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—— Abstract

A dominating set D of a graph G is a set of vertices such that any vertex in G is in D or its

neighbor is in D. Enumeration of minimal dominating sets in a graph is one of central problems
in enumeration study since enumeration of minimal dominating sets corresponds to enumera-
tion of minimal hypergraph transversal. However, enumeration of dominating sets including
non-minimal ones has not been received much attention. In this paper, we address enumeration
problems for dominating sets from sparse graphs which are degenerate graphs and graphs with
large girth, and we propose two algorithms for solving the problems. The first algorithm enumer-
ates all the dominating sets for a k-degenerate graph in O (k) time per solution using O (n + m)
space, where n and m are respectively the number of vertices and edges in an input graph. That
is, the algorithm is optimal for graphs with constant degeneracy such as trees, planar graphs,
H-minor free graphs with some fixed H. The second algorithm enumerates all the dominating
sets in constant time per solution for input graphs with girth at least nine.
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1 Introduction

One of the fundamental tasks in computer science is to enumerate all subgraphs satisfying
a given constraint such as cliques [23], spanning trees [25], cycles [2], and so on. One of
the approaches to solve enumeration problems is to design exact exponential algorithms,
i.e., input-sensitive algorithms. Another mainstream of solving enumeration problems is to
design output-sensitive algorithms, i.e., the computation time depends on the sizes of both
of an input and an output. An algorithm A is output-polynomial if the total computation
time is polynomial of the sizes of input and output. A is an incremental polynomial time
algorithm if the algorithm needs O (poly(n,i)) time when the algorithm outputs the 4"
solution after outputting the (i — 1)*® solution, where poly(-) is a polynomial function. A
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runs in polynomial amortized time if the the total computation time is O (poly(n)N), where
n and N are respectively the sizes of an input and an output. In addition, A runs in
polynomial delay if the maximum interval between two consecutive solutions is O (poly(n))
time and the preprocessing and postprocessing time is O (poly(n)). From the point of
view of tractability, efficient algorithms for enumeration problems have been widely studied
[1,2,6,11,12,20,23,25,27]. On the other hands, Lawler et al. show that some enumeration
problems have no output-polynomial time algorithm unless P = NP [21]. In addition,
recently, Creignou et al. show a tool for showing the hardness of enumeration problems [8].

A dominating set is one of a fundamental substructure of graphs and finding the minimum
dominating set problem is a classical NP-hard problem [12]. A vertex set D of a graph G is
a dominating set of GG if every vertex in G is in D or has at least one neighbors in D. The
enumeration of minimal dominating sets of a graph is closely related to the enumeration of
minimal hypergraph transversals of a hypergraph [10]. Kanté et al. [18] show that the minimal
dominating set enumeration problem and the minimal hypergraph transversal enumeration
problem are equivalent, that is, the one side can be solved in output-polynomial time if the
other side can be also solved in output-polynomial time. Several algorithms that run in
polynomial delay have been developed when we restrict input graphs, such as permutation
graphs [18], chordal graphs [19], line graphs [20], graphs with bounded degeneracy [16],
graphs with bounded tree-width [7], graphs with bounded clique-width [7], and graphs with
bounded (local) LMIM-width [14]. Incremental polynomial-time algorithms have also been
developed, such as chordal bipartite graphs [13], graphs with bounded conformality [3], and
graphs with girth at least seven [15]. Kanté et al. [17] show that the conformality of the closed
neighbourhood hypergraphs of line graphs, path graphs, and (Cy, C5, claw)-free graphs is
constant. However, it is still open whether there exists an output-polynomial time algorithm
for enumerating minimal dominating sets from general graphs.

Since the number of solutions exponentially increases compared to the minimal version,
even if we can develop an enumeration algorithm that runs in constant time per solution, the
algorithm becomes theoretically much slower than some enumeration algorithm for minimal
dominating sets. However, when we consider the real-world problem, we sometimes use
another criteria for enumerating solutions that form dominating sets in a graph. That is,
enumeration algorithms for minimal dominating sets may not fit in with other variations of
minimal domination problems. E.g., a tropical dominating set [9] and a rainbow dominating
set [4] are such a dominating set. Thus, when we enumerate solutions of such domination
problems, our algorithm becomes a base-line algorithm for these problems. Thus, our main
goal is to develop an efficient enumeration algorithm for dominating sets.

