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—— Abstract
We study the complexity of evaluating well-designed pattern trees, a query language extending
conjunctive queries with the possibility to define parts of the query to be optional. This possibility
of optional parts is important for obtaining meaningful results over incomplete data sources as it is
common in semantic web settings.

Recently, a structural characterization of the classes of well-designed pattern trees that can
be evaluated in polynomial time was shown. However, projection — a central feature of many
query languages — was not considered in this study. We work towards closing this gap by giving a
characterization of all tractable classes of simple well-designed pattern trees with projection (under
some common complexity theoretic assumptions). Since well-designed pattern trees correspond to
the fragment of well-designed {AND, OPTIONAL}-SPARQL queries this gives a complete description
of the tractable classes of queries with projections in this fragment that can be characterized by the
underlying graph structures of the queries.
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1 Introduction

Well-designed pattern trees (wdPTs) are a query formalism well-suited to deal with the ever
increasing amount of incomplete data. Well-designed pattern trees over SPARQL triple
patterns are equivalent to the class of well-designed {AND, OPTIONAL}-SPARQL queries [19]
and were in fact originally introduced as a formalism to more easily study SPARQL queries.
By replacing triple patterns with relational atoms, wdPTs can also be seen as an extension of
Conjunctive Queries (CQs): a wdPT is a rooted tree where each node represents a conjunction
of atoms, and the tree structure represents a nesting of optional matching. The idea is to
start evaluating the CQ at the root and to iteratively extend the retrieved results as much
as possible by the results of the CQs in the other nodes. This allows wdPTs to return partial
answers in case that not the complete query can be mapped into the database — unlike CQs
which in such a situation return no answer.

Well-designed pattern trees and the corresponding SPARQL fragment represent an
important class of SPARQL queries and have been studied intensively within the last decade
[19, 16, 2, 21, 20, 14, 3, 1, 22]. Thus many properties of and problems related to these
? Stefan Mengel and. Sebastian Skrit.ek;
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D = {from(1, “LHR”), to(1, “LIS”),
from(2, “LHR”), to(2, “LIS”),
contact(email, “e@Qma.il”),
avail _seats(2,“1A”)}

[from(fn, origin), to(fn, dest)]

contact(ct, cd) [availiseats(fn, sn) ]

Figure 1 The wdPT p and database D from Example 1.

queries are now well understood. For example, the evaluation problem for wdPTs (i.e.,
given a wdPT, a database and a mapping, is this mapping an answer to the wdPT over the
database) is coNP-complete for projection free wdPTs [19] and XoP-complete in the presence
of projection [16]. However, certain tractable classes of wdPTs have been identified [3]. The
main idea there is to extend known tractability conditions for CQs to wdPTs. However, the
question of characterizing exactly the classes of wdPTs for which tractable query evaluation is
possible — and thus the question how good the approach of extending tractability conditions
of CQs to wdPTs is — has been largely ignored. Only very recently, this question was
addressed for wdPTs without projection, and a characterization of the classes for which query
evaluation is in PTIME was given [22]. Notably, as also observed for Boolean Conjunctive
Queries [12, 11], for wdPTs without projection these classes coincide with the ones for which
evaluation is in FPT.

However, [22] does not touch projection, an essential and central feature of query languages.
Thus the question “What are all tractable classes of wdPTs with projection?” remains open.
We work towards closing this gap.

One observation consistently made in all the aforementioned work on wdPTs is that
problems become much more complex once projection is included. This is true for both, the
computational complexity of the problems (e.g., as mentioned, for the evaluation problem it
increases from coNP- to Y9P-completeness; for classical query containment, the NP-complete
problem becomes even undecidable [21]) as well as for establishing these results.

This is because of the particular semantics of well-designed SPARQL with projection.
For wdPTs without projection, given some database, the set of answers consist of all variable
mappings such that there exists a subtree of the wdPT satisfying the following conditions:
first, it must contain the root node of the tree. Second, the set of variables occurring in the
subtree must be the same as the domain of the mapping. Third, the mapping must map each
atom in the subtree into the database, and fourth, no extension of the mapping is allowed
to map all atoms of any child node of any node in the subtree into the database. This is
illustrated by the following example (a precise definition is given in Section 2).

» Example 1. Figure 1 shows a wdPT p with three nodes where the top node represents
the root of the tree, having two child nodes as depicted. At its root node, the query is
looking for information on flights: flight number, origin and destination. This information
should be extended by some contact information (left child), and information on available
seats on the flight (right child) in case any of this information is available. Observe that the
two extensions are independent of each other. The equivalent SPARQL query (replacing
relational atoms by triple patterns) would be

{{?fn from 7origin . 7fn to 7dest} OPTIONAL {?ct contact ?cd}}
OPTIONAL {7?fn avail_seats 7sn}

For the database instance D also shown in the figure, the mapping p with p(fn) = 1,
w(origin) = “LHR”, p(dest) = “LIS”, u(ct) = email, and p(cd) = “e@ma.il” is an answer
to p over D. This is because of the subtree of p consisting of the root node and the left
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child. It can be checked that it satisfies all four conditions. For the fourth condition, just
observe that there exists no extension of y that maps avail__seats(fn, sn) into D. Because of
the fourth condition, the mapping v with v(fn) = 2, v(origin) = “LHR”, v(dest) = “LIS”,
v(ct) = email, and v(cd) = “e@ma.il” is no solution, because this mapping can be extended
by v(sn) = “1A” in a way that maps avail__seats(fn, sn) also into D.

Thus, without projection, the only hard part in deciding whether some mapping is a solution
is to check for the existence of an extension, since this basically includes a homomorphism
test. However, for wdPTs with projection, a mapping is a solution if there exists an extension
of this mapping to some subset of the existential variables in the tree, such that the extended
mapping is a solution to the wdPT considered without projection.

» Example 2. Consider the wdPT from Example 1, but now assume that the flight number
fn is an existential variable and thus not part of the output. Then p with p(origin) =
“LHR”, u(dest) = “LIS”, u(ct) = email, and p(ed) = “e@ma.il” is a solution because of the
extension p(fn) = 1. Observe that the extension u(fn) = 2 does not witness p to be a
solution, since, as already discussed before, this mapping is not maximal.

As a consequence, beside testing some mapping for maximality, as a second source of hardness,
different mappings on the existential variables have to be taken into account.

Besides the already mentioned increased complexity of many problems, it was also
observed that for wdPTs with projection it is no longer the case that the classes for which
query evaluation is in PTIME and in FPT coincide [15]. Thus, in this setting, the choice of
the tractability notion makes a difference when describing all tractable classes.

We choose to study the complexity of query evaluation in the model of parameterized
complexity where, as usual, we take the size of the query as the parameter. As already argued
in [18], this model allows for a more fine-grained analysis than the classical perspectives of
data- and query complexity. In parameterized complexity, query answering is considered
tractable, formally in FPT, if, after a preprocessing that only depends on the query, the actual
evaluation can be done in polynomial time [9, 10]. Parameterized complexity has found many
applications in the complexity of query evaluation problems, see e.g. [12, 11, 17, 4, 22].

