
Consistent Query Answering for Primary Keys in
Logspace
Paraschos Koutris
University of Wisconsin-Madison, WI, USA
paris@cs.wisc.edu

Jef Wijsen
University of Mons, Belgium
jef.wijsen@umons.ac.be

Abstract
We study the complexity of consistent query answering on databases that may violate primary key
constraints. A repair of such a database is any consistent database that can be obtained by deleting
a minimal set of tuples. For every Boolean query q, CERTAINTY(q) is the problem that takes a
database as input and asks whether q evaluates to true on every repair. In [Koutris and Wijsen, ACM
TODS, 2017], the authors show that for every self-join-free Boolean conjunctive query q, the problem
CERTAINTY(q) is either in P or coNP-complete, and it is decidable which of the two cases applies.
In this paper, we sharpen this result by showing that for every self-join-free Boolean conjunctive
query q, the problem CERTAINTY(q) is either expressible in symmetric stratified Datalog (with
some aggregation operator) or coNP-complete. Since symmetric stratified Datalog is in L, we thus
obtain a complexity-theoretic dichotomy between L and coNP-complete. Another new finding of
practical importance is that CERTAINTY(q) is on the logspace side of the dichotomy for queries q
where all join conditions express foreign-to-primary key matches, which is undoubtedly the most
common type of join condition.

2012 ACM Subject Classification Information systems → Relational database model; Information
systems → Inconsistent data; Information systems → Incomplete data; Information systems →
Integrity checking

Keywords and phrases conjunctive queries, consistent query answering, Datalog, primary keys

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.23

Related Version A full version of this paper is available on arXiv [22], https://arxiv.org/abs/
1810.03386.

1 Motivation

Consistent query answering (CQA) with respect to primary key constraints is the following
problem. Given a database db that may violate its primary key constraints, define a repair
as any consistent database that can be obtained by deleting a minimal set of tuples from db.
For every Boolean query q, the problem CERTAINTY(q) takes a database as input and asks
whether q evaluates to true on every repair of db. In this paper, we focus on CERTAINTY(q)
for queries q in the class sjfBCQ, the class of self-join-free Boolean conjunctive queries. For
all Boolean first-order queries q, CERTAINTY(q) is in coNP and can thus be solved by
expressive formalisms like answer set programming [27] and binary integer programming [18].
These solutions, however, are likely to be inefficient when CERTAINTY(q) also belongs to a
lower complexity class. In particular, given a query q in sjfBCQ, it is decidable [20] whether
CERTAINTY(q) is in the low complexity class FO. Moreover, if CERTAINTY(q) is in FO,
then it is possible to construct a first-order query for solving CERTAINTY(q), which is also
called a consistent first-order rewriting for q. This construction is detailed in [20, Section 5]
and has already been implemented [30].

© Paraschos Koutris and Jef Wijsen;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 23; pp. 23:1–23:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paris@cs.wisc.edu
mailto:jef.wijsen@umons.ac.be
https://doi.org/10.4230/LIPIcs.ICDT.2019.23
https://arxiv.org/abs/1810.03386
https://arxiv.org/abs/1810.03386
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 CQA for Primary Keys in Logspace

In [20], the authors also show that for every query q in sjfBCQ, the problem CERTAINTY(q)
is either in P or coNP-complete, and it is decidable (in polynomial time in the size of q)
which of the two cases applies. The authors show how to construct a polynomial-time
algorithm for CERTAINTY(q) when it does not lie on the coNP-hard side of the dichotomy.
Unfortunately, unlike for consistent first-order rewritings, this construction is complex and
does not tell us what language would be appropriate for implementing CERTAINTY(q) when
it is in P \ FO. In this paper, we improve this situation: we show that if CERTAINTY(q) is
in P, then it can be implemented in symmetric stratified Datalog, which has deterministic
logspace data complexity [10]. We thus sharpen the complexity dichotomy of [20] as follows:
for every query q in sjfBCQ, CERTAINTY(q) is either in L or coNP-complete. It is significant
that Datalog is used as a target language, because this allows using optimized Datalog engines
for solving CERTAINTY(q) whenever the problem lies on the logspace side of the dichotomy.
Rewriting into Datalog is generally considered a desirable outcome when consistent first-order
rewritings do not exist (see, e.g., [5, page 193]). It is also worth noting that the SQL:1999
standard introduced linear recursion into SQL, which has been implemented in varying ways
in existing DBMSs [31]. Since the Datalog programs in this paper use only linear recursion,
they may be partially or fully implementable in these DBMSs.