Main results: In this paper, we consider the relaxed problems, i.e., enumeration of all
dominating sets that include non-minimal ones in a graph. We present two algorithms, EDS-D
and EDS-G. EDS-D enumerates all dominating sets in O (k) time per solution, where k is the
degeneracy of a graph (Theorem 13). Moreover, EDS-G enumerates all dominating sets in
constant time per solution for a graph with girth at least nine (Theorem 25), where the girth
is the length of minimum cycle in the graph.

By straightforwardly using an enumeration framework such as the reverse search tech-
nique [1], we can obtain an enumeration algorithm for the problem that runs in O (n) or
O (A) time per solution, where n and A are respectively the number of vertices and the
maximum degree of an input graph. Although dominating sets are fundamental in computer
science, no enumeration algorithm for dominating sets that runs in strictly faster than such
a trivial algorithm has been developed so far. Thus, to develop efficient algorithms, we focus
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on the sparsity of graphs as being a good structural property and, in particular, on the
degeneracy and girth, which are the measures of sparseness. As our contributions, we develop
two optimal algorithms for enumeration of dominating sets in a sparse graph. We first focus
on the degeneracy of an input graph. A graph is k-degenerate [22] if any subgraph of the
graph has a vertex whose degree is at most k. The degeneracy of a graph is the minimum
value of k such that the graph is k-degenerate. Note that k£ < A always holds. It is known
that some graph classes have constant degeneracy, such as forests, grid graphs, outerplanar
graphs, planer graphs, bounded tree width graphs, and H-minor free graphs for some fixed
H [5,26]. A k-degenerate graph has a good vertex ordering, called a degeneracy ordering [24],
as shown in Section 3. So far, this ordering has been used to develop efficient enumeration
algorithms [6,11,27]. By using this ordering and the reverse search technique [1], we show

that our proposed algorithm EDS-D can solve the relaxed problem in O (k) time per solution.

This implies that EDS-D can optimally enumerate all the dominating sets in an input graph
with constant degeneracy.

We next focus on the girth of a graph. Enumeration of minimal dominating sets can
be solved efliciently if an input graph has no short cycles since its connected subgraphs
with small diameter form a tree. Indeed, this local tree structure has been used in minimal
dominating sets enumeration [15]. For the relaxed problem, by using the reverse search
technique, we can easily show that the delay of our proposed algorithm EDS-G for general
graphs is O (AS) time. However, if an input graph has the large girth, then each recursive
call generates enough solutions, that is, we can amortize the complexity of EDS-G. Thus, by
amortizing the time complexity using this local tree structure, we show that the problem can
be solve in constant time per solution for graphs with girth at least nine.

2 A Basic Algorithm Based on Reverse Search

Let G = (V(G), E(G)) be a simple undirected graph, that is, G has no self loops and multiple
edges, with vertex set V(G) and edge set F(G) is a set of pairs of vertices. If no confusion
arises, we will write V = V(G) and E = E(G). Let u and v be vertices in G. An edge e with
uw and v is denoted by e = {u,v}. v and v are adjacent if {u,v} € E. We denote by Ng(u)
the set of vertices that are adjacent to u on G and by Ng[u] = Ng(u) U {u}. We say v is a

neighbor of u if v € Ng(u). The set of neighbors of U is defined as N(U) = U,y Na(u) \ U.

Similarly, let N[U] be |J,cy No(u) UU. Let dg(v) = |Ng(v)| be the degree of u in G. We
call the vertex v pendant if dg(v) = 1. A(G) = max,cy d(v) denotes the maximum degree
of G. A set X of vertices is a dominating set if X satisfies N[X] = V.

For any vertex subset V' C V| we call G[V'] = (V', E[V’]) an induced subgraph of G,
where E[V'] = {{u,v} € E(G) | u,v € V'}. Since G[V’] is uniquely determined by V', we
identify G[V’] with V’. We denote by G \ {e} = (V, E\ {e}) and G\ {v} = G[V \ {v}]. For
simplicity, we will use v € G and e € G to refer to v € V(G) and e € E(G), respectively.