In our efforts to better understand the tractability frontier for wdPTs, we provide a
complete characterization of the tractable classes of simple wdPTs, i.e., wdPTs where no
two atoms share the same relation symbol. Because of the relationship between wdPTs
and well-designed {AND, OPTIONAL}-SPARQL queries, this immediately gives a complete
description of the tractable classes of well-designed {AND, OPTIONAL}-SPARQL queries
with projection that can be characterized by only considering the graph structures of the
queries, similar e.g. to the work of [12, 4]. We note that the results showing the existence
of classes of wdPTs for which the evaluation problem is NP-hard but in FPT can be easily
extended to simple wdPTs. Moreover, our tractability criteria are not restricted to simple
wdPTs. In fact, the same tractability criteria can also directly be applied to give tractable
classes of non-simple wdPT's. However, in this case, there are classes of queries that do not
satisfy our tractability criteria and are still tractable. Thus, the restriction to simple wdPTs
is crucial for the lower bounds.

Summary of results and organization of the paper. We study the following decision
problem: Given a wdPT, a database, and a mapping, is the mapping a solution of the wdPT
over the database? This is the standard formulation of the evaluation problem usually studied
(cf. [16, 13, 22, 3]). It reveals the influence of the optional query parts on the evaluation
problem, which is lost e.g. when considering Boolean queries. Instead of just SPARQL
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triple patterns, we consider the more general case of wdPTs with arbitrary relational atoms
where we always assume that the classes of queries we consider have bounded arity. Our
main result is a characterization of the classes of simple wdPTs with projection that allow
fixed-parameter tractable query evaluation.

After some preliminaries in Section 2, we define two tractability conditions in Section 3.
By comparing these conditions with the tractability criterion from [22], we discuss how
they describe the additional complexity introduced by projection. Note that some of the
conditions provided here have precursors in [3] and [15] that had to be carefully refined to
provide a fine-grained complexity analysis.

In Section 4 we prove that the two tractability conditions imply FPT membership of the
evaluation problem by presenting an algorithm that exploits these conditions.

In Section 5 we then show that both tractability conditions are indeed necessary for a
class of simple wdPTs to be tractable. That is, we show that if either of them is not satisfied
by a class of wdPTs, the evaluation problem for this class is either W[1]- or coW([1]-hard.

In Section 6, we discuss our results and also potential extensions of the tractability
conditions to conclude the paper.

2 Preliminaries

Basics. Let Const and Var be two disjoint countable infinite sets of constants and variables,
respectively. A relational schema o is a set {R1,..., R, } of relation symbols R;, each having
an assigned arity r; > 0. A relational atom R;(U) over o consists of a relation symbol R; € o
and a tuple ¥ € (Const U Var)™. For an atom 7 = R;(7), let dom(7) denote the set of
variables and constants occurring in 7. This extends to sets R = {7y,..., 7, } of atoms as
dom(R) = |J!", dom(7;). Furthermore, var(r) = dom(7) N Var and var(R) = dom(R) N Var-.
Observe that, by slight abuse of notation, we use operators U, N, \ also between sets V and
tuples ¥ of variables and constants. For example, var(7) = N Var. We call a set of atoms
simple if no relation symbol appears more than once in it.

Similarly, for a mapping 1 we denote with dom(u) the set of elements on which p is
defined. For a mapping p and a set V C Var, we use u|y to describe the restriction of p to
the variables in dom(u) N'V. We say that a mapping p is an extension of a mapping v if
[ldom(v) = v, and that two mappings are compatible if they agree on the shared variables.

For a set A of atoms and a set A C dom(A), we write A \ A to denote the restriction of
A to dom(A) \ A. That is, we substitute every atom R(¥) € A by an atom R*(¢"), where ¢
is obtained from ¥ by removing elements of A, and s is the list of the removed positions.

A database D over o is a finite set of atoms over ¢ with var(D) = ). For a database D
and relation symbol R we denote by RP the set of all atoms in D with relation symbol R.

Homomorphisms and Conjunctive Queries. A homomorphism A between two sets A and
B of atoms over o is a mapping h: dom(A) — dom(B) such that for all atoms R(¥) € A we
have R(h(¥)) € B, and such that h(x) # z is only allowed if x € var(A) (we thus restrict the
definition of homomorphisms to var(A), the extension to constants via the identity mapping
is implicit). We write h: A — B to denote a homomorphism & from A to B.

We write CQs ¢ as Ans(Z) < B, where the body B = {R1(?1), ..., Rmn(Um)} is a set of
atoms and & are the free variables. A Boolean CQ (BCQ) is a CQ with no free variables.
We define var(q) = var(B). The existential variables are implicitly given by var(B) \ Z. The
result ¢(D) of g over a database D is the set of tuples {h(Z) | h: B — D}.
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Graphs. We consider only undirected, simple graphs G = (V, E') with standard notations
but sometimes write ¢ € G to refer to a node t € V(G). A graph G is a subgraph of a graph
G if V(G3) CV(Gy) and E(G3) € E(G1). A tree is a connected, acyclic graph. A subtree
is a connected, acyclic subgraph. A rooted tree T is a tree with one node r € T marked as
its root. Given two nodes t,i € T, we say that ¢ is an ancestor of ¢ if  lies on the path
from r to t. Likewise, f is the parent node of ¢ (¢ is a child of ) if £ is an ancestor of ¢ and
{t,{} € E(T). For a subtree T’ of T, a node ¢ € T is a child of 7" if t ¢ T’ and # € T’ for
the parent node £ of . We write ch(T") for the set of all children of T”. For a node ¢ € T the
set of nodes on the path from r to the parent node of ¢ is denoted by branch(¢). Moreover,
cbranch(t) = branch(t) U {¢}.

A tree decomposition of a graph G = (V) E) is a pair (T,v), where T is a tree and
v: V(T) — 2V, that satisfies the following: (1) For each u € V the set {s € V(T) | u € v(s)}
is a connected subset of V(T'), and (2) each edge of F is contained in at least one of the sets
v(s), for s € V(T). The width of (T,v) is (max {|v(s)|| s € V(T)}) — 1. The treewidth of G
is the minimum width of its tree decompositions.

For a set A of atoms, the Gaifman graph of A is the graph G = (V, E) with V' = {uv; |
v; € var(A)} and E contains an edge {v;,v,} if v; and v; occur together in some atom in A.
The treewidth of a set of atoms is the treewidth of its Gaifman graph.

Well-designed pattern trees (wdPTs). A pattern tree (short: PT) p over a relational
schema o is a tuple (T, A, X) where T is a rooted tree and A maps each node t € T to a set
of relational atoms over 0. We may write ((T,7),\, X') to emphasize that r is the root node
of T. The set X of variables denotes the free variables of the PT. For a PT (T, A\, X) and
a subtree T" of T, let A(T") = U,y () At). We may write var(t) instead of var(A(t)), and

var(T") instead of var(A(7")). We further define fvar(t) = var(t) N X as the free variables in ¢.

Again this definition extends naturally to subtrees T of T. We call a PT (T, A\, X') projection
free it X = var(T) and may write (T, \) to emphasize a PT to be projection free. The size

|p| of a pattern tree is 3=y (1) [A(E)].
Well-designed PTs restrict the distribution of variables among their nodes.

» Definition 3 (Well-Designed Pattern Tree (wdPT)). A PT (T, \, X) is well-designed if for
every variable y € var(T), the set of nodes of T' where y appears is connected.

