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—— Abstract

The chase procedure is one of the most fundamental algorithmic tools in database theory. A key

algorithmic task is uniform chase termination, i.e., given a set of tuple-generating dependencies
(tgds), is it the case that the chase under this set of tgds terminates, for every input database?
In view of the fact that this problem is undecidable, no matter which version of the chase we
consider, it is natural to ask whether well-behaved classes of tgds, introduced in different contexts
such as ontological reasoning, make our problem decidable. In this work, we consider a prominent
decidability paradigm for tgds, called stickiness. We show that for sticky sets of tgds, uniform
chase termination is decidable if we focus on the (semi-)oblivious chase, and we pinpoint its exact
complexity: PSPACE-complete in general, and NLOGSPACE-complete for predicates of bounded
arity. These complexity results are obtained via graph-based syntactic characterizations of chase
termination that are of independent interest.
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1 Introduction

The chase procedure (or simply chase) is a fundamental algorithmic tool that has been
successfully applied to several database problems such as containment of queries under
constraints [1], checking logical implication of constraints [3, 17], computing data exchange
solutions [10], and query answering under constraints [5], to name a few. The chase procedure
accepts as an input a database D and a set X of constraints and, if it terminates, its result
is a finite instance Dy that is a universal model of D and X, i.e., is a model that can be
homomorphically embedded into every other model of D and X. In other words, Dy, acts as
a representative of all the other models of D and ¥. This is the reason for the ubiquity of
the chase in database theory, as discussed in [8]. Indeed, many key database problems can
be solved by simply exhibiting a universal model.

A prominent class of constraints that can be naturally treated by the chase procedure is
the class of tuple-generating dependencies (tgds), i.e., sentences of the form

VEVy (6(Z,9) — 3ZP(E,2)),

where ¢ and v are conjunctions of atoms. Given a database D and a set % of tgds, the
chase adds new atoms to D (possibly involving null values that act as witnesses for the
existentially quantified variables) until the final result satisfies . For example, given the
database D = {R(c)}, and the tgd Va(R(z) — Jy P(z,y) A R(y)), the database atom triggers
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the tgd, and the chase will add in D the atoms P(c, 1) and R(L;) in order to satisfy it,
where 1, is a (labeled) null representing some unknown value. However, the new atom
R(L,) triggers again the tgd, and the chase is forced to add the atoms P(L;, Ls), R(Ls),
where L5 is a new null. The result of the chase is the instance

{R(c), P(c, L)} U [J{R(La), P(Ls, Lig1)},

>0

where 11, 1o,... are nulls.

The above example shows that the chase procedure may not terminate, even for very
simple databases and sets of tgds. This fact motivated a long line of research on identifying
subclasses of tgds that ensure the termination of the chase procedure, no matter how the
input database looks like. A prime example is the class of weakly-acyclic sets of tgds [10],
which is the standard language for data exchange purposes, and guarantees the termination
of the semi-oblivious and restricted (a.k.a. standard) chase. A similar formalism, called
constraints with stratified-witness, has been proposed in [9]. Inspired by weak-acyclicity, the
notion of rich-acyclicity has been proposed in [16], which guarantees the termination of the
oblivious chase. Many other sufficient conditions for chase termination can be found in the
literature; see, e.g., [8, 9, 13, 15, 18, 19] — this list is by no means exhaustive, and we refer
the reader to [14] for a comprehensive survey.

With so much effort spent on identifying sufficient conditions for the termination of the
chase procedure, the question that immediately comes up is whether a sufficient condition
that is also necessary exists. In other words, given a set X of tgds, is it possible to decide
whether, for every database D, the chase on D and ¥ terminates? This question has been
addressed in [11], and has been shown that the answer is negative, no matter which version
of the chase we consider, namely the oblivious, semi-oblivious and restricted chase. The
problem remains undecidable even if the database is known; this has been established in [8]
for the restricted chase, and it was observed in [18] that the same proof shows undecidability
also for the (semi-)oblivious chase.

The undecidability proof given in [11] constructs a sophisticated set of tgds that goes
beyond existing well-behaved classes of tgds that enjoy certain syntactic properties, which in
turn ensure useful model-theoretic properties. This has been already observed in [4], where it
is shown that the chase termination problem is decidable if we focus on the (semi-)oblivious
version of the chase, and classes of tgds based on the notion of guardedness. Guardedness is
one of the main decidability paradigms that gives rise to robust tgd-based languages [2, 5, 6]
that capture important database constraints and lightweight description logics. The key
model-theoretic property of guarded-based languages, which explains their robust behaviour,
is the tree-likeness of the underlying universal models [5]. On the other hand, there are
interesting statements that are inherently non-tree-like, and thus not expressible via guarded-
based languages. Such a statement consists of the tgds

VaVy(R(z,y) — 3z R(y,z) A P(z)) VaVy(P(xz) A P(y) — S(x,v)),

which compute the cartesian product of a unary relation that stores infinitely many elements.

The inability of guarded-based tgds to express non-tree-like statements like the one above,
has motivated a long line of research on isolating well-behaved classes of tgds that go beyond
tree-like models and guardedness. The main decidability paradigm obtained from this effort
is known as stickiness [7]. The key idea underlying stickiness can be described as follows:
variables that appear more than once in the left-hand side of a tgd, known as the body of the
tgd, should be inductively propagated (or “stick”) to every atom in the right-hand side of
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the tgd; more details are given in Section 2. It is easy to verify that the above non-tree-like
statement is trivially sticky since none of the body variables occurs more than once. The
crucial question that comes up is the following: given a sticky set ¥ of tgds, is it possible to
decide whether the chase terminates for every input database?

The main goal of this work is to study the chase termination problem for sticky sets of
tgds, and give a definite answer to the above fundamental question. In fact, we focus on the
(semi-)oblivious versions of the chase, and we show that deciding termination for sticky sets
of tgds is decidable, and provide precise complexity results: PSPACE-complete in general,
and NLOGSPACE-complete for predicates of bounded arity. Although the (semi-)oblivious
versions of the chase are considered as non-standard ones, they have certain advantages
that classify them as important algorithmic tools, and thus they deserve our attention. In
particular, unlike the restricted chase, the application of a tgd does not require checking
if the right-hand side of the tgd is already satisfied by the instance, and this guarantees
technical clarity and efficiency; for a more thorough discussion on the advantages of the
oblivious and semi-oblivious chase see [5, 18].

Summary of Contributions. Our results can be summarized as follows:

In Section 4, we provide a semantic characterization of non-termination of the oblivious
and semi-oblivious chase under sticky sets of tgds via the existence of path-like infinite
chase derivations, which forms the basis for our decision procedure.

By exploiting the above semantic characterization, we then provide, in Section 5, a
syntactic characterization of chase termination via graph-based conditions. To this end,
we extend recent syntactic characterizations from [4] of the termination of the oblivious
and semi-oblivious chase under constant-free linear tgds (tgds with one body atom), to
linear tgds with constants. The transition from constant-free tgds to tgds with constants
turned out to be more challenging than expected.