We now define the dominating set enumeration problem as follows:

» Problem 1. Given a graph G, then output all dominating sets in G without duplication.

In this paper, we propose two algorithms EDS-D and EDS-G for solving Problem 1. These
algorithms use the degeneracy ordering and the local tree structure, respectively. Before
we enter into details of them, we first show the basic idea for them, called reverse search
method that is proposed by Avis and Fukuda [1] and is one of the framework for constructing
enumeration algorithms.

An algorithm based on reverse search method enumerates solutions by traversing on an
implicit tree structure on the set of solution, called a family tree. For building the family tree,
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Algorithm 1: EDS enumerates all dominating sets in amortized polynomial time.

1 Procedure EDS(G = (V, E)) // G: an input graph
| AllChildren(V,V,G);
Procedure AllChildren(X,C (X),G = (V,E)) // X: the current solution
Output X;
for v e C(X) do
Y e X\ {o}; C(¥) « {ue C(X) [ NY\ {u}] = VAP (Y \ {u}) = Y}
Al1Children(Y,C (Y),®):

N o s WoN

Figure 1 An example of a degeneracy ordering for a 2-degenerate graph G. In this ordering, each
vertex v is adjacent to vertices at most two whose indices are larger than v.

we first define the parent-child relationship between solutions as follows: Let G = (V, E) be
an input graph with V' = {v1,...,v,} and X and Y be dominating sets on G. We arbitrarily
number the vertices in G from 1 to n and call the number of a vertex the index of the vertex.
If no confusion occurs, we identify a vertex with its index. We assume that there is a total
ordering < on V according to the indices. pv (X), called the parent vertez, is the vertex
in V'\ X with the minimum index. For any dominating set X such that X # V, Y is the
parent of X if Y = X U {pv (X)}. We denote by P (X) the parent of X. Note that since
any superset of a dominating set also dominates G, thus, P (X) is also a dominating set of
G. We call X is a child of Y if P(X) =Y. We denote by F (G) a digraph on the set of
solutions S (G). Here, the vertex set of F (G) is S (G) and the edge set € (G) of F (G) is
defined according to the parent-child relationship. We call F (G) the family tree for G and
call V' the root of F (G). Next, we show that F (G) forms a tree rooted at V.

Our basic algorithm EDS is shown in Algorithm 1. We say C (X) the candidate set of X
and define C' (X) ={v e V| N[X\ {v}] =V AP (X \ {v}) = X}. Intuitively, the candidate
set of X is the set of vertices such that any vertex v in the set, removing v from X generates
another dominating set. We show a recursive procedure A11Children(X,C (X),G) actually
generates all children of X on F (G). We denote by ch(X) the set of children of X, and by
gch(X) the set of grandchildren of X.

From Lemmas 1, 2, and 3, we can obtain the correctness of EDS.

» Lemma 1. For any dominating set X, by recursively applying the parent function P (-) to
X at most n times, we obtain V.

» Lemma 2. F (G) forms a tree.

» Lemma 3. Let X and Y be distinct dominating sets in a graph G. 'Y € ch(X) if and only
if there is a vertex v € C (X) such that X =Y U {v}.

» Theorem 4. By traversing F (G), EDS solves Problem 1.



K. Kurita, K. Wasa, H. Arimura, and T. Uno

Algorithm 2: EDS-D enumerates all dominating sets in O (k) time per solution.

1 Procedure EDS-D(G = (V, E)) // G: an input graph

2 for v € V do D, + 0;
3 | AllChildren(V,V,D(V):={Di,..., Dy });
4 Procedure A11Children(X,C,D)
5 Output X;
6 | O« 0D « D, /] D = {D’h...,Dl’V‘}
for ve C do // v has the largest index in C
Y« X\ {v};
C+ C\{vk // Remove vertices in Dels (X, v).
10 C(Y) + Cand-D(X,v,C); // Vertices larger than v are not in C.
11 D(Y) + DomList(v,Y, X,C(Y),C"® C (Y),D";
12 Al11Children(Y,C (Y),D(Y));
13 C'+ C(Y); D+ DY)
14 for u e N(v)"< do D) « D, U{v};