Throughout this paper, we use the term consistent database to refer to a database that
satisfies all primary-key constraints, while the term database refers to both consistent and
inconsistent databases. This is unlike most database textbooks, which tend to say that
databases must always be consistent. The following definition introduces the main focus of
this paper; the complexity dichotomy of Theorem 2 is the main result of this paper.

I Definition 1. Let q be a Boolean query. Let L be some logic. A consistent L rewriting
for q is a Boolean query P in L such that for every database db, P is true in db if and
only if q is true in every repair of db. If q has a consistent L rewriting, then we say that
CERTAINTY(q) is expressible in L.

I Theorem 2. For every self-join-free Boolean conjunctive query q, CERTAINTY(q) is either
coNP-complete or expressible in SymStratDatalogmin (and thus in L).

The language SymStratDatalogmin will be defined in Section 3; informally, the superscript
min means that the language allows selecting a minimum (with respect to some total
order) from a finite set of values. Since CERTAINTY(q) is L-complete for some queries
q ∈ sjfBCQ, the logspace upper bound in Theorem 2 is tight. The proof of Theorem 2 relies
on novel constructs and insights developed in this paper. Compared to [20], significant new
contributions are the notion of garbage set and the helping Lemmas 11 and 22.

Our second significant result in this paper focuses on consistent query answering for
foreign-to-primary key joins. In Section 9, we define a subclass of sjfBCQ that captures
foreign-to-primary key joins, which is undoubtedly the most common type of join. We
show that CERTAINTY(q) lies on the logspace side of the dichotomy for all queries q in this
class. Thus, for the most common type of joins and primary key constraints, CQA is highly
tractable, a result that goes against a widely spread belief that CQA would be impractical
because of its high computational complexity.

Organization Section 2 discusses related work. Section 3 defines our theoretical framework,
including the notion of attack graph. To guide the reader through the technical development,
Section 4 provides a high-level outline of where we are heading in this paper, including
examples of the different graphs used. Section 5 introduces a special subclass of sjfBCQ, called
saturated queries, and shows that each problem CERTAINTY(q) can be first-order reduced to

P. Koutris and J. Wijsen 23:3

some CERTAINTY(q′) where q′ is saturated. Section 6 introduces the notion of M-graph, a
graph at the schema-level, and its data-level instantiation, called ↪→-graph. An important
result, Lemma 11, relates cycles in attack graphs to cycles in M-graphs, for saturated queries
only. Section 7 introduces the notion of garbage set for a subquery. Informally, garbage sets
contain facts that can never make the subquery hold true, and thus can be removed from
the database without changing the answer to CERTAINTY(q). Section 8 focuses on cycles in
the M-graph of a query, and shows that garbage sets for such cycles can be computed and
removed in symmetric stratified Datalog. At the end of Section 8, we have all ingredients for
the proof of our main theorem. Finally, Section 9 shows that foreign-to-primary key joins fall
on the logspace side of the dichotomy. The proofs of lemmas and theorems appear in [22].