Finally, in Section 6, by exploiting the graph-based syntactic characterization from the
previous section, we establish the precise complexity of our problem: PSPACE-complete
in general, and NLOGSPACE-complete for predicates of bounded arity.

2 Preliminaries

We consider the disjoint countably infinite sets C, N, and V of constants, (labeled) nulls,
and (regular) variables (used in dependencies), respectively. A fixed lexicographic order
is assumed on (C U N) such that every null of N follows all constants of C. We refer to
constants, nulls and variables as terms. Let [n] = {1,...,n}, for any integer n > 1.

Relational Databases. A schema S is a finite set of relation symbols (or predicates) with
associated arity. We write R/n to denote that R has arity n > 0. A position R][i] in S, where
R/n € S and i € [n], identifies the i-th argument of R. An atom over S is an expression of
the form R(t), where R/n € S and t is an n-tuple of terms. We write var(«) for the set of
variables occurring in an atom «; this notation naturally extends to sets of atoms. A fact
is an atom whose arguments consist only of constants. An instance over S is a (possibly
infinite) set of atoms over S that contain constants and nulls, while a database over S is a
finite set of facts over S. The active domain of an instance I, denoted dom(I), is the set of
all terms, i.e., constants and nulls, occurring in 1.
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Substitutions and Homomorphisms. A substitution from a set T of terms to a set T” of
terms is a function h : T — T” defined as follows: @ is a substitution (empty substitution),
and if h is a substitution, then h U {t — ¢'}, where t € T and ¢’ € T", is a substitution. The
restriction of h to a subset S of T', denoted hyg, is the substitution {t — h(t) | t € S}. A
homomorphism from a set A of atoms to a set B of atoms is a substitution A from the set of
terms in A to the set of terms in B such that (i) ¢ € C implies h(t) =t, i.e., h is the identity
on C, and (ii) R(t1,...,t,) € A implies h(R(t1,...,tn)) = R(h(t1),...,h(t,)) € B.

Tuple-Generating Dependencies. A tuple-generating dependency o is a sentence
Vavy (6(z,9) — 3z9(,2)),

where Z, ¥, Z are tuples of variables of V, while ¢(Z, y) and (&, ) are conjunctions of atoms
(possibly with constants). For brevity, we write o as ¢(z,y) — 3z ¢(z, Z), and use comma
instead of A for joining atoms. We refer to ¢(z,y) and ¢(Z, z) as the body and head of o,
denoted body(o) and head(o), respectively. The frontier of the tgd o, denoted fr(o), is the
set of variables z, i.e., the variables that appear both in the body and the head of o. The
schema of a set ¥ of tgds, denoted sch(X), is the set of predicates in X. We also write
const(X) for the set of constants occurring in 3. An instance I satisfies a tgd o as the one
above, written I |= o, if the following holds: whenever there exists a homomorphism A such
that h(¢(z,y)) C I, then there exists h' D hyz such that h'(¢(z, 2)) C I. Note that, by abuse
of notation, we sometimes treat a conjunction of atoms as a set of atoms. The instance [
satisfies a set ¥ of tgds, written I = X, if I = o for each o € X.

One of the main syntactic paradigms for tgds is stickiness [7]. The key property underlying
this condition is as follows: variables that appear more than once in the body of a tgd should
be inductively propagated (or “stick”) to every head atom. This is graphically illustrated as

R(z,y), Ay,2) — Fw Tz,y,w) R(z,y), Ry,2) — Fw Nz,y,w)

Tay,2) — Jw S(y,w) Tz,y,2) — Fw S(x,w)

J \—X

where the first set of tgds is sticky, while the second is not. The formal definition is based on
an inductive procedure that marks the variables that may violate the property described
above. Roughly, during the base step of this procedure, a variable that appears in the body
of a tgd but not in every head atom is marked. Then, the marking is inductively propagated
from head to body. Stickiness requires every marked variable to appear only once in the
body of a tgd. The formal definition follows. Let ¥ be a set of tgds; w.l.o.g., we assume that
the tgds in X do not share variables. Given an atom R(t) and a variable z in ¢, pos(R(t), z)

is the set of positions in R(t) at which = occurs. Let ¢ € ¥ and x a variable in the body of
0. We inductively define when x is marked in X:

If 2 does not occur in every atom of head(c), then x is marked in X.
Assuming that head(c) contains an atom of the form R(f) and x € ¢, if there exists 0’ € ¥
that has in its body an atom of the form R(#’), and each variable in R(t') at a position
of pos(R(t), x) is marked in ¥, then x is marked in X.
The set X is sticky if there is no tgd that contains two occurrences of a variable that is
marked in ¥. We denote by S the class of sticky finite sets of tgds. Let us clarify that we

work with finite sets of tgds only. Thus, in the rest of the paper, a set of tgds is always finite.
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The Tgd Chase Procedure. The tgd chase procedure (or simply chase) takes as an input
a database D and a set ¥ of tgds, and constructs a (possibly infinite) instance I such that
I > D and I E X. A crucial notion is that of trigger for a set of tgds on some instance.
Consider a set ¥ of tgds and an instance I. A trigger for ¥ on I is a pair (o, h), where 0 € &
and h is a homomorphism such that h(body(c)) C I. An application of (o,h) to I returns
the instance J = I U h/(head(c)), where h' D hjp(o) is such that (i) for each existentially
quantified variable z of o, h'(z) € N does not occur in I and follows lexicographically all
nulls in I, and (ii) for each pair (z,w) of distinct existentially quantified variables of o,
h'(z) # h/(w). Such a trigger application is denoted as I{(o, h)J.

The main idea of the chase is, starting from a database D, to exhaustively apply triggers
for the given set X of tgds on the instance constructed so far. However, the choice of the
next trigger to be applied is crucial since it gives rise to different variations of the chase
procedure. In this work, we focus on the oblivious [5] and the semi-oblivious [12, 18] chase.

Oblivious. A finite sequence Iy, I, ..., I,, of instances, where n > 0, is said to be a terminating
oblivious chase sequence of Iy w.r.t. a set ¥ of tgds if: (i) for each 0 < i < n, there
exists a trigger (o,h) for ¥ on I; such that I;{o, h)I;;1; (ii) for each 0 < i < j < m,
assuming that Ii<0'i, h,’>[i+1 and Ij<0’j,hj>[j+1, 0; =0y implies hz 7é hj, i.e., hz and hj
are different homomorphisms; and (iii) there is no trigger (o, h) for ¥ on I,, such that
(o,h) & {(0i, ki) }o<i<n. In this case, the result of the chase is the (finite) instance I,,.
An infinite sequence I, I, ... of instances is said to be a non-terminating oblivious chase
sequence of In w.r.t. ¥ if: (i) for each ¢ > 0, there exists a trigger (o, h) for ¥ on I; such
that I;{(o, h)I;11; (ii) for each i,j > 0 such that i # j, assuming that I;{(o;, h;)I;11 and
Ii(0j,hj)Ijy1, 05 = o; implies h; # h;; and (iii) for each ¢ > 0, and for every trigger
(o, h) for ¥ on I;, there exists j > i such that I;(o, h)I;41; this is the fairness condition,
and guarantees that all the triggers eventually will be applied. The result of the chase is

Uizo I;.