15 Procedure Cand-D(X,v,(C)
16 | Y+ X\ {v}; Dely + 0; Dely < 0;
17 for u e (N(v)NC)UN(v)< do

18 if u < v then

19 ‘ if Nw)“nNY=0AN@)<“NY =0 then Dely < Del; U{u} ;

20 else

21 ‘ if Nuln(X\C)=0A|N[u|NC|=2then Dely <+ Delo U(Nu]NC);
22 return C'\ (Dely U Dels); // C is C(X\{v})

23 Procedure DomlList (v,Y, X,C" @ C (Y),D’)
24 | forueC’' @ C(Y) do

25 for w € N(u)"< do

26 if uw ¢ D] (X) then

27 if u ¢ C' then D, <« D, U{u};

28 else D, « D\ {u};

29 for u € N(v)"< do

30 ‘ if we X then D) < D, U{u} ;

31 return D’; // D' is D(Y)

3 Efficient Enumeration for Bounded Degenerate Graphs

The bottle-neck of EDS is the maintenance of candidate sets. Let X be a dominating set and
Y be a child of X. We can easily see that the time complexity of EDS is O (Ag) time per
solution since a removed vertex u € C'(X) \ C (Y) has the distance at most two from v. In
this section, we improve EDS by focusing on the degeneracy of an input graph G. G is a
k-degenerate graph [22] if for any induced subgraph H of G, the minimum degree in H is

less than or equal to k. The degeneracy of G is the smallest k such that G is k-degenerate.

A k-degenerate graph has a good vertex ordering. The definition of orderings of vertices in
G, called a degeneracy ordering of G, is as follows: for any vertex v in GG, the number of
vertices that are larger than v and adjacent to v is at most k. We show an example of a
degeneracy ordering of a graph in Fig. 1. Matula and Beck show that the degeneracy and a
degeneracy ordering of G can be obtained in O (n + m) time [24]. Our proposed algorithm
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Figure 2 Let X be a dominating set {1,2,3,4,5,6,11}. An example of the maintenance of C (X)
and D(X). Each dashed directed edge is stored in D(X), and each solid edge is an edge in G. A
directed edge (u,v) implies v € D, (X). The index of each vertex is according to a degeneracy
ordering. White, black, and gray vertices belong to V' \ X, X \ C (X), and C (X), respectively.
When EDS-D removes vertex 6, C' (X \ {6}) = {1}.

EDS-D, shown in Algorithm 2, achieves amortized O (k) time enumeration by using this good
ordering. In what follows, we fix some degeneracy ordering of G and number the indices of
vertices from 1 to n according to the degeneracy ordering. We assume that for each vertex v
and each dominating set X, N[v] and C (X) are stored in a doubly linked list and sorted
by the ordering. Note that the larger neighbors of v can be listed in O (k) time. Let us
denote by V<Y ={1,2,...,v — 1} and V¥< = {v +1,...n}. Moreover, A<V = ANV"< and
A< = ANV<" for a subset A of V. We first show the relation between C (X) and C (V).

» Lemma 5. Let X be a dominating set of G and Y be a child of X. Then, C (Y) C C(X).

From the Lemma 5, for any v € C(X), what we need to obtain the candidate set
of Y is to compute Del (X,pv(Y)) = C(X)\ C(Y), where Y = X \ {v}. In addi-
tion, we can easily sort C'(Y) by the degeneracy ordering if C'(X) is sorted. In what
follows, we denote by Del; (X,v) = {ue C(X)~" | Nuln X = {u,v}}, Dely(X,v) =
{ueC(X)~" | Jw e V\ (X \{v})(N[w]NX = {u,v})}, and Dels (X,v) = C (X)"S. Next,
we show the time complexity for obtaining Del (X, pv (Y)).

» Lemma 6. For each v € C (X), Del (X,v) = Dely (X,v)U Dels (X,v)U Dels (X, v) holds.

We show an example of dominated list and a maintenance of C' (X) in Fig. 2. To compute
a candidate set efficiently, for each vertex u in V, we maintain the vertex lists D, (X) for
X. We call D,(X) the dominated list of u for X. The definition of D, (X) is as follows: If
u € V\X, then D, (X) = N(u)N(X\C (X)). fu € X, then D, (X) = N(u)<"N(X\C (X)).
For brevity, we write D,, as D, (X) if no confusion arises. We denote by D(X) = {J,,cy {Du}-
By using D(X), we can efficiently find Dely (X, v) and Dely (X, v).