2 Related Work

Consistent query answering (CQA) starts from the seminal work by Arenas, Bertossi, and
Chomicki [2], and is the topic of a monograph by Bertossi [7]. The term CERTAINTY(q) was
coined in [33] to refer to CQA for Boolean queries q on databases that violate primary keys, one
per relation, which are fixed by q’s schema. The complexity classification of CERTAINTY(q)
for all q ∈ sjfBCQ started with the ICDT 2005 paper of Fuxman and Miller [13, 14], and
has attracted much research since then. These previous works (see [35] for a survey) were
generalized by [19, 20], where it was shown that the set {CERTAINTY(q) | q ∈ sjfBCQ}
exhibits a P-coNP-complete dichotomy. Furthermore, it was shown that membership of
CERTAINTY(q) in FO is decidable for queries q in sjfBCQ. The current paper culminates this
line of research by showing that the dichotomy is actually between L and coNP-complete,
and – even stronger – between expressibility in symmetric stratified Datalog (with some
aggregation operator) and coNP-complete.

The complexity of CERTAINTY(q) for self-join-free conjunctive queries with negated atoms
was studied in [21]. Little is known about CERTAINTY(q) beyond self-join-free conjunctive
queries. For UCQ (i.e., unions of conjunctive queries, possibly with self-joins), Fontaine [12]
showed that a P-coNP-complete dichotomy in the set {CERTAINTY(q) | q is a Boolean query
in UCQ} implies Bulatov’s dichotomy theorem for conservative CSP [9]. This relationship
between CQA and CSP was further explored in [26]. The complexity of CQA for aggregation
queries with respect to violations of functional dependencies has been studied in [3].

The counting variant of CERTAINTY(q), which is called #CERTAINTY(q), asks to de-
termine the number of repairs that satisfy some Boolean query q. In [28], the authors show a
FP-#P-complete dichotomy in {#CERTAINTY(q) | q ∈ sjfBCQ}. For conjunctive queries q
with self-joins, the complexity of #CERTAINTY(q) has been established for the case that all
primary keys consist of a single attribute [29]. In recent years, CQA has also been studied
beyond the setting of relational databases, in ontology-based knowledge bases [8, 23] and in
graph databases [6].

3 Preliminaries

We assume an infinite total order (dom,≤) of constants. We assume a set of variables
disjoint with dom. If ~x is a sequence containing variables and constants, then vars(~x) denotes
the set of variables that occur in ~x. A valuation over a set U of variables is a total mapping
θ from U to dom. At several places, it is implicitly understood that such a valuation θ is
extended to be the identity on constants and on variables not in U . If V ⊆ U , then θ[V]
denotes the restriction of θ to V . If θ is a valuation over a set U of variables, x is a variable
(possibly x /∈ U), and a is a constant, then θ[x 7→a] is the valuation over U ∪ {x} such that
θ[x 7→a](x) = a and for every variable y such that y 6= x, θ[x 7→a](y) = θ(y).

ICDT 2019

23:4 CQA for Primary Keys in Logspace

Atoms and key-equal facts Each relation name R of arity n, n ≥ 1, has a unique primary
key which is a set {1, 2, . . . , k} where 1 ≤ k ≤ n. We say that R has signature [n, k] if R has
arity n and primary key {1, 2, . . . , k}. Elements of the primary key are called primary-key
positions, while k + 1, k + 2, . . . , n are non-primary-key positions. For all positive integers
n, k such that 1 ≤ k ≤ n, we assume denumerably many relation names with signature [n, k].
Every relation name has a unique mode, which is a value in {c, i}. Informally, relation names
of mode c will be used for consistent relations, while relations that may be inconsistent
will have a relation name of mode i. We often write Rc to make clear that R is a relation
name of mode c. Relation names of mode c will be a convenient tool in the theoretical
development, but they also constitute a useful modeling primitive that can be put at the
disposal of end-users with domain knowledge [16].

If R is a relation name with signature [n, k], then we call R(s1, . . . , sn) an R-atom (or
simply atom), where each si is either a constant or a variable (1 ≤ i ≤ n). Such an atom is
commonly written as R(~x, ~y) where the primary-key value ~x = s1, . . . , sk is underlined and
~y = sk+1, . . . , sn. An R-fact (or simply fact) is an R-atom in which no variable occurs. Two
facts R1(~a1,~b1), R2(~a2,~b2) are key-equal, denoted R1(~a1,~b1) ∼ R2(~a2,~b2), if R1 = R2 and
~a1 = ~a2.