Semi-oblivious. This is a refined version of the oblivious chase, which avoids the application
of some superfluous triggers. Roughly, given a tgd o, for the semi-oblivious chase,
two homomorphisms h and g that agree on the frontier of o, i.e., hir() = gjfr(s), are
indistinguishable. To formalize this, we first define the binary relation ~, on the set of
all possible substitutions from the terms in body(o) to (C UN), denoted S,, as follows:
h ~o g iff higo) = gjfr(o)- It is easy to verify that ~, is an equivalence relation on
So. A (terminating or non-terminating) oblivious chase sequence Iy, I,... is called
semi-oblivious if the following holds: for every ¢,j > 0 such that ¢ # j, assuming that
Ii<0'i, h,‘>]i+1 and Ij<0’j,hj>[j+1, 0, =0; =0 implies hi 7(‘0 hj, i.e., hL and h]‘ belong to
different equivalence classes.

Henceforth, we write o-chase and so-chase for oblivious and semi-oblivious chase, re-
spectively. A useful notion that we are going to use in our proofs is the so-called chase
relation [7], which essentially describes how the atoms generated during the chase depend
on each other. Fix a non-terminating x-chase sequence s = (I;);>0, where * € {o,so}, of a
database D w.r.t. a set ¥ of tgds, and assume that for each i > 0, I;{o;, h;)[; 11, i.e., Ii+1
is obtained from I; via the application of the trigger (o;, h;) to I;. The chase relation of s,
denoted <, is a binary relation over (J;, I; such that o < 3 iff there exists ¢ > 0 such that
a € hy(body(c;)) and 8 € I;41 \ I;. -
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3 Chase Termination Problem

It is well-known that due to the existentially quantified variables, a *-chase sequence, where
* € {o,s0}, may be infinite. This is true even for very simple settings: it is easy to verify
that the only *-chase sequence of D = {R(a,b)} w.r.t. the set ¥ consisting of the single tgd
R(z,y) — 3z R(y, 2) is non-terminating. The question that comes up is, given a set X of
tgds, whether we can check that, for every database D, all or some (semi-)oblivious chase
sequences of D w.r.t. ¥ are terminating. Before formalizing the above problem, let us recall
the following central classes of tgds:

. for every database D,
((:Tvv - E . . .
every x-chase sequence of D w.r.t. ¥ is terminating
" for every database D,
CTVE - E . . .
there exists a terminating x-chase sequence of D w.r.t. ¥
The main problems tackled in this work are defined as follows, where C is a class of tgds:
PROBLEM :  CT?,(C) PROBLEM :  CT!5(C)
INPUT : A set ¥ € C of tgds. INPUT : A set ¥ € C of tgds.
QUESTION : Is ¥ € CTyy? QUESTION : Is X € CTy5?

It is well-known that CTy, = CTy5 C CTyy, = CTY; [12]. This immediately implies that,
after fixing the version of the chase in consideration, i.e., oblivious or semi-oblivious, the
above decision problems are equivalent. Henceforth, for a class C of tgds, we simply refer to
the problem CTy(C), and we write CTy for the classes CT3, and CTyg, where x € {o,s0}.

We know that our main problem is undecidable if we consider arbitrary tgds. In fact,
assuming that TGID denotes the class of arbitrary tgds, we have that:

» Theorem 1. For x € {o,s0}, CTY(TGD) is undecidable.

The above result has been shown in [11]. However, the employed set of tgds for showing
this result is far from being sticky. This led us to ask whether CT(S) is decidable. This is a
non-trivial problem, and pinpointing its complexity is the main goal of this work.

Some Useful Results. Before proceeding with the complexity analysis, let us recall a couple
of technical results that would allow us to significantly simplify our later analysis.

It would be useful to have a special database that gives rise to a non-terminating chase
sequence if it exists. Interestingly, such a database exists, which is known as the critical
database for a set of tgds [18]. Formally, given a set ¥ of tgds, the critical database for ¥ is

{R(c,...,c) | R € sch(X)},where ¢ € C is a fixed constant if const(X%) = 0,
cr(X) =
{R(c1,...,¢cn) | R €sch(X) and (cq,...,¢,) € const(X)"}  if const(X) # 0.

In other words, cr(X) consists of all the atoms that can be formed using the predicates
and the constants in X; if ¥ is constant-free, then we consider an arbitrary constant of C.
The following result from [18] shows that cr(X) is indeed the desired database:

» Proposition 2. Consider a set ¥ of tgds. For x € {o,s0}, ¥ & CTv iff there exists a
non-terminating x-chase sequence of cr(X) w.r.t. 3.
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Even though we can focus on the critical database and check whether it gives rise to a
non-terminating chase sequence s, the main difficulty is to ensure that s enjoys the fairness
condition. Interestingly, as it has been recently shown in [4], we can neglect the fairness
condition, which significantly simplifies the required analysis. To formalize this result, we
need to recall the notion of the infinite chase derivation, which is basically a non-terminating
chase sequence without the fairness condition. Fix x € {0,s0}. We define ¢% as #, if x = o,
and o4,, if x = so. An infinite x-chase derivation of a database D w.r.t. a set ¥ of tgds is
an infinite sequence (I;);>¢ of instances, where Iy = D, such that: (i) for each i > 0, there
exists a trigger (o, h;) for 3 in I; with I;{o;, h;)I;41, and (ii) for each i # j, 0, =0, =0
implies h; ¢} h;. The following holds:

» Proposition 3. Consider a database D and a set ¥ of tgds. For x € {o,s0}, the following
are equivalent:

1. There is a non-terminating x-chase sequence of D w.r.t. 3.

2. There is an infinite x-chase derivation of D w.r.t. X.
By combining Propositions 2 and 3, we immediately get the following useful result:
» Corollary 4. Consider a set 2 of tgds. For x € {o,s0}, ¥ & CTY iff there exists an infinite
*-chase derivation of cr(X) w.r.t 3.
4 Semantic Characterization of Chase Non-Termination

We proceed to characterize the non-termination of the (semi-)oblivious chase under sticky
sets of tgds. In particular, we show that if a sticky set ¥ of tgds does not belong to CTy, for

* € {0,s0}, then we can always isolate a linear infinite x-chase derivation d; of cr(X) w.r.t. X.

Roughly, linearity means that there is an infinite simple path ag, @1, as ... in the chase
relation of §; such that ag € cr(X) and «; is constructed during the i-th trigger application,
while all the atoms that are needed to construct this path, and are not already on the path,
are atoms of cr(X). Notice that the chase relation of a x-chase derivation is defined in the
same way as the chase relation of a x-chase sequence.

» Definition 5. Consider a set ¥ of tgds. For x € {o,so}, an infinite x-chase derivation
d = (L;)izo of cr(X) w.r.t. X, where I;{(0;, hi) ;41 for i > 0, is called linear if there exists an
infinite sequence of distinct atoms (a;);>0 such that the following hold:

ap € cr(X).