As an immediate consequence of this restriction, in a wdPT p = (T, A, X), for every variable
y € var(T') there exists a unique node ¢t € T such that y € var(¢) and all nodes ¢ € T with
y € var(t') are descendants of ¢.

Evaluating a wdPT p with free variables X over a database D returns a set p(D) of
mappings u: V — dom(D) with ¥V C X. We follow the characterization of p(D) in terms of
maximal subtrees [16], but borrow the term pp-solution from [13].

» Definition 4 (pp-solution). For a wdPT p = ((T,r),\) and a database D, a mapping
w:V — dom(D) (with V C var(T)) is a potential partial solution (pp-solution) to p over D
if there is a subtree T' of T containing r such that p: \(T') — D.

The semantics of wdPTs can now be defined in terms of maximal pp-solutions.

» Definition 5 (Semantics of wdPTs). Letp = (T, A\, X) be a wdPT, and letp’ = (T, \,var(T)),
i.e., the projection-free wdPT retrieved from p by considering all of its variables as free, and
let D be a database. The set p' (D) contains all pp-solutions p to p’ over D such that there
exists no pp-solution p' to p' over D that is a proper extension of u.

The set p(D) is then defined as p(D) = {u|lx | 1 € p'(D)}.
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bl(xl)

to

t1 [ ba(w2), c1(y1, 21), c2(y2, 21) ] clique;j(yi,y;): 1 <i<j<k
di(z1,u1),d2(ur, uz), d3(uz, y1), da(us, y1)

t3 [53(363#1)7 ba(ur, x4), ds(z1, us,ul)] [bs(yz,xs), c3(@s, ug), calug, 22)] t4

Figure 2 The well-designed pattern tree of Example 6.

» Example 6. Consider the PT p = (T, A\, X) depicted in Figure 2, where k may be any
integer with k > 2, and X = {z1, 22, 3,24, x5 }. All variable occurrences in p are connected,
thus it is well-designed. If for example the atom as(y2) was missing in the root node, the
tree would not be well-designed because of the occurrences of yo in both, ¢; and ts.

Consider a database D that, for each atom R(7) in A(T) contains one atom R(1,...,1)
(i.e., with the value 1 at each position) and in addition the atoms d;(1,2), d2(2,2), and
ds5(2,1). Then p(D) = {1, p2} where dom(u1) = {x1,..., 25}, dom(u2) = {x1,22}, and
wi(x) =1 for i € {1,2} and all € dom(u;). This is because of the following extensions
wh and ph of py and pa, respectively. For pf, we have dom(y}) = var(T') and pj(z) =1 for
all z € dom(p}), and for ph we have dom(uh) = var(A({r,t1,t2})) with p5H(z) = 1 for all
x € dom(uh) except for uy and ug, for which ph(u;) = 2. Observe that p) maps r, t1, and to
into D, but cannot be extended to neither t3 nor t4.

Parameterized complexity. We only give a bare-bones introduction to parameterized com-
plexity and refer the reader to [8] for more details. Let X be a finite alphabet. A parameteriz-
ation of ¥* is a polynomial time computable mapping x: ¥* — N. A parameterized problem
over ¥ is a pair (L, k) where L C ¥* and & is a parameterization of ¥*. We refer to x € ¥*
as the instances of a problem, and to the numbers x(x) as the parameters.

A parameterized problem E = (L, k) belongs to the class FPT of fized-parameter tractable
problems if there is an algorithm A deciding L, a polynomial pol, and a computable function
f: N — N such that the running time of A on every input x € ¥* is at most f(x(x)) - pol(|z|).

In this paper, for classes P of wdPTs, we study the problem p-EVAL(P) defined below.

p-EVAL(P)

INSTANCE: A wdPT p € P, a database D, and a mapping p.
PARAMETER: |p|
QUESTION:  Does u € p(D) hold?

We always assume that the arity of all atoms of the queries in P is bounded by a constant,
i.e., that there is a constant ¢ (possibly depending on P) such that no atom in the queries in
‘P has an arity of more than c.

Let E = (L,x) and E' = (L', k') be parameterized problems. An FPT-reduction from E
to E’ is a mapping R: ¥* — (X')* such that (1) for all x € ¥* we have x € L if and only if
R(xz) € L', (2) there is a computable function f and a polynomial pol such that R(x) can be
computed in time f(k(z)) - pol(]z]), and (3) there is a computable function g: N — N such
that k' (R(z)) < g(k(x)) for all z € X*.

Of the rich parameterized hardness theory, we will only use the classes W[1] and coW[1] of
parameterized problems. To keep this introduction short, we define a parameterized problem
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(L, k) to be W[1]-hard if there is a W[1]-hard problem (L', ') that FPT-reduces to (L, k).
We define (L, k) to be coW([1]-hard if its complement is W[1]-hard. Tt is generally conjectured
that FPT # W[1] and thus in particular W[1]-hard problems and coW([1]-hard problems are
not in FPT. We will take the hardness results for problems (L', ') from the literature. One
important such problem is the homomorphism problem p-HOM(C) for a class C of sets of
atoms. Its input is one set A € C of atoms and another set B of atoms, and the question is
whether there exists a homomorphism h: A — B. The parameter is the size of A.

» Theorem 7 ([12]). Let C be a decidable class of simple sets of atoms. Then p-HOM(C) is
in FPT if there exists some constant ¢ such that the treewidth of each set in C is bounded by
¢, and W[1]-hard otherwise.

3  Tractability Conditions

In this section we will introduce our tractability criteria which we tailor towards simple wdPTs
to simplify the presentation. While, as mentioned, our criteria also apply to arbitrary wdPTs,
they are not optimal in this case. In fact, in the extended version we show generalizations of
these conditions that, for general wdPTs, describe more tractable classes.

We start with the definition of what we consider as simple pattern trees. Basically, in a
simple pattern tree, no relation symbol is allowed to occur more than once.

» Definition 8 (Simple PTs). A PT p = (T, \,X) over ¢ is a simple pattern tree if A\(T) is
simple and X&) N A() =0 for all t,t' € T witht #¢'.

Our overall idea of solving p-EVAL(P) is as follows: given a wdPT p, a database D, and
a mapping u, construct a set of CQs g with free variables ¥ and associated databases D’ such
that u € p(D) if and only if for at least one of these CQs ¢ the tuple (%) is in g(D’). We
give two tractability criteria ensuring that the algorithm is in FPT. Intuitively, one condition
guarantees that deciding u(#) € ¢(D’) is in PTIME, while both conditions in combination
guarantee that D’ can be computed efficiently.

We will state the tractability conditions with respect to a class P of wdPTs. So in the
remainder of this section let P be an arbitrary but fixed class of wdPTs.

We start with some additional notation and results. One effect introduced by projections
is that some nodes of wdPTs may not be relevant for the results in the following sense as
already observed in [16].

» Definition 9 (Relevant Nodes). Let p = (T, A\, X) be a wdPT. A node t € T is relevant if
there exists a database D such that p(D) # p’ (D) where p’ is constructed from p by removing
from T the subtree rooted in t. We use relv(T) to denote the set of relevant nodes in T.