» Lemma 7. Let X be a dominating set of G. Suppose that for each vertex u in G, we can
obtain the size of D, in constant time. Then, for each vertex v € C(X), we can compute
Dely (X,v) in O (k) time on average over all children of X.

» Lemma 8. Suppose that for each vertex w in G, we can obtain the size of D,, in constant
time. For each vertex v € C (X), we can compute Dels (X,v) in O (k) time on average over
all children of X.

In Lemma 7 and Lemma 8, we assume that the dominated lists were computed when we
compute Del (X, v) for each vertex v in C' (X). We next consider how we maintain D. Next
lemmas show the transformation from D, (X) to D, (Y") for each vertex v in G.
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» Lemma 9. Let X be a dominating set, v be a vertex in C (X), and Y = X \ {v}. For each
vertex u € G such that u # v, Dy(Y) = Dy (X) U (N(u)<* N (Dely (X,v) U Dely (X,v))) U
(N (u)=" N (Delz (X, v) \ {v})).

» Lemma 10. Let X be a dominating set, v be a vertex in C(X), and Y = X \ {v}.
D,(Y)=Dy(X)U (N@)<"N (Dely (X,v) U Dely (X,v))) U (N(v)"<NX).

We next consider the time complexity for obtaining the dominated lists for children of X.

From Lemma 9 and Lemma 10, a naive method for the computation needs O(k | Del (X, v)|+k)

time for each vertex v of X since we can list all larger neighbors of any vertex in O (k) time.

However, if we already know C (W) and D(W) for a child W of X, then we can easily obtain
D(Y), where Y is the child of X immediately after W. The next lemma plays a key role in
EDS-D. Here, for any two sets A, B, we denote by A® B = (A\ B)U (B \ A).

» Lemma 11. Let X be a dominating set, v,u be vertices in C (X) such that u has the
mazimum indezx in C (X)<", Y = X \ {u}, and W = X \ {v}. Suppose that we already
know C(Y)@® C (W), D(W), Del (X,v), and Del (X,u). Then, we can compute D(Y) in
OFk|CY)®sC (W) +k) time.

Proof. Suppose that z is a vertex in G such that z # v and z # u. From the definition,
D W)\ D,(Y) = (Del (X,v)\ Del (X,u)) N N(z)<? and D,(Y)\ D, (W) = (Del (X,u) \
Del (X,v)) N N(z)<*. Hence, we first compute Del (X,v) & Del (X,u). Now, (C(X) \
CW)H)e(C(X)\C(Y)=CW)aC(Y). Next, for each vertex ¢ in C (W) d C (Y), we
check whether we add to or remove ¢ from D, (Y") or not. Note that added or removed vertices
from D,(Y) is a smaller neighbor of z. From the definition, if ¢ ¢ D,(Y) or ¢ € D,(X),
then we add ¢ to D,(Y'). Otherwise, we remove ¢ from D,(Y"). Thus, since each vertex in
C (W)@ C (Y) has at most k larger neighbors, for all vertices other than v and v, we can
compute the all dominated lists in O (k|C (W) & C (Y)]) time. Next we consider the update
for D,(Y) and D,(Y). Note that from the definition, D,(W) and D,(Y) contain larger
neighbors of v and u, respectively. However, the number of such neighbors is O (k). Finally,
since v belongs to Y, v € Dy (Z) if v € N(v)"< for any vertex u'. Thus, as with the above
discussion, we can compute D, (Y) and D,(Y) in O (k|C (W) & C (Y)| + k) time. <

» Lemma 12. Let X be a dominating set. Then, A11Children(X,C (X),D(X)) of EDS-D
other than recursive calls can be done in O (k|ch(X)|+ k|gch(X)|) time.