We will use letters F,G,H for atoms. For an atom F = R(~x, ~y), we denote by key(F) the
set of variables that occur in ~x, and by vars(F) the set of variables that occur in F , that is,
key(F) = vars(~x) and vars(F) = vars(~x)∪ vars(~y). We sometimes blur the distinction between
relation names and atoms. For example, if F is an atom, then the term F -fact refers to a
fact with the same relation name as F .

Databases, blocks, and repairs A database schema is a finite set of relation names. All
constructs that follow are defined relative to a fixed database schema. A database is a finite
set db of facts using only the relation names of the schema such that for every relation name
R of mode c, no two distinct R-facts of db are key-equal.

A relation of db is a maximal set of facts in db that all share the same relation name. A
block of db is a maximal set of key-equal facts of db. A block of R-facts is also called an
R-block. If A is a fact of db, then block(A,db) denotes the block of db that contains A. If
A = R(~a,~b), then block(A,db) is also denoted by R(~a,~∗). A database db is consistent if no
two distinct facts of db are key-equal (i.e., if no block of db contains more than one fact). A
repair of db is a maximal (with respect to set inclusion) consistent subset of db. We write
rset(db) for the set of repairs of db.

Boolean conjunctive queries A Boolean query is a mapping q that associates a Boolean
(true or false) to each database, such that q is closed under isomorphism [24]. We write
db |= q to denote that q associates true to db, in which case db is said to satisfy q. A
Boolean query q can be viewed as a decision problem that takes a database as input and asks
whether db satisfies q. In this paper, the complexity class FO stands for the set of Boolean
queries that can be defined in first-order logic with equality and constant symbols (which are
interpreted as themselves), but without other built-in predicates or function symbols.

A Boolean conjunctive query is a finite set q = {R1(~x1, ~y1), . . . , Rn(~xn, ~yn)} of atoms,
without equality or built-in predicates. We denote by vars(q) the set of variables that occur
in q. The set q represents the first-order sentence

∃u1 · · · ∃uk

(
R1(~x1, ~y1) ∧ · · · ∧Rn(~xn, ~yn)

)
,

where {u1, . . . , uk} = vars(q). This query q is satisfied by a database db if there exists a
valuation θ over vars(q) such that for each i ∈ {1, . . . , n}, Ri(~a,~b) ∈ db with ~a = θ(~xi) and
~b = θ(~yi).

P. Koutris and J. Wijsen 23:5

We say that a Boolean conjunctive query q has a self-join if some relation name occurs
more than once in q. If q has no self-join, then it is called self-join-free. We write sjfBCQ
for the class of self-join-free Boolean conjunctive queries. If q is a query in sjfBCQ with an
R-atom, then, by an abuse of notation, we sometimes write R to mean the R-atom of q.

Let θ be a valuation over some set X of variables. For every Boolean conjunctive query q,
we write θ(q) for the query obtained from q by replacing all occurrences of each x ∈ X∩vars(q)
with θ(x); variables in vars(q) \X remain unaffected (i.e., θ is understood to be the identity
on variables not in X).

Atoms of mode c The mode of an atom is the mode of its relation name (a value in {c, i}).
If q is a query in sjfBCQ, then qcons is the set of all atoms of q that are of mode c.

Functional dependencies Let q be a Boolean conjunctive query. A functional dependency
for q is an expression X → Y where X,Y ⊆ vars(q). Let V be a finite set of valuations over
vars(q). We say that V satisfies X → Y if for all θ, µ ∈ V, if θ[X] = µ[X], then θ[Y] = µ[Y].
Let Σ be a set of functional dependencies for q. We write Σ |= X → Y if for every set V of
valuations over vars(q), if V satisfies each functional dependency in Σ, then V satisfies X → Y .
Note that the foregoing conforms with standard dependency theory if variables are viewed
as attributes, and valuations as tuples. As with standard functional dependencies, every set
of functional dependencies for q is logically equivalent to a set of functional dependencies
for q with singleton right-hand sides.