In [16], the authors introduced a normal form excluding non-relevant nodes. Here, in order
to make our results more explicit, we do not follow this approach but allow wdPTs to contain
non-relevant nodes. Luckily, it follows from [16] that these nodes can be easily detected.

» Proposition 10. Let p = (T, A\, X) be a wdPT. Then a node t € T is relevant if and only
if fvar(T") \ fvar(t) # 0, where T’ is the subtree of T rooted in t and t is the parent node of t.

In what is to follow, the variables that are shared between a node and its parent node
will be of crucial importance. To this end, we make the following definition.

» Definition 11 (Interface Z(t) of a Node). Let (T, A\, X) be a wdPT, t € T (but not the root
node), and t the parent node of t. The interface Z(t) of t is the set Z(t) = var(t) N var({).
The interface of the root node r is Z(r) = 0.
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It was already remarked e.g. in [3] and [15] that restrictions on the number of variables
shared between different sets of nodes can be used to define tractable classes. The above
definition however differs slightly from the notion of interfaces in these works. E.g., in [15],
the interface of a node describes the set of variables shared between the node and any of its
neighbors, while here it is restricted to the variables shared with its parent node.

Restrictions on the size of node interfaces turn out to be quite coarse, and we provide more
fine grained tractability criteria here. To this end, we recall the notion of an S-component
from [7]: let G = (V,E) be a graph, and S C V. Then let K be the set of connected
components of G[V'\ 5], and for each K € IC, let Sk C S be the set of nodes in S that have
(in G) an edge to some node in K, i.e., Sk = {v € S| {v,v'} € E for some v € K}. The
set of S-components of G now is the set {G[K U Sk] | K € K}.

For a set S of variables, the notion of S-components extends to sets of atoms in the
obvious way via the Gaifman graph. We will thus talk about S-components of sets of atoms.

» Definition 12 ([15] Node Components). Let p = (T, A\, X) be a wdPT andt € T. The set

of node components NC; of t is a set of set of atoms, defined as the union of:

1. The set {{r} | 7 € A(t) and var(7) C Z(t)} consisting of singleton sets for every atom
T € A(t) which contains only “interface variables”, i.e., variables from I(t).

2. The set of all Z(t)-components of A(t).

In the following, node components of type (1) are those containing single atoms, while node

components of type (2) are sets of possibly several atoms.

» Example 13. Recall the wdPT p from Example 6 and consider the node 5. It contains the
following node components: each atom clique,;(yi,y;) forms a node component of type (1)
since all variables y; occur also in r. In addition, there are two node components of type (2):
the sets {dy(z1,u1),d2(u1,us),ds(us,y1)} and {ds(us,y1)}. Observe that while all atoms d;
(1 <14 < 4) are within the same connected component of the Gaifman graph, they are not in
the same node component, since y; separates the connected component into two parts.

To understand why node components are essential for our results, recall that solutions
to wdPTs must be maximal, i.e., they map some subtree into the database, but cannot be
extended to map some child node of this subtree into the database as well. But such an
extension to a node does not exist if and only if the mapping cannot be extended to one
of the node components. Thus instead of testing extensions to the complete node at once
(which might be intractable), we test the maximality of a mapping independently for each
node component (which might be tractable). This is possible because for all variables shared
between any two node components, the values are already determined by the mapping to be
extended. Extensions to different node components are thus independent of each other.

For node components, we are in particular interested in the contained interface variables.

» Definition 14 (Interface of a Node Component). For a wdPT (T, A\, X) and a node t € T,
the interface of a node component S € NC; is Z;(S) = (Z(t) Nvar(S)), and the existential
interface is I (S) = Z;(S) \ X.

We are now ready to formulate our first tractability condition.

Tractability condition (a): There is a constant ¢, such that for each p = (T, A\, X) € P,
the treewidth of S\ Z;(S) is bounded by ¢ for all ¢ € relv(T') (with ¢ # r) and all S € NC;.

Intuitively, condition (a) guarantees that for each node component S, given some mapping
on the variables in its interface, one can decide in polynomial time whether this mapping can
be extended to map all atoms in the node component into a given database. This is because
once a mapping on Z;(S) is given, these variables can be treated as constants.
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» Example 15. To demonstrate the situation after introducing condition (a), let pi be the
wdPT p from Example 6 parameterized by k, let P = {py | k > 2}, and let T" = T'[{r, t1,t2}].
Assume, for some k£ > 2, in order to test if some mapping is a solution to pg, we would like to
verify whether some mapping p’ with dom(p’) = var(T”) is a maximal pp-solution. Deciding
whether it is a pp-solution is easy, and because P satisfies tractability condition (a), testing
if there exists in both, ¢3 and ¢4 a node component to which i/ cannot be extended is feasible
in polynomial time as well. In fact, NC;, = {{bs(w3,u1)}, {ba(u1,zs)}, {d5(x1,us,u1)}}
and NCy, = {{b5(y2, z5), c3(ws, u2)}, {ca(ua, 22)}} (this holds for every py € P). However,
there may exist an exponential number of pp-solutions on 77 (T’ contains k + 4 existential
variables). Thus testing one mapping on var(T") after the other is not feasible.

One way to overcome the problem sketched in the example is to not have two separate
tests for being a pp-solution and being maximal. To combine these tests, we first compute
for each node component the set of mappings on its interface variables that do not extend to
the component, and then require pp-solutions to be consistent with these mappings.

It turns out that this idea can be encoded as an evaluation problem for CQs. One
important step in this encoding is to introduce new relations, one for each node component,
that store those mappings on the interface variables that cannot be extended to the component.
In order for the resulting CQ evaluation problem to be in polynomial time, we require two
properties. First, the resulting CQs must be from some tractable fragment of CQ evaluation,
and, second, the size of the newly added relations must be at most polynomial. One way to
achieve this second goal is to restrict the arity of these relations. Tractability for the CQ
evaluation problem holds exactly if the class of resulting CQs is of bounded treewidth. As it
turns out, this restriction also implies a bound on the arity of the new relations, and thus
represents our second tractability condition.

To formalize the construction, we introduce the notion of a component interface atom.
For a wdPT (T, \, X), a subtree T" of T, a node t € ch(T"), and node component S € NC;,
let the interface atom be an atom R(#) where ¥ contains the variables in Z;(S) and R is a
fresh relation symbol. For a node component S, we use cia(S) to refer to the corresponding
interface atom R(%). Observe that these definitions imply cia(S) = R() in case Z7(S) = 0.

The intuition for cia(S) is that for each node component, we get one atom that covers
exactly the variables in Z7(S). The free variables in the interface can be excluded from the
considerations since a fixed value is provided for them as part of the input.

» Example 16. Recall again the wdPT from Example 6 and consider the node t;. It contains
two node components: S; = {ba(z2)} and Sa = {¢1(y1, 21), c2(y2, 21)}. Observe that whether
S1 can be mapped into some database D is completely independent of the interface variables.
Thus cia(S1) = Rs, (). However, for S the values of y; and y, influence whether So may be
mapped. Thus we get cia(S2) = Rs,(y1,y2). In case of the node component {ds(x1,us,u1)}
of t3, observe that we can assume some fixed value p(z1), and thus can reduce the atom

ds(u(x1), us, uy) according to this value, and get as interface atom d2* =" (ug, uy).