Proof. We first consider the time complexity of Cand-D. From Lemma 7 and Lemma 8,
Cand-D correctly computes Dely (X, v) and Dels (X, v) in from line 18 to line 19 and from
line 20 to line 21, respectively. For each loop from line 7, the algorithm picks the largest
vertex in C. This can be done in O (1) since C is sorted. The algorithm needs to remove
vertices in Dels (X, v). This can be done in line 9 and in O (1) time since v is the largest
vertex. Thus, for each vertex v in C (X), C (X \ {v}) can be obtained in O (k) time on
average. Hence, for all vertices in C' (X)), the candidate sets can be computed in O (k|ch(X)])
time. Next, we consider the time complexity of DomList. Before computing DomList, EDS-D
already computed C (Y) @& C (W), D(W), Del (X,v), and Del (X,v"). Note that we can
compute C (V) @ C (W) when we compute C(Y) and C (W). Here, W is the previous
dominating set, C’ stores C (W), and D’ stores D(W). Thus, by using Lemma 11, we can
compute D(Y) in O (k|C (V) ® C (W)| + k) time. In addition, for all vertices in C (X), the
dominated lists can be computed in O (k|C (X)| + k |gch(X)]) time since Y has at least
|C (W)\ C(Y)| —1 children and |gch(X)] is at least the sum of |C' (W) \ C (Y)| — 1 over
allY € {X \ {v} | v e C(X)} and the previous solution W of Y. When EDS-D copies data
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such as D, EDS-D only copies the pointer of these data. By recording operations of each line,
EDS-D restores these data when backtracking happens. These restoring can be done in the
same time of the above update computation. |

» Theorem 13. EDS-D enumerates all dominating sets in O (k) time per solution in a
k-degenerate graph by using O (n+m) space.

Proof. The parent-child relation of EDS-D and EDS are same. From Lemma 5 and Lemma 6,
EDS-D correctly computes all children. Hence, the correctness of EDS-D is shown by the same
manner of Theorem 4. We next consider the space complexity of EDS-D. For any vertex v in
G, if v is removed from a data structure used in EDS-D on a recursive procedure, v will never
be added to the data structure on descendant recursive procedures. In addition, for each
recursive procedure, the number of data structures that are used in the procedure is constant.
Hence, the space complexity of EDS-D is O (n + m). We finally consider the time complexity.
Each recursive procedure needs O (k|ch(X)| + k |gch(X)|) time from Lemma 12. Thus, the
time complexity of EDS-D is O (k Y- yc5(|ch(X)] + |gch(X)|)), where S is the set of solutions.
Now, O (X yes(lch(X)] + [gch(X)])) = O (|S|). Hence, the statement holds. <

4  Efficient Enumeration for Graphs with Girth at Least Nine

In this section, we propose an optimum enumeration algorithm EDS-G for graphs with girth
at least nine, where the girth of a graph is the length of a shortest cycle in the graph.
That is, the proposed algorithm runs in constant amortized time per solution for such
graphs. The algorithm is shown in Algorithm 3. To achieve constant amortized time
enumeration, we focus on the local structure G,(X) for (X,v) of G defined as follows:
Go(X) = G[(V\ N[X \ C(X)="]) U C (X)="]. Fig. 3 shows an example of G,(X). Go(X)
is a subgraph of G induced by vertices that (1) are dominated by vertices only in C (X )SU
or (2) are in C (X)=". Intuitively speaking, we can efficiently enumerate solutions by using
the local structure and ignoring vertices in G \ G, (X) since the number of solutions that
are generated according to the structure is enough to reduce the amortized time complexity
to constant. We denote by G(X) = G[(V \ N[X \ C (X)]) U C (X)] the local structure for
(X, v,) of G, where v, is the largest vertex in G.

We first consider the correctness of EDS-G. The parent-child relation between solutions
used in EDS-G is the same as in EDS. Suppose that X and Y are dominating sets such that X is
the parent of Y. Recall that, from Lemma 6, C (X)\C (Y) = Del (X, v), where X =Y U{v}.
We denote by f,(u, X) = True if there exists a neighbor w of u such that w € X \ C (X)=";
Otherwise f,(u, X) = False. Thus, Cand-G correctly computes Dely (X,v) and Dels (X, v)
from line 17 to 19. Moreover, in line 14, vertices in Dels (X,v) are removed from C (X) and
hence, Cand-G also correctly computes C (X \ {v}). Moreover, for each vertex w removed
from G during enumeration, w is dominated by some vertices in G. Hence, by the same
discussion as Theorem 4, we can show that EDS-G enumerates all dominating sets. In the
remaining of this section, we show the time complexity of EDS-G. Note that G, (X) does not
include any vertex in N[Dels (X, v)\ {v}]\ C (X)=". Hence, we will consider only vertices in
Dely (X,v) U Dely (X, v) U {v}. We denote by Del’ (X, v) = Dely (X,v) U Dels (X,v) U {v}.
We first show the time complexity for updating the candidate sets.