Consistent query answering Let q be a query in sjfBCQ. We define CERTAINTY(q) as the
decision problem that takes as input a database db, and asks whether every repair of db
satisfies q.

The genre of a fact Let q be a query in sjfBCQ. For every fact A whose relation name
occurs in q, we denote by genreq(A) the (unique) atom of q that has the same relation name
as A. From here on, if db is a database that is given as an input to CERTAINTY(q), we
will assume that each relation name of each fact in db also occurs in q. Therefore, for every
A ∈ db, genreq(A) is well defined. Of course, this assumption is harmless.

Attack graph Let q be a query in sjfBCQ. We define K(q) as the following set of functional
dependencies: K(q) := {key(F)→ vars(F) | F ∈ q}. For every atom F ∈ q, we define F+,q as
the set of all variables x ∈ vars(q) satisfying K(q \ {F})∪K(qcons) |= key(F)→ x. Informally,
the term K(qcons) is the set of all functional dependencies that arise in atoms of mode c.
Clearly, if F has mode c, then K(q \ {F}) ∪ K(qcons) = K(q); and if F has mode i, then
K(q \ {F})∪K(qcons) = K(q \ {F}). The attack graph of q is a directed graph whose vertices
are the atoms of q. There is a directed edge from F to G (F 6= G), denoted F q

 G, if there
exists a sequence

F0
x1
a F1

x2
a F2 · · ·

x`

a F` (1)

such that F0 = F , F` = G, and for each i ∈ {1, . . . , `}, Fi is an atom of q and xi is a variable
satisfying xi ∈ (vars(Fi−1) ∩ vars(Fi)) \ F+,q. The sequence (1) is also called a witness for
F

q
 G. An edge F q

 G is also called an attack from F to G; we also say that F attacks
G. Informally, an attack from an atom R(~x, ~y) to an atom S(~u, ~w) indicates that, given
a valuation over vars(~x), the values for ~u that make the query true depend on the values
chosen for ~y.

ICDT 2019

23:6 CQA for Primary Keys in Logspace

R(x, y)

S(y, z)

T1(z, w)

T2(z, w) T c(z, w)

U(y, z, w, x)

R(x, y)

S(y, z)

T1(z, w)

T2(z, w) T c(z, w)

U(y, z, w, x)

Attack Graph. M-Graph.

Figure 1 Attack graph (left) and M-graph (right) of the same query q1 = {R(x, y), S(y, z),
U(y, z, w, x), T1(z, w), T2(z, w), T c(z, w)}. It can be verified that all attacks are weak and that the
query is saturated. The attack graph has an initial strong component containing three atoms (R, S,
and U). As predicted by Lemma 11, the subgraph of the M-graph induced by {R,S, U} is cyclic.

An attack on a variable x ∈ vars(q) is defined as follows: F q
 x if F q∪{N(x)}

 N(x) where
N is a fresh relation name of signature [1, 1]. Informally, x is attacked in q if N(x) has an
incoming attack in the attack graph of q ∪ {N(x)}.

I Example 3. Let q1 = {R(x, y), S(y, z), U(y, z, w, x), T1(z, w), T2(z, w), T c(z, w)}. Using

relation names for atoms, we have R+,q1 = {x}. A witness for R q1 U is R
y

a U . The attack
graph of q1 is shown in Fig. 1.

An attack F q
 G is weak if K(q) |= key(F)→ key(G); otherwise it is strong. A cycle in

the attack graph is strong if at least one attack in the cycle is strong. It has been proved [20,
Lemma 3.6] that if the attack graph contains a strong cycle, then it contains a strong cycle
of length 2. The main result in [20] can now be stated.

I Theorem 4 ([20]). For every query q in sjfBCQ,
if the attack graph of q is acyclic, then CERTAINTY(q) is in FO;
if the attack graph of q is cyclic but contains no strong cycle, then CERTAINTY(q) is
L-hard and in P; and
if the attack graph of q contains a strong cycle, then CERTAINTY(q) is coNP-complete.