Since we are looking for one pp-solution that cannot be extended to any child node,
combining the two tests as sketched means that we must test all children simultaneously
instead of individually. However, since each CQ tests only one node component for each child,
we need one CQ for each possible combination, leading to our second tractability condition.

Tractability condition (b): There is a constant ¢ such that for every well-designed
pattern tree p = ((T,7), A\, X') € P and every subtree T” of T' containing r, the treewidth of
(AMT")UUZ {cia(S;)})\fvar(T”) is bounded by ¢ for every (S1,...,S,) € NCy, x- - - xNCy,
where {t1,...,t,} = ch(T") Nrelv(T).
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The following example breaks down condition (b) to demonstrate its intuition.

» Example 17. Recall the setting in Example 15, as well as the database instance D and
the mappings us and ph from Example 6. Assume that, in order to show that us € pr(D)
for any k > 2, we are looking for a pp-solution for 7" that does not extend neither to the
node component S; = {bs(x3,u1)} of t3 (and thus not to A(t3)), nor to the node component
So = {b5(y2, x5), c3(x5,u2)} of t4 (and thus not to A(t4)). The idea is to construct a CQ
Ans(z1,22) + MT")U{R:1(u1), Ra(y2, u2)}, where Ry(uy) and Ra(ya, us) are the component
interface atoms for S; and Ss, respectively. Observe that this query has exactly the structure
described in condition (b), illustrating the motivation for the definition of this condition.
Also, because of the clique,;-atoms, P does not satisfy tractability condition (b).

The query is evaluated over the instance D extended by relations for R; and Ry. As
mentioned, these relations contain all values that cannot be extended to map S; and S, into
D, respectively. For Sy, we get {R1(2)} (since b3(1,1) € D, thus a mapping assigning 1 to
uy could be extended to map S; into D), and for So we get {Ra(1,2), R2(2,1), R2(2,2)}.

Now the mapping pb witnesses the fact that (1,1) € ¢(D), and thus pf is a maximal
pp-solution also witnessing us € pi(D).

The main result of this paper is that the conditions (a) and (b) characterize exactly the
classes of simple wdPTs which can be evaluated efficiently.

» Theorem 18. Assume that FPT # WI[1], and let P be a decidable class of simple wdPTs
of bounded arity. Then the following statements are equivalent.

1. The tractability conditions (a) and (b) hold for P.

2. p-EvAL(P) is in FPT.

We will show the upper bound of Theorem 18 in Section 4, where we describe how the
different ideas described so far can be combined to an FPT algorithm, while the lower bounds
will be shown in Section 5.

But before we turn to the proof of Theorem 18, let us interpret the result in the setting
without projections to better understand the influence of projection. First note that in
that case, by Definition 14, we have Z7(S) = () for every t € T and every S € NC;.
Thus all atoms cia(S) (for any node component S) are of arity 0 as are all atoms in
(AT") Ui {cia(S;)}) \ fvar(T”). Tractability condition (b) is therefore void in this setting,
leaving only (a) as a useful condition in the projection free case. This immediately implies
the following corollary.

» Corollary 19. Assume that FPT # W([1], and let P be a decidable class of simple wdPTs
of bounded arity without projections. Then p-EVAL(P) is in FPT if and only if tractability
condition (a) holds for P.

We remark that Corollary 19 could also be inferred as a special case of the main result of [22].
Stating the corollary explicitly here lets us better understand the role of projection for our
problem: in fact, the role of condition (a) is essentially to deal with the complexity that we
already have without projection, while condition (b) is necessary to deal with the additional
source of hardness that is introduced by projections and does not appear without them.
Since it will simplify the discussion in the upcoming sections, we conclude the section
by explicitly working out the third tractability condition already mentioned above in the
discussion towards tractability condition (b). As described there, at some point we extend a
given database by relations for the atoms cia(S) that contain for the corresponding node
component all mappings on its existential interface that cannot be extended to a mapping
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Algorithm 1 EvalFPT(p = (T, ), A\, X), D, u).

1: T = T[relv(T)] > Remove all nodes from T that are not relevant
2: for all subtrees T" of T with fvar(T") = dom(p) and r € T" do

3 Let {t1,...,tn} = ch(T")

4 for all (S1,...,Sn) € NCyy X -+ x NCy,, do

5: q = “Ans(Z) + MNT') U{cia(S1),...,cia(Sn)}” > Let  contain all x € fvar(T")
6: D' = DUJ {Ri(v(#:)) | v € stop(S:, D)} > Assume cia(S;) = R;(¥;)
7 if (%) € ¢(D’) then EXIT(YES)

8: EXIT(NO)

on the whole node component. To guarantee that all these relations are of polynomial size,
we restrict the number of variables in the existential interfaces of the node components by
some constant c¢. We formalize this notion in terms of a suitable width measure.

» Definition 20 (Component Width). Let p = (T, \, X) be a wdPT, t € T, and S € NC;.
The width of the node component S is |Z7(S)|. For a node t € T, the component width of ¢
s the maximum width over all node components S of t. The component width of p is the
maximum component width over all t € relv(T).

By the definition of the treewidth of a set of atoms — specifically by the fact that in the
Gaifman graph all variables occurring together in an atom form a clique — and the fact that
for the existential interface of each node component its variables occur together in some
cia(S)-atom, the number of variables in any existential interface is bound by the treewidth
of the CQs defined in condition (b). Thus, we get the following corollary.

» Corollary 21. Let P be a class of wdPTs that satisfies tractability condition (b) for some
constant c. Then, for every p € P, the component width of p is at most ¢ + 1.

4 The FPT algorithm

Having defined the tractability conditions, we now show how they are used in the FPT-
algorithm for p-EVAL(P) outlined in Algorithm 1.

The missing ingredient of Algorithm 1 that we have not yet introduced is stop(S, D) for a
node component S and a database D which we explain now. Recall that we said earlier that
the intention of the node components is to ensure a mapping to be maximal not by testing
for extensions to the complete node, but to do these tests for smaller, independent units.

The idea how to realize this is to store in D’ for each node component S those variable
assignments v to the variables in its existential interface such that there exists no extension
V'S — D of v U pu. These are the values stored in stop(S;, D).

In more detail, for a wdPT ((T,r),\, X), a subtree T” of T' containing r, a child node
t € ch(T'), node component S € NC;, a database D, and a mapping p: fvar(T’) —
dom(D), consider the set extend(S,D) = {n: Z7(S) — dom(D) | there exists /: S —
D extending 7 and p|yar(s)}. So extend contains exactly those mappings on Z2(S) that
can be extended in a way that is compatible with ¢ and maps S into D. We thus set
stop(S,D) = {v: Z7(S) — dom(D) | v ¢ extend(S,D)}.

With this in place, we describe the idea of Algorithm 1. Recall that, given p, we have
to find a mapping p’ extending p that is (1) a pp-solution, and (2) maximal. Because of
the existential variables, there may be exponentially many subtrees 7" of T' containing r
with fvar(T') = dom(u), each being a potential candidate for witnessing (1) and (2). After
removing all irrelevant nodes in line 1 (they might make evaluation unnecessarily hard), we
thus check each of these subtrees (line 2).