For each i >0, a;11 € I;11 \ I;, and there exists B € body(o;) such that h;(8) = «; and
hi(body(o;) \ {B}) C er(%).

A simple example that illustrates the notion of linear infinite o-chase derivation follows:
» Example 6. Let ¥ be the sticky set consisting of the tgd

o= P(x7 y7 Z)? R(y7 w) _> 31} P(z’ y’ U)? R(y7 U)'
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Consider the infinite o-chase derivation § = (I;);>¢ of cr(X) w.r.t. X, where

Iy = {P(c,c,c),R(c,0)} (o ho ={z—c,y—c,z— c,w— c})
I = Iy U{P(c,c, L1),R(c, L1)} (o,hi={z—cy—c,z— Li,wwc})
I, =1L U{P(Ly,¢,1s),R(c, 12)} (o,ho={z— L1,y—c,z— Loy,w—c})

Iiyh = L U{P(Li,c, Liz1),R(c, Liz1)} (o hiv1 ={z— Li,y—=c,z— Lig1,w—c})

Let ap = P(e¢,¢,¢), a1 = P(c,¢, 11), and o; = P(L;_1,¢, L;) for i > 1. Tt is easy to verify
that ¢ is linear due to (c)i>0. Indeed, ag € cr(X), and for every ¢ > 0, «; belongs to I;41 \ I,
while h;(P(z,y,2)) = a; and h;(R(y,w)) = R(c,c) € cr(X).

We are now ready to present the main characterization of non-termination of the oblivious
and semi-oblivious chase under sticky sets of tgds via linear infinite x-chase derivations.

» Theorem 7. Consider a set ¥ € S of tgds. For x € {o,s0}, X & CT% iff there exists a
linear infinite x-chase derivation of cr(X) w.r.t. X.

By Corollary 4, it suffices to show the following: the existence of an infinite %-chase
derivation of cr(X¥) w.r.t. ¥ implies the existence of a linear infinite x-chase derivation of
cr(X) w.r.t. 3. This is a rather involved result, which is established in two main steps:

1. We show that the existence of an infinite x-chase derivation of cr(X) w.r.t. ¥ implies the
existence of an infinite x-chase derivation ¢ of cr(¥) w.r.t. ¥ such that the chase relation
of § contains a special path rooted at an atom of cr(X), called continuous. Intuitively,
continuity ensures the continuous propagation of a new null on the path in question.

2. By exploiting the existence of a continuous path, we construct a linear infinite x-chase
derivation of cr(X) w.r.t. X. In fact, due to stickiness, we can convert an infinite suffix P
of the continuous path in <;, together with all the atoms that are needed to generate the
atoms on P via a single trigger application, into a linear infinite *-chase derivation d,
of cr(X) w.r.t. X. As we shall see, stickiness helps us to ensure that J; is linear, while
continuity allows us to show that ¢, is infinite.

We proceed to give some more details for the above two steps. Although we keep the
following discussion informal, we give enough evidence for the validity of Theorem 7.

4.1 Existence of a Continuous Path

Let us first make the notion of the path in the chase relation of a derivation more precise.
Given an infinite x-chase derivation § = (I;);>0 of cr(X) w.r.t. £, a finite d-path is a finite
sequence of atoms (o )o<i<n such that ag € Iy and o; <5 a+1. Analogously, we can define
infinite 0-paths, which are infinite sequences of atoms rooted at an atom of Ij.

The intention underlying continuity is to ensure the continuous propagation of a new null
on a path. Roughly, a §-path (a;)o<i<n is continuous via a sequence of indices (4;)o<i<m,
with £y < -+ < £y, if bo =1, £,, = n, and, for each i € {0,...,m}, a new null is invented

in ay, that is necessarily propagated up to the atom «y,,, in case x = so (resp., the atom

i4+1

before ay,,, in case x = 0). An infinite d-path («;);>0 is continuous if there exists an infinite

i+1
sequence of indices (¢;);>0, with £y < £; < ---, such that every finite é-path (c;)o<i<e;, for

J >0, is continuous via (¢;)o<i<¢,;. Here is a simple example that illustrates this notion.
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» Example 8. Consider the sticky set ¥ = {01, 02,03}, where

or = S(@) — JyIzP(z,y,2), R(y,2)
oo = P(z,y,2),Rly,w) — P(w,y,z)
o3 = P(z,y,2),R(y,w) — JvP(z,y,v), R(y,v).

Notice that o3 is the tgd used in Example 6. It is easy to verify that there exists an infinite
o-chase derivation ¢ of cr(X) w.r.t. ¥ such that the following is part of <s; a black edge from
a to 3 labeled by o means that («, 5) belongs to <5 due to a trigger that involves the tgd o:

R(Ly,15) 2+ R(Li, L) — 2 R(Ly,10) —2» R(Li,Ls) — 2> R(Ly,Le)

o] a3 03
a1 o3 lop) 2} o3
He, L1, L) —> Ao, L, Ls) —» ALy, Ly Ls) —» A(Ls L Ls) > AL, L L)

It can be verified that the path with P-atoms in the figure is a continuous infinite d-path.

Let us explain the reason. The first atom in which a null is invented is P(c, L1, 13), with
11, L5 being the new nulls, and continuity is satisfied since the next atom invents a null, that
is, L3. Now, since the null L3 is propagated (this is indicated via the red dashed arrows) up
to the atom before the next null generator P(L3, 11, Lg), continuity is satisfied. In the rest
of the path the same pattern is repeated, and thus continuity is globally satisfied. In fact,
the pattern that we can extract is the following

S(c) — Ac, Ly, 1) —> ALy, 1y, L3)—» P(L3, 14, 13) —> ALy, Ly, 13)—
L S W N V
P15, 1, Le)— AL Ly, Le) ALy Ly, Le)—
e B A B > 4

P(Lg, Ly, Lo)—>P(Lo, L1, Lo)—> A(Lig, L1, Lo)—> -

where the continuous propagation of a new null (red arrows) can be easily observed.

We can show, via a graph-theoretic argument, that the existence of an infinite x-chase
derivation of cr(¥) w.r.t. ¥ implies the existence of an infinite x-chase derivation of cr(X)
w.r.t. ¥ that admits a continuous infinite path. Let us briefly explain the key idea underlying
this result. If we know that an infinite x-chase derivation 0 of cr(X) w.r.t. 3 exists, then
we can construct an infinite x-chase derivation ¢’ = (I;);>¢ of cr(X) w.r.t. £ (by essentially
rearranging the triggers of § in order to obtain a derivation of a convenient form) such that
the following statement holds:

there exists an infinite directed acyclic rooted graph G = (N U {e}, E,\) of finite degree,
where o is the root, N C |J,~ i, every node of N is reachable from e, and X labels the edges
of E with finite sequences of atoms from Uiso Li» such that, for every finite path e, vy, ..., vy,
forn > 1, with (e, v1) = (a})o<j<m, —1, and AN(vi—1,v;) = (@})o<j<m; 1,