Furthermore, it can be decided in quadratic time in the size of q which of these three cases
applies.

Sequential proof Let q be a query in sjfBCQ. Let Z → w be a functional dependency for q
with a singleton right-hand side (where set delimiters { and } are omitted). A sequential
proof for Z → w is a (possibly empty) sequence F1, F1, . . . , F` of atoms in q such that for
every i ∈ {1, . . . , `}, key(Fi) ⊆ Z ∪

(⋃i−1
j=1 vars(Fj)

)
and w ∈ Z ∪ (

⋃`
j=1 vars(Fj)). Clearly,

if w ∈ vars(Fk) for some k < `, then such a sequential proof can be shortened by omitting
the atoms Fk+1, . . . , F`. Sequential proofs mimic the computation of a closure of a set of
attributes with respect to a set of functional dependencies; see, e.g., [1, p. 165].

P. Koutris and J. Wijsen 23:7

Notions from graph theory We adopt some terminology from [4]. A directed graph is
strongly connected if there is a directed path from any vertex to any other. The maximal
strongly connected subgraphs of a graph are vertex-disjoint and are called its strong compon-
ents. If S1 and S2 are strong components such that an edge leads from a vertex in S1 to a
vertex in S2, then S1 is a predecessor of S2 and S2 is a successor of S1. A strong component
is called initial if it has no predecessor. For a directed graph, we define the length of a
directed path as the number of edges it contains. A directed path or cycle without repeated
vertices is called elementary. If G is a graph, then V (G) denotes the vertex set of G, and
E(G) denotes the edge set of G.

Symmetric stratified Datalog We assume that the reader is familiar with the syntax and
semantics of stratified Datalog. A stratified Datalog program is linear if in the body of each
rule there is at most one occurrence of an IDB predicate of the same stratum (but there may
be arbitrarily many occurrences of IDB predicates from lower strata). Assume that some
stratum of a linear stratified Datalog program contains a recursive rule

L0 ← L1, L2, . . . , Lm,¬Lm+1, . . . ,¬Ln

such that L1 is an IDB predicate of the same stratum. Then, since the program is linear,
each predicate among L2, . . . , Ln is either an EDB predicate or an IDB predicate of a lower
stratum. Such a rule has a symmetric rule:

L1 ← L0, L2, . . . , Lm,¬Lm+1, . . . ,¬Ln.

A stratified Datalog program is symmetric if it is linear and the symmetric of any recursive
rule is also a rule of the program.

It is known (see, for example, [15, Proposition 3.3.72]) that linear stratified Datalog is
equivalent to Transitive Closure Logic. The data complexity of linear stratified Datalog
is in NL (and is complete for NL). A symmetric Datalog program can be evaluated in
logarithmic space [10] and cannot express directed reachability [11].

We will assume that given a (extensional or intentional) predicate P of some arity 2`, we
can express the following query (let ~x = 〈x1, . . . , x`〉, ~y = 〈y1, . . . , y`〉, and ~z = 〈z1, . . . , z`〉):

{~x, ~y | P (~x, ~y) ∧ ∀z1 · · · ∀z` (P (~x, ~z)→ ~y ≤` ~z)}, (2)

where ≤` is a total order on dom`. Informally, the above query groups by the ` leftmost
positions, and, within each group, takes the smallest (with respect to ≤`) value for the
remaining positions. Such a query will be useful in Section 8.3, where P encodes an equivalence
relation on a finite subset of dom`, and the query (2) allows us to deterministically choose
a representative in each equivalence class. The order ≤` can be first-order defined as the
lexicographical order on dom` induced by the linear order on dom. For example, for ` = 2,
the lexicographical order is defined as (y1, y2) ≤2 (z1, z2) if y1 < z1 ∨ ((y1 = z1) ∧ (y2 ≤ z2)).
Nevertheless, our results do not depend on how the order ≤` is defined. Moreover, all queries
in our study will be order-invariant in the sense defined in [17]. The order is only needed in
the proof of Lemma 25 to pick, in a deterministic way, an identifier from a set of candidate
identifiers. In Datalog, we use the following convenient syntax for (2):

Answer(~x,min(~y))←P (~x, ~y).