20:11

ICDT 2019



20:12

Characterizing Tractability of Simple Well-Designed Pattern Trees with Projection

If the required mapping ' exists, then, as discussed earlier, for each child node of T”
there exists at least one node component to which p/ cannot be extended. Not knowing which
node components these are, the algorithm iterates over all possible combinations (line 4). In
lines 57, the algorithm now checks whether there exists an extension of y that maps all of
AT") into D (ensured by adding A(7”) to ¢), but none of the node components Sq,...,S,.
The latter property is equivalent to asking that p/ must assign a value to the existential
interface variables of each S; that cannot be extended. This is guaranteed by adding the
atoms cia(S;) to ¢ and providing in D’ exactly the values from stop(S;, D).

In order to see that this indeed gives an FPT algorithm in case tractability conditions
(a) and (b) are satisfied, note that condition (b) ensures that the arity of each of the new
relations for the atoms cia(S) is at most ¢ + 1 (cf. Corollary 21). Thus the size of these
relations (and thus the number of possible mappings in stop(S, D)) is at most |[dom(D)|(¢+1).
Next, condition (a) ensures that for each mapping v: Z;(S) — dom(D) deciding membership
in stop(S,D) is in PTIME. Observe that the variables in Z;(S) are not considered in the
computation of the treewidth since a fixed value is provided for them, thus they can be
treated as constants. Finally, condition (b) also ensures that the test in line 7 is feasible in
polynomial time. Again, since a fixed value is provided for the domain of y, these variables
can be treated as constants.

We note that the algorithm is an extension and refinement of the FPT algorithm presented
in [15]. An inspection of [15] reveals that the conditions provided there imply our tractability
conditions (a) and (b), but there is no implication in the other direction. In fact, our conditions
explicitly describe the crucial properties of their restrictions that make the problem to be in
FPT. From Algorithm 1 we thus derive the following result.

» Theorem 22. Let P be a decidable class of wdPTs. If the tractability conditions (a) and
(b) hold for P, then p-EVAL(P) can be solved in FPT.

The correctness of the algorithm follows immediately from the previous discussion. For the
runtime, in addition to what was already discussed, the number of loop-iterations in lines 2
and 4 is bounded by a function in the size of p, which is the parameter for the problem.

5 Optimality of the Tractability Conditions

We now show that both tractability criteria are necessary, and thus finish the proof of
Theorem 18. We provide individual results for both conditions. In addition, we show that
also the bound on the component width is necessary (and not just a side effect), which will
turn out to be a useful result for proving that tractability condition (b) is necessary.

» Lemma 23. Let P be a decidable class of simple wdPTs of bounded arity such that
tractability condition (a) is not satisfied. Then p-EVAL(P) is coW[1]-hard.

Proof. For a wdPT p € P, let the relevant components set rcs(p) contain all the sets S\ Z;(S)
as defined in tractability condition (a). Moreover, let rcs(P) = (J,ep res(p). We will — by an
FPT-reduction — reduce p-HOM(rcs(P)) to the complement of p-EVAL(P). The result then
follows from Theorem 7, as rcs(P) does not have bounded treewidth by assumption.

Consider an instance E, F of p-HOM(rcs(P)). In a first step, find p = ((T,7), A\, X) € P,
a node t € relv(T) such that ¢ # r, and a node component S € N'C; such that E = S\ Z,(S).
They exist by assumption and, since P is decidable, can be computed.

Since t is relevant, either for ' = ¢ or some descendant t’ of ¢ we have fvar(t’) \
fvar(branch(t’)) # (). Among all possible candidates, pick some ¢’ at a minimal distance to .
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We next define a database D over the set of relation symbols in p. For the description
of D, for all relation symbols R occurring in any atom R(%) € A(T), we will assume that ¢
contains only variables, i.e. elements from Var. We implicitly assume that for all positions
where ¥ contains a constant, all atoms in RP contain the same constant as in . Recall that
we deal with simple wdPTs, thus each relation symbol occurs at most once within A(7'). In
the following, let d € Const be some fresh value not occurring in dom(F).

For each relation symbol R mentioned outside of A(cbranch(t')), let RP = ().

For each relation symbol R mentioned in A(branch(t)), let RP = {R(d,...,d)}.

For each relation symbol R mentioned in A(cbranch(¢’) \ branch(t)) \ S, let k be the arity
of R and RP = {R(¥) | ¥ € (dom(F) U {d})*}.

For each relation symbol R mentioned in S, observe that there exists a relation symbol R’
in E that was derived from R when computing S \ Z;(S). The idea is now to use RP to
simulate R'F by padding the additional fields with d. Thus let & be the arity of R, let m
be the arity of R', let {i1,...,i¢} C {1,...,k} be those positions of R containing values
from Z;(S), and {o1,...,0m} = {1,...,k} \ {i1,...,4%,} those positions of R that contain
values from var(S) \ Z;(S). Then, for every R/(a,,,---,a,, ) € F, let RP contain the atom
R(by,...,bx) where, for 1 < a <k, we have b, = a,,; if a = o; for some 1 < j < m and
bo = d if a =i, for some 1 < j < ¢. This completes the definition of D.

Finally, we define the mapping u as u(x) = d for all « € fvar(branch(t)).

With the description of the reduction complete, we claim that pu € p(D) if and only if
there is no homomorphism from E to F. We prove this property in two steps. First, we show
that © € p(D) only depends on whether p can be extended to ¢ or not. After this we show
that such an extension of p exists if and only if there is a homomorphism h: E — F.

First, observe that the only possible extension p’ of p such that p/(r) € D for every
7 € A(branch(t)) is ' mapping every variable in var(branch(t)) to d. Moreover, for all nodes
t" % t in ch(branch(t)) the mapping p’ cannot be extended to A(t"”), since for all relation
symbols R mentioned in A(t”) we have RP = ). Thus y/ is a pp-solution, and is a maximal
pp-solution if and only if there exists no extension u” of p/ with p/’(7) € D for all 7 € A(¢).

Clearly, if ¢/ is a maximal pp-solution, then u € p(D). To see that u ¢ p(D) if u is not
a maximal pp-solution, assume that there exists the above mentioned extension u” of p'.
Then p” can be obviously extended to ' with p/’(7) € D for all 7 € cbranch(t’) since for
all atoms on (cbranch(t') \ cbranch(t)) U {t'}, every possible atom over dom(D) is contained
in D. Since dom(p’"") contains at least one free variable not in dom(u'), this shows p ¢ p(D).

It thus remains to show that the extension p' of u’ exists if and only if there is a
homomorphism h: E — F. To see that this is the case, observe that by construction every
such homomorphism % in combination with p’ gives a mapping from S into D, and vice
versa, every mapping p: S — D restricted to dom(E) gives the desired homomorphism. For
the remaining atoms in A(¢) \ S, observe that every possible mapping sends them into D,
since D again contains every possible atom for these relations. <

To simplify the proof that tractability condition (b) is necessary, we first show that having
bounded component width is a necessary condition on its own.

» Lemma 24. Let P be a decidable class of simple wdPTs of bounded arity. If there does
not exist some constant ¢ such that for every p € P the component width is bounded by c,
then p-EVAL(P) is coW[1]-hard.