((a;)OSjSmi—l) 1<i<n = (ai)ogig(m1+.._+mn)71

is a continuous &' -path via ({;)o<i<n—1, where bo =1 and £; = l;_1 + M4, fori € [n —1].
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By applying Kénig’s lemma' on G, we get that G contains an infinite simple path P =
e, v1,vs,.... We claim that P’ = A(e,v1), A(v1,v2),. .. is a continuous ¢’-path, which estab-
lishes the claim. By contradiction, assume that P’ is not a continuous ¢’-path. This implies
that there exists a finite prefix e, vy, ..., v, of P such that A(e,v1), A(v1,v2),..., A(Vn—1, Vp/)
is not a continuous ¢’-path via (¢;)o<i;<n/—1 — this is the sequence of indices used in the above
statement — which contradicts the fact that the label of every finite path e vy,..., v,, for
n > 1, is a continuous finite §’-path via (¢;)o<i<n—1-

4.2 From Continuous Paths to Linear Infinite Derivations

We now discuss that the existence of an infinite x-chase derivation § of cr(X) w.r.t. ¥ such
that a continuous infinite J-path exists implies the existence of a linear infinite x-chase
derivation &y of cr(X) w.r.t. X. Starting from J, we are going to construct a sequence of
instances that leads to the desired derivation dy,. The construction proceeds in three steps:

Useful part of 6. We first isolate a useful part of the x-chase derivation 6 = (I;);>0. Recall
that there exists a continuous infinite é-path P = (a;);>0. By stickiness, there exists j > 0
such that «; is the last atom on P in which a term ¢ becomes sticky. The latter means that
the first time ¢ participates in a join is during the trigger application that generates «;, and
thus ¢ occurs in (or sticks to) every atom of {a;};>;. Let k > j be the integer such that oy,
is the first atom on P after «; in which a new null is invented. The useful part of ¢ that we
are going to focus on is the infinite sequence of atoms (o;);>, which we call the backbone,
and the atoms of | J;~ /i, which we call side atoms, that are needed to generate the atoms
on the backbone via a single trigger application. In other words, for a backbone atom «,
if « is obtained via the trigger (o, h) for ¥ on instance I;, for some ¢ > 0, then the atoms
h(body(0)), excluding the backbone atoms, are side atoms.

» Example 9. Consider again the set ¥ € S from Example 8. As discussed above, there
exists an infinite o-chase derivation § of cr(X) w.r.t. ¥ such that a continuous infinite d-path
exists (see the figures above). The useful part of § is as shown below

side atoms

R(Ly, L) R(Ly,Ly) R(Li,Ly) R(Li,Ls) R(Li,Lg)

'
'
'
1
'
1
'
1
'
'
'
\

‘HC7J~17J~22,/ ‘ P(1,,1,,13) P(;,1,,13) P(41,,13) A3,1,,16)

backbone

Observe that the last atom on the continuous path in which a term becomes sticky is
P(Lg, Ly, L3); in fact, the sticky term is Ly, which is the only sticky term on the continuous
path. It happened that P(Ls, 14, 13) invents also a new null, that is, 13, and therefore the
suffix of the continuous path that starts at P(Ls, L1, L3) is the backbone. It is now easy to
verify that all the other atoms, apart from S(c¢), indeed contribute in the generation of a
backbone atom via a single trigger application.

! Koénig’s lemma is a well-known result from graph theory that states the following: for an infinite directed
rooted graph, if every node is reachable from the root, and every node has finite out-degree, then there
exists an infinite directed simple path from the root.
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Renaming step. We proceed to rename some of the nulls that occur in backbone atoms or
side atoms. In particular, for every null L occurring in a side atom «, we apply the following
renaming steps; fix a constant ¢ € dom(cr(X)): (i) every occurrence of L in « is replaced by ¢,
and (ii) every occurrence of L in a backbone atom /3 that is propagated from « to § is replaced
by ¢. For a backbone or side atom «, let p(«) be the atom obtained from « after globally
applying the above renaming steps. We now define the sequence of instances ¢’ = (J;);>0 as
follows: Jy = {p(a) | a is a side atom } C cr(X) and J; = J;—1 U {p(ar+i—1)} U H, where H
is the set of atoms that are generated together with agy;_1 (since we can have a conjunction
of atoms in the head of a tgd) after renaming the nulls that do not occur in p(ag4,-1) to c.
Notice that H is empty in case of single-head tgds. It is crucial to observe that a new null
generated in a backbone atom never participates in a join. This is because the first backbone
atom ay, comes after the atom «;, which is the last atom on P in which a term becomes
sticky. This fact allows us to modify triggers from ¢ in order to construct, for every ¢ > 0, a
trigger (O’Z‘, hz) such that Ji<0'i, hz>Jz+1

» Example 10. We consider again our running example. Before renaming the nulls that
appear in side atoms, we first need to understand how nulls are propagated from side atoms
to backbone atoms during the chase. This is depicted in the following figure

R(Ly,1,) R(L,L;) \\‘x R(ll,l4) R(Ll,is) R(Ly,Le)
Ca el e a4 b
P, 11,15) P(1,y,14,13) ALs,1,13) ALy, 11,13) AL, L1, Le)
Notice that the boldfaced occurrences of the nulls 13, Lg,... are not propagated from side

atoms, but generated on the backbone, and thus will not be renamed. Let us recall that
the existence of such nulls is guaranteed by continuity. By applying the renaming step, i.e.,
by replacing every null in a side atom with the constant ¢, and then propagating it to the
backbone as indicated above, we get the sequence of instances Jy = {R(c,¢), P(c,c,c)} C
CF(E), Jp = Jog U {P(C, c, J_g),R(C, J_3)}, Jo = J1 U {]D(C7 c, Lg)}, J3 = Jy U {P(C, c, Lg)},
Jy = J3 U{P(Ls,c, Lg),R(c, Lg)},.... Observe that, due to stickiness, none of the nulls
13, lg,... generated on the backbone participates in a join. This means that the renaming
step preserves all the joins, and thus, by adapting triggers from §, we can devise a valid
trigger for each pair (J;, J;1+1) of instances.

Pruning step. At this point, one may be tempted to think that ¢’ = (J;);>0, with

Ji{oi, hi)Jip1 for i > 0, is the desired linear infinite x-chase derivation of cr(X) w.r.t. 3.

It is easy to verify that we have the infinite sequence of atoms (p(c;))i>k—1 such that

plag_1) € cr(X) since a1 is a side atom, and for each ¢ > k—1, J; 42 2 Ji—pr1U{p(ait1)},

and there exists 8 € body(a;) such that h;(3;) = «; and h;(body(o;) \ {8}) C cr(X). However,

we cannot conclude yet that ¢ is the desired derivation for the following two reasons:

1. triggers may repeat, i.e., we may have i # j such that o; = 0; = o and h; o} h;, where
ok is = (resp., ~,) if x = o (resp., x = so0), and

2. we may have i # j such that p(a;) = p(a;), i.e., the sequence of atoms (p(c;))i>k—1 does
not consist of distinct atoms.
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This can be easily fixed by pruning the subderivation between the two repeated triggers
or atoms. But since this pruning step may be applied infinitely many times, the question
that comes up is whether the obtained x-chase derivation §” is infinite. Interestingly, this is
the case due to continuity. Since the backbone (a;);>1 is part of a continuous d-path, we
conclude that two repeated triggers or atoms are necessarily between two atoms « and 3
in which new nulls are invented. The fact that we have infinitely many pairs of such atoms
on the backbone, we immediately conclude that after the pruning step the obtained x-chase
derivation is infinite. Thus, §” is a linear infinite x-chase derivation of Jy w.r.t. X. Since
Jo C cr(X), we can easily construct a linear infinite x-chase derivation d, of cr(X) w.r.t. ¥ by
simply adding to Jy the set of atoms cr(X) \ Jo, and the claim follows.