In what follows, if v is the largest vertex in C' (X), then we simply write f(u,X) as
Jo(u, X). We denote by N/ (u) = Ng, (x)(u), Nylu] = N (u)U{u}, and d;,(u) = | N, (u)| if no
confusion arises. Suppose that G and G, (X) are stored in an adjacency list, and neighbors
of a vertex are stored in a doubly linked list and sorted in the ordering.
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Algorithm 3: EDS-G enumerates all dominating sets in O (1) time per solution for
a graph with girth at least nine.

1 Procedure EDS-G(G = (V, E)) // G: an input graph

2 for v e V do f, + False;

3 | AllChildren (V,V,{f1,....fiv|},G);

4 Procedure Al1Children (X,C, F,G)

5 Output X;

6 for v e C(X) do // v is the largest vertex in C
7 Y + X\ {v};

8 (C(Y),F(Y),G(Y)) « Cand-G (v,C, F,G);

9 AllChildren (Y,C(Y),F(Y),G(Y));

10 for u € Ng(v) do

11 if uw € C then f, < True ;

12 else G+ G\ {u};

13 G+ G\ {v};

14 C <+ C\{v}; // Remove vertices in Dels (X,v).

15 Procedure Cand-G (v,C, F,G)
16 Dely <+ 0; Dely + 0;
17 for u € Ng(v) do

18 if Ng[u]NX ={u,v} and f, = False then Del; < Dely U{u} ;

19 else if Jw(Nglu] N X = {w,v}) then Dely < Dely U{w} ;

20 C' + C\ (Dely U Dely U {v});

21 for u € N'[Del; U Dels] do // Lemma 17
22 fu < True;

23 if u¢ C' then G+ G\ {u};

24 if f, = True then G + G\ {v};
25 return (C', F,G);

» Lemma 14. Let X be a dominating set, v be a vertex in C (X), and u be a vertex in G.
Then, u € Dely (X,v) if and only if N)[u] N X = {u,v} and f,(u, X) = False.

» Lemma 15. Let X be a dominating set, v be a vertex in C (X), and u be a vertex in G.
Then, u € Dels (X, v) if and only if there is a vertex w in G,(X) such that N} [w]NX = {u,v}.

» Lemma 16. Let X be a dominating set and v be a vertex in C (X). Suppose that for any
vertex u, we can check the number of u’s neighbors in the local structure G,(X) and the value
of fo(u, X) in constant time. Then, we can compute C (X \ {v}) from C (X)=" in O (d,(v))
time

» Lemma 17. Let X be a dominating set, v be a vertex in C (X), and Y = X \ {v}. Then,

we can compute G(Y) from G,(X) in O (ZueDel,(X,v) dy (W) + X ueq, (NG dg(u)) time.
Note that N, (u) = Ng,(x)(u) and d,,(u) = [N/ (u)|.

From Lemma 16 and Lemma 17, we can compute the local structure and the candidate
set of Y from those of X in O (ZueDel’(x,v) dy(w) + X uea, (xna) Do (u)) time. We next
consider the time complexity of the loop in line 10. In this loop procedure, EDS-G deletes
all the neighbors u of v from G,(X) if u ¢ C (X)=" because for each descendant W of
dominating set Y/, v € W\ C (W), where Y is a child of X and is generated after Y. Thus,
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Distance 0

Distance 1

Distance 5

Figure 3 An example of G,(X), where v = 1. The vertices in the grey area are Del’ (X,v)U
(Go(X)\ G(Y)) U (N, (v) \ X). Each horizontal line represents the distance between 1 and any
vertex.

this needs O (d;(v) + 2 ueN (o)X d;(u)) time. Hence, from the above discussion, we can
obtain the following lemma:

» Lemma 18. Let X be a dominating set, v be a vertex in C (X), and Y = X \ {v}. Then,
Al1Children other than a recursive call Tuns in the following time bound:

0 Yoo dwt+ Y diwt+ Y dyw) . (1)

u€Del' (X,v) u€G,(X)\G(Y) ueN/! (v)\X
Before we analyze the number of descendants of X, we show the following lemmas.