Proof. The proof is an FPT-reduction of the problem of model checking FO sentences ¢y
of the form ¢p = V... Vapdy /\f:1 E;(x;,y). Model checking for this class of sentences,
parameterized by their size, is W[1]-hard [5]. Thus consider a formula ¢, and a database E.
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First, compute a wdPT p = (T,\,X) € P with a component width of at least k.
W.l.o.g. we assume that p contains only binary atoms: Since we assume a bounded arity,
binary atoms can be easily encoded into atoms of higher arity. Consider the relevant node
t € T and a node component S € N'C; such that the component width of S is at least k. Since
we assume relations to be of some bounded arity, S cannot be of type (1) (Definition 12).
W.lo.g. we thus assume that S is of type (2).

Since t is relevant, either for ' = ¢ or some descendant t’ of ¢ we have fvar(t’) \
fvar(branch(t’)) # 0. Choose one such ¢’ at a minimal distance to ¢.

For the description of the atoms in D for a relation symbol R occurring in an atom
R(7) € MT), we will assume that ¥ contains only variables, i.e. elements from Var. We
implicitly assume that for all positions where @ contains a constant, all the atoms in RP
contain the same constant as in ¢. Recall that we are dealing with simple wdPTs, thus each
relation symbol R occurs at most once within A(T").

For each relation symbol R mentioned outside of A(cbranch(#')), let RP = ).

For each relation symbol R mentioned in A(cbranch(¢')) \ S, let £ be the arity of R and
RP = {R(7) | 7 € dom(E)*‘}.

For the relation symbols R mentioned in S, proceed as follows. Choose k interface
variables vy, ...,v; € Zy(S). Let L = var(S) \ var(branch(t)) be the “local variables” of S.
Observe that S being a node component of type (2) implies L # (. This is because of
var(S) Nvar(branch(t)) = Z;(S), and the fact that to be a node component of type (2), in
the Gaifman graph, all variables in Z;(S) must be connected to some variable from the node
component that is not in Z;(S). Thus there must exist at least one “local variable”. By the
same reasoning, for each of the variables v;, there must exist at least one atom R;(v;, 2;)
or R;(z;,v;) for some z; € L. We will assume R;(v;, z;) in the following, the other case is
analogous. Now for each v;, fix one such atom. Based on this, we define the following atoms
to be contained in D:

For each of the selected atoms R;(v;, 2;), let RP = EF , i.e., we let R; simulate exactly F;.
For every atom R(z,z') € S such that z,2’ € L, define RP = {R(d,d) | d € dom(E)}. For
the remaining atoms R(z,2') € S, define RP = {R(a,b) | a,b € dom(E)}.

Finally, p is an arbitrary mapping fvar(branch(t)) — dom(E).

It now follows by the same arguments as in the proof of Lemma 23 that we have p ¢ p(D)
if and only if for every extension p’ of u to var(branch(t)), there exists an extension v of u'
such that v(r) € D for all 7 € S.

To complete this proof, we thus only need to show that such an extension exists if and
only if ¢y, is satisfied. First, assume that ¢y is satisfied. Then, for all z € L, define v(z) to be
the value of y in ¢y. This clearly maps S into D. Next, assume that ¢y is not satisfied. Then
there exists some assignment to x1, ..., xx such that no suitable value for y exists. Then for
the mapping u assigning exactly those values to the selected interface variables vy, ..., vg,
there exists no extension of p/ to S. This is because L defines a connected component in the
Gaifman graph and because the definition of D forces all variables in L that occur together
in some atom in S to be mapped to the same value by p’. Thus p/ has to map all “local
variables” in S to the same value, which would provide a suitable value for y, leading to a
contradiction. This concludes the proof. <

» Lemma 25. Let P be a decidable class of simple wdPTs of bounded arity such that
tractability condition (b) is not satisfied. Then p-EVAL(P) is either coW[1]- or W[1]-hard.

Proof. First, assume that there exist some constant that is, for all p € P, an upper bound
on the component width. Otherwise, p-EVAL(P) is coW[1]-hard by Lemma 24. In particular,
we may thus assume that all relations in all instances of (A(7”) U J;—,{cia(S;)}) \ fvar(1")
for all p € P are of bounded arity.
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Let solcheck(P) be the class of all sets of atoms (A(T”) UJ;_,{cia(S;)}) \ fvar(T”) for P
as defined in tractability condition (b). We reduce p-HOM(solcheck(P)) to p-EVAL(P) via
an FPT reduction. The result then follows directly by Theorem 7, since if (b) is false then
solcheck(P) has unbounded treewidth. The rest of this proof gives the desired reduction.

Let E, F be an instance of p-HOM(solcheck(P)). We construct a wdPT p, a database D,
and a mapping u such that p € p(D) if and only if there is a homomorphism from E to F.

First of all, find a p = ((T,7),\, X) € P and a subtree T’ of T' containing r such that
E = (\T")UU;_,{cia(S;)}) \ fvar(T”) for some combination (S1,...,S,) € NC¢, x -+ xNC;,
where {t1,...,t,} = ch(T") Nrelv(T). To define a database D and a mapping p such that
u € p(D) if and only if a homomorphism from E to F exists, we need to define the following
sets of nodes first. Let K = ch(T") Nrelv(T) = {t1,...,tn}. For each t; € K, we define
the set N; of nodes as follows. If fvar(t;) \ fvar(branch(¢;)) # 0 (i.e., t; contains some
“new” free variable), then N; = ). Otherwise, let s; € T be a descendant of ¢; such that
fvar(s;) \ fvar(branch(t;)) # 0 and such that this property holds for no other node s} € T on
the path from ¢; to s;. Then N; = cbranch(s;) \ cbranch(¢;). Finally, let N = J!_; N;. Now
all notions are in place to describe the database D. While doing so, we implicitly assume
that for all positions where an atom R(%) of p contains a constant, all the atoms in RP
contain the same constant as in ¢. L.e., we only describe the values for “variable positions’
of ¥. Recall that we are dealing with simple wdPTs, thus each relation symbol R occurs at
most once within A(7).

For all atoms R(%) € M(T)\ (M(T") UXK)UX(N)), let RP = (), i.e., for all atoms neither
in 77 nor in any of the relevant child nodes of T’ (or their extensions to some node with a
“new” free variable), no matching values exist in the database.

)

For all atoms R(y) € A(T"), we want to use them to simulate in D the relations in F.
Observe that for each such atom, there exists an atom R'(Z) € E that was derived from R(%)
by removing the free variables fvar(7”). Thus, for each atom R’'(a@) € R'F, we add one atom
R(b) to RP where b contains a fixed domain value d € dom(F) at all positions 7 contains a
free variable, and the corresponding value from @ where the variable also occurs in R'(Z").
Le., RP is designed in such a way that all variables = € fvar(T") can only be mapped to d.

The definition for the atoms in K is more involved. Consider some t; € K. Let ¥
contain the existential interface variables of the node component S; € N'C;, selected for the
construction of E, and assume cia(S;) = R¢a(7).

For all atoms R(%) € A(t;) \ S, set RP = {R(@) | @ € dom(F)*} where k is the arity of
R. For the atoms in S;, we distinguish between S; being of type (1) or of type (2).