» Example 11. Coming back to our running example, it can be seen that the sequence of
instances devised in Example 10 is not the desired linear derivation due to repeated triggers
and atoms. However, after applying the pruning step, we get the sequence of instances

J(/) = J(), J{ = Jl, Jé = J{U{P(J_g,c, J.ﬁ),R(C, Lg)}, Jé = JéU{P(J_e,,C, L9)7R(C, J_g)}, e

Now, it is easy to verify that after adding the atom S(c) in Jj, we get (modulo null renaming)
the linear infinite o-chase derivation of cr(¥) w.r.t. ¥ given in Example 6.

5 Graph-Based Characterization of Chase Termination

In this section, we characterize the termination of the (semi-)oblivious chase for sticky sets of

tgds via graph-based conditions. More precisely, we show that a set 3 € S belongs to CT? iff

a linearized version of it, i.e., a set of linear tgds obtained from 3, enjoys a condition similar

to rich-acyclicity [16], if x = o, and weak-acyclicity [10], if x = so. Recall that linear tgds are

tgds with only one body atom [6]; we write L for the class of linear tgds. The proof of the
above result proceeds in two steps:

1. We first show that the given sticky set X of tgds can be rewritten into a set of linear
tgds, while this rewriting preserves chase termination. This heavily relies on Theorem 7,
which establishes that non-termination of the (semi-)oblivious chase coincides with the
existence of a linear infinite chase derivation of cr(X) w.r.t. X.

2. We then extend recent characterizations from [4], which are based on extensions of
rich-acyclicity and weak-acyclicity, of the termination of the (semi-)oblivious chase under
constant-free linear tgds in order to deal with constants in the tgds. Although in other
contexts, e.g., query answering under tgds, the transition from constant-free tgds to
tgds with constants is relatively straightforward, in the context of chase termination the
constants in the tgds cause additional complications that must be carefully treated.

We proceed to give more details for the above two steps.

5.1 Linearization

Before presenting the linearization procedure, we need to introduce some auxiliary notions.
Given a tgd o and an atom « € body(o), let V,, , = var(body(c) \ {a}), that is, the set of
body variables of ¢ that do not occur only in «. Moreover, given a set ¥ of tgds, a tgd
o €Y, and an atom a € body(c), let MY, = {h | h: Vs, — dom(cr(X))}, ie., the set of all
possible mappings from the variables of V,, , to the constants occurring in cr(X).
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» Definition 12. Consider a set ¥ of tgds. The linearization of a tgd ¢ € ¥ (w.r.t. ¥) of
the form ¢(z,y) — 32v(Z, z), denoted Lin(o), is the set of linear tgds

U U {hia) = 3zh(e(,2)

a€g(z,y) heMZ ,

The linearization of ¥ is defined as Lin(X) = |J Lin(o).

gED

The linearization procedure converts a tgd o into a set of linear tgds by keeping only one
atom « from body(o), while the variables in body(c) \ {«} are instantiated with constants
from cr(X) in all the possible ways. Theorem 7 allows us to show that this procedure preserves
the termination of the (semi-)oblivious chase whenever the input set of tgds is sticky.

» Theorem 13. Consider a set ¥ € S of tgds. For x € {o,so}, ¥ € CTY, iff Lin(X) € CTY,.

The (=) direction is almost immediate. Let us focus on the (<) direction. Firstly, let us
clarify that it suffices to show Theorem 13 for normalized sets of tgds, i.e., tgds with only
one atom in the head. This holds since ¥ € CT iff Norm(X) € CTy, and Lin(X) € CTy iff
Lin(Norm(X)) € CTy, where Norm(X) is the normalized version of 3 obtained by applying the
standard normalization procedure; see, e.g., [7]. Assume that % ¢ CTy,. By Theorem 7, there
exists a linear infinite x-chase derivation § = (I;);>o of cr(X) w.r.t. 3, where I;{o;, hi)L; 41
for 4 > 0. In other words, there exists an infinite sequence of distinct atoms («;);>0 such
that: (i) ap € cr(X), and (ii) for each ¢ > 0, aj41 € I;i11 \ I;, and there exists 5; € body(c;)
such that h;(8;) = «; and h;(body(c;) \ {8:}) C cr(X). Let X’ be the set of linear tgds
{9:(B;) — gi(head(0;))}i>0, where g; is the restriction of h; over Vj, o,. Since ¥’ C Lin(X),
it suffices to show that ¥/ ¢ CTy. To this end, we are going to construct an infinite x-chase
derivation ¢’ of cr(¥’) C cr(X) w.r.t. ¥’. The derivation ¢’ is obtained from § by replacing
each trigger (o, h;), for i > 0, with (o}, h}), where o/ is the linear tgd g;(3;) — g¢:(head(o;))
that belongs to ¥, while A/ is the restriction of h; to the terms occurring in body(o}). It
remains to show that §’ is indeed a valid infinite *-chase derivation of cr(X’) w.r.t. X', which
boils down to showing that, for every i # j > 0, o] = o, = o implies h} o} h’;, where o is #,
and 0% is #,. Towards a contradiction, assume that there exists i # j such that o} = O’} =0
but A} of h; does not hold. This implies that o; = o since we consider single-head tgds.
But this contradicts the fact that a; # «;.

5.2 Acyclicity Conditions

We proceed to extend the characterizations of the termination of the (semi-)oblivious chase
under constant-free linear tgds established in [4]. The goal is to show that, given a set of tgds
¥ € L, which may contain constants, ¥ € CTy, iff ¥ is critically-richly-acyclic, and ¥ € CTy’
iff ¥ critically-weakly-acyclic, where critical-rich- and critical-weak-acyclicity are appropriate
extensions of rich- and weak-acyclicity proposed in [4]. These notions rely on the dependency
graph of a set of tgds, which we now recall. We assume a fixed order on the head-atoms
of tgds. For a tgd o with head(o) = oy, ..., ax, we write (o, i) for the single-head tgd, i.e.,
the tgd with only one atom in its head, obtained from ¢ by keeping only the atom «;, and
the existentially quantified variables in «;. Recall that pos(a, x) is the set of positions in «
at which z occurs. Analogously, we write pos(body(c),x) for the set of positions at which
the variable = occurs in the body of o. We also write pos(sch(X)) for the set of positions of
sch(X), i.e., the set {R[i] | R/n € sch(X) and i € {1,...,n}}.
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» Definition 14. The dependency graph of a set ¥ of tgds is a labeled directed multigraph
dg(X) = (N, E,)\), where N = pos(sch(X)), A : E = X x N, and E contains only the
following edges. For each o € ¥ with head(c) = ay, ..., ay, for each x € fr(c), and for each
7 € pos(body(o),z):

For each i € [k], and for each n" € pos(ay, x), there is a normal edge e = (w,n') € E with
Ae) = (o,1).