» Lemma 19. Let us denote by Pen,(X) = {ue Del' (X,v)|d,(u)=1}. Then,
Yveo(x) |Peny(X)] is at most |C (X)].

Let v be a vertex in C'(X) and a pendant in G, (X). Since the number of such pendants
is at most |C' (X)|, the sum of degree of such pendants is at most |C (X)| in each execution of
AllChildren without recursive calls. Hence, the cost of deleting such pendants is O (|C (X)])
time. Next, we consider the number of descendants of X. From Lemma 19, we can ignore
such pendant vertices. Hence, for each u € Del’ (X, v), we will assume that d,,(u) > 2 below.

» Lemma 20. Let X be a dominating set, v be a vertex in C (X), and Y be a dominating
set X \ {v}. Then, |C (Y)] is at least |(N}(v) N X)\ Del’ (X,v)].

» Lemma 21. Let X be a dominating set, v be a vertex in C (X), and Y be a dominating
set X \ {v}. Then, |C(Y)| is at least 3_ ¢ Ny oy x (dy(w) —1).

» Lemma 22. Let X be a dominating set, v be a vertex in C (X), and Y be a dominating
set X \ {v}. Then, |C(Y)| is at least 3_ ,c per(x,on (o} (do(w) —1).

» Lemma 23. Let X be a dominating set v be a vertex in C(X), and Y be a dom-
inating set X \ {v}. Then, the number of children and grandchildren of Y is at least

D ey (X)\(G(Y)UDel! (X,0)uN, (v)) (dy(u) = 1).
Note that for any pair of candidate vertices v and v’, X \ {v} and X \ {v'} do not share

their descendants. Thus, from Lemma 20, Lemma 21, Lemma 22, and Lemma 23, we can
obtain the following lemma:
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» Lemma 24. Let X be a dominating set. Then, the sum of the number of X ’s children,
grandchildren, and great-grandchildren is bounded by the following order:

QllcX)l+ > Yo A+ Y dw+ Y d@]| ] @

veC(X) \ueDel’(X,v) UEG, (X)\G(Y) wEN/ (v)\ X

From Lemma 18, Lemma 19, and Lemma 24, each iteration outputs a solution in constant
amortized time. Hence, by the same discussion of Theorem 13, we can obtain the following
theorem.

» Theorem 25. For an input graph with girth at least nine, EDS-G enumerates all dominating
sets in O (1) time per solution by using O (n +m) space.

Proof. The correctness of EDS-G is shown by Theorem 4, Lemma 14, and Lemma 15. By
the same discussion with Theorem 13, the space complexity of EDS-G is O (n + m). We next
consider the time complexity of EDS-G. From Lemma 18, Lemma 19, and Lemma 24. we
can amortize the cost of each recursion by distributing O (1) time cost to the corresponding
descendant discussed in the above lemmas. Thus, the amortized time complexity of each
recursion becomes O (1). Moreover, each recursion outputs a solution. Hence, EDS-G
enumerates all solutions in O (1) amortized time per solution. <

5 Conclusion

In this paper, we proposed two enumeration algorithms. EDS-D solves the dominating set
enumeration problem in O (k) time per solution by using O (n + m) space, where k is a
degeneracy of an input graph G. Moreover, EDS-G solves this problem in constant time per
solution if an input graph has girth at least nine.

Our future work includes to develop efficient dominating set enumeration algorithms for
dense graphs. If a graph is dense, then k is large and G has many dominating sets. For
example, in the case of complete graphs, k is equal to n — 1 and every nonempty subset of V
is a dominating set. That is, the number of solutions for a dense graph is much larger than
that for a sparse graph. This allows us to spend more time in each recursive call. However,
EDS-D is not efficient for dense graphs although the number of solutions is large. Moreover,
if G is small girth, that is, G is dense then EDS-G does not achieve constant amortized time
enumeration. Hence, the dominating set enumeration problem for dense graphs is interesting.
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