It S; is of type (1), i.e., S; is of the form S, = {R(%)} for some R(¥) € A(t;), define
RP = {R(@) | @ € dom(F)* and R.(@y) ¢ F}, where @y is the restriction of @ to those
positions in ¢ with variables from ¥ (and thus not containing variables from fvar(7")).

If S; is of type (2), we distinguish two types of variables: those that occur in Z;(S;), and
those that do not appear in any node t' € branch(¢;). We call these latter variables new
variables and use as their domain the set dom(F)!7l, i.e., the set of all possible assignments
of values from F to the variables in ¢ from Rg,(0). We assume that the encoding of the
assignments @ € dom(F)!?! is such that we can look up the value that is given to a variable
v; € U by d. For the remaining variables in var(S;), i.e., the variables not in ¥, we will use
values from dom(F). For each atom R(7) € S;, the values in RP are defined as follows:

Let 2= ¢ N (var(S;) \ ¥) (because S; is of type (2), Z\ fvar(T”) # 0). Then RP contains
an atom for each tuple satisfying all of the following four properties.

1. All variables in fvar(T") get the value d.
2. All the variables in '\ fvar(T") get assigned the same value. Denote this value by a, and
recall that a represents an assignment @ € dom(F)!7l.
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3. For all v; € YN ¥, the value of v; is consistent with the vector @ represented by a.
4. We have R, (d) ¢ F.
Because their arity is assumed to be bounded, all these relations can be constructed in
polynomial time. To conclude the definition of D, for all atoms R(3) € A(IV), set RP =
{R(@) | @ € dom(D)*}, where k is the arity of R and dom(D) is implicitly defined to consist
of all values mentioned in the definition of D.

Finally, let p be the mapping defined on all variables = € fvar(T") as p(x) = d. To prove
u € p(D) if and only if homomorphism E — F exists, we first show the following claim.

> Claim 26. Let R, (¥) be an interface atom and S; the corresponding interface component.
Then, for a mapping p': ¥ — dom(F), we have that R, (' (¥)) € F if and only if there is no
extension u” of p' U p to var(A(t;)) that maps all atoms in S; into D (since S; C A(¢;), this
implies that there exists no extension p” of u' U p that maps A(¢;) into D).

Proof. For node components of type (1), the claim is immediate. So let us assume for the
rest of the proof that S; is of type (2).

First let Rea(p' (7)) € F. Let us assume an arbitrary extension u” of u' U p to var(S;). If
1" does not satisfy conditions 1., 2., and 3. for all R(%) € S;, then clearly for this particular
atom there exists no atom in D to which it can be mapped by p”. We may thus assume
that ' satisfies the first three conditions for all atoms R(%) € S;. Then all variables in
var(S;) \ (U U fvar(T")) take the same value under p”, and this value corresponds exactly
to the tuple p/(v). But then p”’ does not satisfy condition 4. for any R(y) € S; since
Raa(p/ (7)) € RE, by assumption. Thus RP does not contain any atom onto which z" could
map R(%) and thus p' cannot exist which completes the first direction.

For the other direction, assume that no extension p’ of 1/ U maps all atoms in S; into D.
Then this is in particular true for those assignments satisfying conditions 1., 2., and 3. Note
that every such assignment maps all variables in Z'\ fvar(T”) to the same value, representing
a mapping on v. Also, p’'|7 = 1. Since p fails to map S; into D because of 4., we get that
Rea(p/ (7)) € RE,, which completes the proof of the claim. <

cia’

We continue the proof that p € p(D) if and only if a homomorphism E — F exists. First
observe that u € p(D) if and only if on the one hand there is an extension ' of p to var(7”)
that maps all atoms in A(T") into D (of course, in general every subtree T" containing the
root node of T with fvar(T") = dom(u) is a potential candidate, but given the construction
of D, the subtree 7" is the only possible candidate) and, on the other hand, for all ¢; € K,
we have that there does not exist an extension of y’ onto A(¢;) U A(N;). (In fact, extending
the mapping to any descendant of ¢; that contains some additional free variable would work.
However, the only nodes with non-empty relations in D are those mentioned in N.)

By the construction of D for atoms in A(N), for every t; € K it follows immediately that
there exists an extension of p’ onto A(¢;) U A(ZV;) if and only if there exists an extension to
A(t;). This is because for the atoms in A(N) the database D contains all possible atoms,
thus every extension p’ of p’ onto A(¢;) can be further extended to all atoms in A(V;).

Note that the existence of an extension of u’ onto A(¢;) is, by Claim 26, equivalent to p/
sending R, (0) into F. So u € p(D) if and only if there is a homomorphism from E into F.
This completes the proof. <
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6 Relationship with SPARQL and Conclusion

Our results give a fine understanding of the tractable classes of wdPTs in the presence of
projection. In particular they show the different sources of hardness. As laid out in the
introduction, there is a strong relationship between well-designed SPARQL queries and
wdPTs: For every well-designed SPARQL query, an equivalent well-designed pattern tree
can be computed in polynomial time, and vice versa, in a completely syntactic way.

Note that our characterization of tractable classes unfortunately cannot be immediately
translated to well-designed SPARQL queries. This is because our characterization only
applies to classes of simple well-designed pattern trees. However, RDF triples and SPARQL
triple patterns, in the relational model, are usually represented with a single (ternary) relation.
Thus, there is no direct translation to and from simple (well-designed) pattern trees. As a
consequence, our result does not imply an immediate characterization of the tractable classes
of well-designed {AND, OPTIONAL}-SPARQL queries.

Nevertheless, our results also give interesting insights to SPARQL with projections. First,
Algorithm 1 directly applies to queries in which relation symbols appear several times and thus
in particular for well-designed pattern trees resulting from the translation of well-designed
SPARQL queries. Moreover, our result determines completely the tractable classes that
can be characterized by analyzing only the underlying graph structure of the queries, i.e.,
the Gaifman graph. Indeed, since simple queries can simulate all other queries sharing the
same Gaifman graph by duplicating relations, Gaifman graph based techniques have exactly
the same limits as simple queries. Thus, our work gives significant information on limits of
tractability for SPARQL queries in the same way as e.g. [12, 4, 5] did in similar contexts.

Let us mention one major stumbling block towards a characterization of non-simple
well-designed pattern trees with projections: In the proof of Lemma 24, we have used a
reduction from quantified conjunctive queries. Unfortunately, the tractable classes for the
non-simple fragment for that problem is not well understood which limits our result to simple
queries since we are using the respective results from [5]. Note that we might have been able
to give a more fine-grained result in sorted logics by using [6], but since this would, in our
opinion, not have been very natural in our setting, we did not pursue this direction. Thus a
better understanding of non-simple pattern trees would either need progress on quantified
conjunctive queries or a reduction from another problem that is better understood.

One prominent operator of SPARQL that we did not consider is UNION, whose corres-
pondence in pattern trees are sets of pattern trees, so-called pattern forests. While the
extension to simple pattern forests is immediate (since no two trees share any relation
symbols), it is not clear how to approach the possible repetition of relation symbol within
different trees in forests of simple pattern trees in combination with projection.

Finally, another interesting class of queries are weakly well-designed pattern trees. While
the tractability conditions can be easily adapted to provide FPT algorithms for these queries,
providing a characterization of the tractable classes is much harder due to the fact that
relevant nodes need not have a descendant introducing a “new” free variable.
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