For each existentially quantified variable z in o, for each i € [k], and for each 7' €
pos(a, z), there is a special edge e = (mw, ') € E with \(e) = (o,1).

A normal edge (m, ') keeps track of the fact that a term may propagate from 7 to 7’
during the chase. Moreover, a special edge (7, 7"’) keeps track of the fact that the propagation
of a value from 7 to 7’ also creates a null at position 7”/. As we shall see, the dependency
graph is appropriate when we consider the semi-oblivious chase. For the oblivious chase,
we need an extended version of it. The extended dependency graph of ¥, denoted edg(X%),
is obtained from dg(X) by simply adding special labeled edges from the positions where
non-frontier variables occur to the positions where existentially quantified variables occur.

Two well-known classes of tgds, introduced in the context of data exchange, that guarantee
the termination of the oblivious and semi-oblivious chase are rich-acyclicity and weak-
acyclicity, respectively. A set X is richly-acyclic (resp., weakly-acyclic) if there is no cycle
in edg(X) (resp., dg(X)) that contains a special edge. It would be very useful if, whenever
we focus on linear tgds, rich- and weak-acyclicity are also necessary conditions for the
termination of the oblivious and semi-oblivious chase, respectively. Unfortunately, this is not
the case. A simple counterexample follows:

» Example 15. Consider the set 3 of linear tgds consisting of R(x,z) — 3z R(z,z). In
dg(X) = edg(X) there is a cycle that contains a special edge. However, for x € {o,so}, there
is only one x-chase sequence of cr(X) w.r.t. ¥ that is terminating; thus, ¥ € CTY.

As it has been shown in [4], there is an extension of rich- and weak-acyclicity, called
critical-rich- and critical-weak-acyclicity, that whenever we focus on linear tgds provides a
necessary and sufficient condition for the termination of the oblivious and semi-oblivious
chase, respectively. However, the analysis performed in [4] considers only tgds without
constants, while after the linearization of a sticky set ¥ of tgds, even if ¥ is constant-free,
the obtained set Lin(X) contains at least one constant. Thus, in order to be able to apply
critical-rich- and critical-weak-acyclicity on Lin(X), we first need to appropriately extend
these notions to linear tgds with constants.

A crucial notion underlying critical-rich- and critical-weak-acyclicity is the notion of
compatibility among two single-head linear tgds. Intuitively, if a single-head linear tgd oy is
compatible with a single-head linear tgd o2, then the atom obtained during the chase by
applying o1 may trigger oo. It is clear that the presence of constants in the tgds affects
the way that we define compatibility. We assume the reader is familiar with the notion of
unification. Given two atoms a, 8, we write mgu(a, 8) for their most general unifier. For
brevity, we write II¢ for the set of positions pos(body(o), ), i.e., the set of positions at which
the term ¢ occurs in the body of o. We also write term(c, IT), where « is an atom, and IT a
set of positions, for the set of terms occurring in « at positions of II.

» Definition 16. Consider two single-head linear tgds o1 and oo. We say that oy is compatible

with oo if the following hold:

1. head(oy) and body(os) unify.

2. For each x € var(body(o2)), either term(head(oy),1122) = {z} for some existentially
quantified variable z in o1, or term(head(o1),1192) C fr(oq) U {c} for some constant c.

3. For each c € const(body(cz)), term(head(oy),1192) C fr(oy) U {c}.
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Having the notion of compatibility among two single-head linear tgds in place, we can
recall the resolvent of a sequence o1, ..., 0, of single-head linear tgds, which is in turn a
single-head tgd. Roughly, such a resolvent mimics the behavior of the sequence o1, ..., 0,
during the chase. Notice that the existence of such a resolvent is not guaranteed, but if it
exists, this implies that we may have a sequence of trigger applications that involve the tgds

o1,...,0, in this order. In such a case, we call the sequence o1,..., 0, active.
» Definition 17. The resolvent of a sequence o1, ...,0, of single-head linear tgds, denoted
[01,...,00], is inductively defined as follows; for brevity, we write p for [o1,...,0n-1]:

1. [0’1] =015

2. [o1,...,0n] = v(body(p)) — ~(head(s,)), where v = mgu(head(p), body(c,)), if p # O
and p is compatible with o,; otherwise, [o1,...,0n] = 0.

The sequence o1, ...,0, is called active if [o1,...,0,] # 0.

At this point, one may think that the right extension of rich- and weak-acyclicity, which
will provide a necessary condition for the termination of the oblivious and semi-oblivious
chase under linear tgds, is to allow cycles with special edges in the underlying dependency
graph as long as the corresponding sequence of single-head tgds, which can be extracted from
the edge labels, is not active. This is not enough. If a cycle with a special edge is labeled
with an active sequence, then we can conclude that it will be traversed at least once during
the chase. However, it is not guaranteed that it will be traversed infinitely many times.

» Example 18. Consider the set X of linear tgds consisting of
o1 = R(z,y,z) — P(z,y,2) o2 = P(x,y,z) — JzR(y,z,x).

In dg(¥) = edg(X) there is an active cycle that contains a special edge; e.g., C =
R[2], P[2], R[2], which corresponds to the sequence of tgds o1,092. It is easy to see that
[01,02] # O, and thus C' is active. Despite the existence of an active cycle that contains a
special edge, we can show that 3 € CTy, where x € {0,s0}.

A cycle that is labeled with an active sequence o1, ...,0,, and contains a special edge,
will be certainly traversed infinitely many times if the resolvent of the sequence p, ..., p of
length k, where p = [01,...,0,], exists, for every k > 0. Interestingly, for ensuring the latter
condition, it suffices to consider sequences of length at most (w + 1), where w is the arity of
the predicate of body(c). This brings us to critical sequences. For brevity, we write o* for
the sequence o, ..., 0 of length k.

» Definition 19. A sequence o1,...,0, of single-head linear tgds is critical if o1,...,0, is
active, and [o1, . ..,0,)“ " is active, where w is the arity of the predicate of body (o).

We can now recall critical-rich- and critical-weak-acyclicity. They are essentially rich-
and weak-acyclicity, with the difference that a cycle in the underlying graph is “dangerous”,
not only if it contains a special edge, but if it is also labeled with a critical sequence.

» Definition 20. Consider a set ¥ € L of tgds, and let G = (N, E, \) be either edg(X) or
dg(X). A cycle vy, v1,...,vn,v0 in G is critical if A(vg,v1), Mv1,v2),..., A(vn, Vo) is critical.
We say that 3 is critically-richly-acyclic (resp., critically-weakly-acyclic), if no critical cycle
in edg(X) (resp., dg(X)) contains a special edge.

