the player Pt, which is the l-th player of generation Gm, arrives, the following
values are computed:
4. For each i ∈ [m− 1] and j ∈ [k] a new share for the random bit r(i)

j is computed by using
the (k + 1− j,∞)-threshold scheme Πk+1−j . Note that it takes as inputs all the shares
of r(i)

j previously computed. Let v(i)
j,l denote this share.

5. The share of party t is the following (ordered) set of values:

Λ(s)
t = {u(m)

j,l }j∈[k+1] ∪ {v
(i)
j,l }j∈[k],i∈[m−1]

For the Recon algorithm of Λ, assume that a set F consisting of k + 1 parties want to
reconstruct. Moreover, assume that m is the first index such that a party from Gm is in F .
Let split F in two parts, F0 = F ∩Gm and F1 = F \ F0, that is, F0 consists of the parties
from F which are in generation Gm and F1 consists of parties from subsequent generations.
Let k0 > 0 be the cardinal of F0 and k1 ≥ 0 the cardinal of F1. Note that k0 + k1 = k + 1.
Now there are two different cases:
1. If k1 = 0, that is, all players are in generation Gm, they use their {u(m)

k+1,l}l shares from
the (k + 1, gm)-threshold scheme to recover s.

2. If k1 > 0, then the players in F0 use their {u(m)
k0,l}l shares from the (k0, gm)-threshold

scheme to recover s⊕ r(m)
k0

. On the other hand, the players in F1 use their {v(m)
k1,l}l shares

from the (k1,∞)-threshold scheme Πk1 to recover r(m)
k0

. Then, the two values s⊕ r(m)
k0

and r(m)
k0

are xored together and the secret is recovered.

I Theorem 10. If, for every j ∈ {2, . . . , k}, Πj is an αj-probabilistic scheme for the (j,∞)-
threshold access structure, then Λ is an α-probabilistic scheme for the (k + 1,∞)-threshold
access structure, where α = minj=2,...,k{αj}.

Proof. The result follows from a similar analysis than the one for the proof of Theorem 9.
For α-correctness note that at most one of the schemes Πj is used for reconstruction, while
the other steps provide 1-correctness. J

Share size. The share of party t, which is the l-th participant from generation m includes
k + 1 different shares {u(m)

j,l }l∈[k+1] for a (j, gm)-threshold scheme. If instantiated with
Shamir’s scheme each of them is of size blog2(gm)c. Therefore we have:

sizeΛ(sht) = (k + 1)blog2(gm)c+
m−1∑
i=1

k∑
j=1

sizeΠj (v(i)
j,l )

6 A probabilistic (k,∞)-threshold construction with constant share
size

It is possible to construct probabilistic (k,∞)-threshold schemes starting from our construc-
tion provided in Section 4. In order to do so, we need to first apply iteratively the transforms
from Section 5, and then apply the same domain reduction technique of [26, 27]. However, the
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probabilistic (k,∞)-threshold constructions obtained in this way have the same asymptotic
share size as the ones in [26, 27]. Thus, it might seem that there is no gain in moving from
the deterministic to the probabilistic scenario. However, in the following, we show how to
construct schemes with better share size.

More precisely, we propose a probabilistic (k,∞)-threshold construction with constant
size shares, which is known to be impossible in the deterministic scenario, due to the lower
bound presented in [26, 27]. Moreover, by choosing the parameters appropriately, the scheme
can be made α-correct, with α as closer to 1 as desired, at the expenses of an increase in the
size of the underlying field.

Let q > k be a prime power and let Fq be a finite field with q elements. The idea behind
this construction is giving each player an independently chosen at random Shamir share for a
(k, q)-threshold scheme. In this case the secret s is an arbitrary element of Fq, that is, s ∈ Fq.

The scheme works as follows: at the beginning of the execution, a k−1 degree polynomial
p(x) ∈ Fq is chosen as in Shamir’s scheme, that is, such that p(0) = s. Upon arrival of
participant t, a value rt is chosen uniformly at random from Fq \{0}. The share of participant
t is the pair (rt, p(rt)).

For reconstruction, a group of m participants checks if they hold at least k different values
from Fq as the first component of their shares. If this is the case they recover polynomial
p(x) by interpolation and output p(0). Otherwise, they output a random value in Fq.

I Theorem 11. The previous construction is an α-probabilistic scheme for the (k,∞)-
threshold access structure, where

α = 1
(q − 1)k

k∏
i=1

(q − i)

Proof. For security, take into account that m < k participants hold m shares for the Shamir’s
(k, q) threshold scheme and perfect privacy trivially follows.

For α-correctness, the probability of k different participants getting k different shares
and thus being able to correctly reconstruct the secret equals the probability of getting k
different items when choosing k times, independently and uniformly at random, from q − 1
different items, which equals

k∏
i=1

q − i
q − 1 = 1

(q − 1)k

k∏
i=1

(q − i)

Note also that if m ≥ k participants are present upon reconstruction, the probability of
getting k different values only increases. The value of α follows from these facts. J

Share size. A single share is a pair of two elements of Fq, thus its size equals 2(blog qc+ 1).
I Remark. For a fixed value of k, the probability of correct reconstruction α approaches to
1 when q → ∞. Therefore, it is possible to get a scheme with α as closer to 1 as desired
by appropriately choosing the value of q. Of course, increasing the value of q produces an
increase in the share size.
I Remark. As pointed out in the proof, the participation of more than k parties in the
reconstruction phase makes the probability of correctly reconstructing the secret to increase.

Comparison with the scheme from Section 4. Next we provide a brief comparative analysis
between our constructions from Sections 4 and 6, when both are used to share secrets of the
same size for the (2,∞)-threshold access structure. Assume that s ∈ {0, 1}l is a bitstring of
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length l. When using the construction from Section 4 in a direct way, l independent instances
are needed in order to share s. Thus, the share size equals l and the probability of perfect
reconstruction, for example, assuming the uniform distribution on the secret space, equals
(3/4)l. On the other hand, when using the construction from this section with k = 2, we can
choose q as the smaller prime power such that q > 2l. Then, the share size equals blog qc
which will be equal or very close to l. And the probability of correct reconstruction equals

q − 1
q − 1 ·

q − 2
q − 1 = q − 2

q − 1

Note that both constructions have almost the same share size, but the probability α of
correct reconstruction for the former scheme tends to 0, while for the latter scheme tends to
1 as l grows. We can conclude, looking at concrete numbers, that our construction from this
section performs much better than the one from Section 4, even for small values of l.

7 Conclusions and open problems

We have introduced the notion of α-probabilistic secret sharing schemes and provided two
efficient constructions for threshold access structures and for evolving threshold access
structures with shares of constant size, with respect to the number of participants, and
probability of reconstruction as close to 1 as desired.

Many questions arise from the above study. We point out just two main challenging
problems: the first one is how to design efficient probabilistic secret sharing schemes for
general access structures for an infinite set of participants and which gain (if any) we can
get, compared to perfect secret sharing schemes, in terms of share size. The second one is
related to the power of probabilistic secret sharing schemes. Indeed, in [2] (Section 6), results,
attributed to Rudich, show that it is unlikely to obtain efficient secret sharing schemes for
certain access structures unless NP = co-NP . The proof uses the perfect correctness of the
secret sharing schemes. The question is whether or not we can overcome the impossibility
results by Rudich with probabilistic secret sharing schemes.
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