The desired result follows:
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» Theorem 21. Consider a set ¥ € L of tgds. The following hold:
Y e CTV iff X 4s critically-richly-acyclic.
¥ e CTY iff ¥ is critically-weakly-acyclic.

The “if” directions of the above result are shown by giving proofs similar to the ones given
in [16] and [10] for showing that rich-acyclicity and weak-acyclicity guarantees the termination
of the oblivious and restricted chase, respectively. The interesting direction is the “only if”
direction. By Corollary 4, it suffices to show that if ¥ is not critically-richly-acyclic (resp.,
critically-weakly-acyclic), then there exists an infinite o-chase (resp., so-chase) derivation of
cr(X) w.r.t. ¥. This is a non-trivial result that requires a couple of auxiliary lemmas.

The equality type of an atom is a set of equalities among positions, as well as among
positions and constants, that describes its shape. Formally, for an atom « = R(t1,...,t,),
the equality type of « is eqtype(a) = {R[i] = R[j] | ti =t;} U {R[i]=c|c€ C and t; = c}.
For a linear tgd o, we write eqtype(o) for the equality type of the atom body(c). The next
result establishes a useful connection between active sequences and equality types:

» Lemma 22. Consider a single-head linear tgd o such that o' is active, for some i > 1,
and eqtype([oci=1]) = eqtype([c?]). Then, o**! is active, and eqtype([c?]) = eqtype([c*T1]).

Despite the fact that the above lemma has been already shown in [4] for constant-free tgds,
it turned out that the proof from [4] cannot be easily extended to tgds with constants. Thus,
we had to devise a completely new proof that exploits further properties of the resolvent of a
sequence a, . ..,o. In fact, we show via an inductive argument that [0?] = [[¢°7!], o] is the
same (modulo variable renaming) as [, [0°71]], which in turn allows us to easily establish
Lemma 22. Having the connection between active sequences and equality types provided
by Lemma 22, we show the next lemma, which states that critical cycles can be traversed
infinitely many times during the chase.

» Lemma 23. Consider a critical sequence o1, ...,0, of single-head linear tgds. For every
k>0, [o1,...,04]" is active.

As for Lemma 22, even though the above result has been shown in [4] for constant-free
tgds, we had to provide a new proof in order to deal with the constants in the tgds. Let us
briefly explain how Lemma 23 is shown. For brevity, let p = [o1,...,0,]. Since 01,...,0,
is critical, by definition we get that p<*!
of body(c;). The crucial step is to also show that eqtype([p®]) = eqtype([p“*!]). Then, by
iteratively applying Lemma 22, we obtain that p* is active for every k > w + 1. Since p**!
is active, we can conclude that p"c is active for every 1 < k < w + 1, and Lemma 23 follows.

is active, where w is the arity of the predicate

We can show via an inductive argument that an active sequence o1, ..., 0, of single-head
linear tgds mimics the sequence of trigger applications that involve the tgds oy, ...,0, (in
this order), starting from an atom in the critical instance; in particular, the ground version
of body([p**1]). This fact and Lemma 23 allow us to show that a critical cycle of minimal
length in the (extended) dependency graph that contains a special edge, gives rise to an
infinite o-chase (so-chase) derivation of cr(X) w.r.t. ¥, and Theorem 21 follows.

It is now easy to see that Theorems 13 and 21 establish the main result of this section:

» Corollary 24. Consider a set 3 € S of tgds. The following hold:
Y € CTY iff Lin(X) is critically-richly-acyclic.
¥ € CTY iff Lin(X) is critically-weakly-acyclic.
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6 Complexity of Chase Termination

In this final section, we pinpoint the complexity of the x-chase termination problem under
sticky sets of tgds. In particular, we establish the following complexity result:

» Theorem 25. For x € {0,s0}, CTy(S) is PSPACE-complete, and NLOGSPACE-complete
for predicates of bounded arity. The lower bounds hold even for tgds without constants.

Upper Bounds. The problem CT} under constant-free linear tgds is PSPACE-complete, in
general, and NLOGSPACE-complete for predicates of bounded arity [4]. However, despite
the fact that, by Corollary 24, we can reduce CT(S) to CT3(L), we cannot directly exploit
the complexity results from [4] for two reasons: (i) the linearized version of ¥ contains at
least one constant, while the results from [4] apply only to constant-free tgds, and (ii) the
linearization procedure takes exponential time, in general, and polynomial time in the case of
bounded-arity predicates; thus, we cannot explicitly compute the set Lin(X), and then check
for critical-rich- and critical-weak-acyclicity. Therefore, a more refined procedure is needed.

We focus on the complement of our problem, i.e., given a set % € S of tgds, we want to
check whether ¥ ¢ CT. By Corollary 24, it suffices to show that Lin(X) is not critically-
richly-acyclic, if x = 0, and not critically-weakly-acyclic, if x = so. The latter problems can
be seen as a generalization of the standard graph reachability problem. Indeed, we need to
check whether there exists a node v in the (extended) dependency graph of Lin(X) that is
reachable from itself via a critical cycle that contains a special edge. However, as discussed
above, we cannot explicitly construct Lin(X) and its (extended) dependency graph G. Instead,
the above reachability check should be performed on a compact representation of G, which is
the set ¥ itself. We show that this check can be performed via a non-deterministic procedure
that uses O(wlog(w - |sch(X)]) + wlog(w - m - |X])) space, where w is the maximum arity over
all predicates in X, and m is the maximum number of atoms occurring in a tgd of X.

Lower Bounds. The PSPACE-hardness is shown by providing a polynomial time reduction
from the acceptance problem of a deterministic polynomial space Turing machine M. Such a
reduction can be easily devised if we are allowed to join a variable in the body of a tgd and
then lose it, or if we can use constants in the body of a tgd. In this case, a configuration of M
can be straightforwardly encoded in a single predicate Config of polynomial arity. However,
if we want the set of tgds to be sticky and constant-free, then we need a more clever encoding
for a configuration of M, which increases the arity of Config, but only polynomially.

The NLoGSPACE-hardness is inherited from [4], where it is shown that CTy(L) is
NLoGSPACE-hard, even for tgds that are constant-free, each body variable occurs only
once (i.e., stickiness is trivially satisfied), and only unary and binary predicates are used.

7 Conclusions

We have shown that the uniform (semi-)oblivious chase termination problem for sticky sets of
tgds is decidable, and obtained precise complexity results. This is done by first characterizing
the termination of the (semi-)oblivious chase for sticky sets of tgds via graph-based conditions
that are of independent interest. In particular, to check whether the oblivious (resp., semi-
oblivious) chase terminates for a sticky set ¥ of tgds, we simply need to linearize it, i.e.,
convert it, via an easy procedure, into a set Lin(X) of linear tgds, and then check whether
Lin(X) enjoys an acyclicity condition in the spirit of rich-acyclicity (resp., weak-acyclicity).
The next natural step is to concentrate on the restricted (a.k.a. standard) version of the
chase, which makes the problem even more challenging due to its non-deterministic behaviour
that cannot be captured via static graph-based conditions.
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