Such a rule will always be non-recursive. Most significantly, if we extend a logspace fragment
of stratified Datalog with queries of the form (2), the extended fragment will also be in

ICDT 2019

23:8 CQA for Primary Keys in Logspace

R(x, y) S(y, z)

T (z, x)

(a) M-graph.

R(a1, b1) S(b1, c1)

T (c1, a1)

R(a2, b2)S(b2, c2)

R(a1, b2)

T (c1, a2)

T (c2, a1)

S(b2, c1)

(b)
C3
↪→-graph.

{R(a1, b1), R(a1, b2)}
{S(b1, c1)}

{T (c1, a1), T (c1, a2)}

{R(a2, b2)}
{S(b2, c2), S(b2, c1)}

{T (c2, a1)}

(c) Block-quotient graph.

Figure 2 Examples of three different graphs used in this paper: M-graph, ↪→-graph, block-quotient
graph.

logspace. Therefore, assuming queries of the form (2) is harmless for our complexity-theoretic
purposes. We use SymStratDatalog for symmetric stratified Datalog, and SymStratDatalogmin

for symmetric stratified Datalog that allows queries of the form (2). The need for the min
operator will occur in the proof of Lemma 25.

4 The Main Theorem and an Informal Guide of its Proof

In this paper, we prove the following main result.

I Theorem 5 (Main Theorem). For every query q in sjfBCQ,
if the attack graph of q contains a strong cycle, then CERTAINTY(q) is coNP-complete;
and
if the attack graph of q contains no strong cycle, then CERTAINTY(q) is expressible in
SymStratDatalogmin (and is thus in L).

The above result is stronger than Theorem 2, since it provides an effective criterion for the
dichotomy between coNP-completeness and expressibility in symmetric stratified Datalog.

Before we delve into the proof in the next sections, we start with a guided tour that
introduces our approach in an informal way. The focus of this paper is a deterministic
logspace algorithm for CERTAINTY(q) whenever CERTAINTY(q) is in P but not in FO

P. Koutris and J. Wijsen 23:9

(assuming P 6= coNP). In what follows, by a logspace algorithm, we will always mean a
deterministic logspace algorithm. An exemplar query is C3 := {R(x, y), S(y, z), T (z, x)},
which can be thought of as a cycle of length 3. For the purpose of this example, let q be a
query in sjfBCQ that includes C3 as a subquery (i.e., C3 ⊆ q).

An important novel notion in this paper is the M-graph of a query (see Section 6). The
M-graph of C3 is shown in Fig. 2a. Informally, a directed edge from an atom F to an atom
G, denoted F M−→ G, means that every variable that occurs in the primary key of G occurs
also in F . In Fig. 2a, we have T (z, x) M−→ R(x, y), because R’s primary key (i.e., x) occurs in
the T -atom; there is no edge from R(x, y) to T (z, x) because z does not occur in the R-atom.
Intuitively, one can think of edges in the M-graph as foreign-to-primary key joins. In what
follows, we focus on cycles in the M-graph, called M-cycles. As we will see later on, such
M-cycles will occur whenever the attack graph of a query is cyclic but contains no strong
attack cycles.

Figure 2b shows an instantiation of the M-graph, called
C3
↪→-graph (see Definitions 12

and 18), whose vertices are obtained by replacing variables with constants in R(x, y), S(y, z),
or T (z, x). We write A

C3
↪→ B to denote an edge from fact A to fact B. Each triangle in the

C3
↪→-graph of Fig. 2b instantiates the query C3; for example, the inner triangle is equal to θ(C3)
where θ is the valuation such that θ(xyz) = a1b2c1. We call such a triangle a 1-embedding
(see Definition 18). Significantly, some edges are not part of any triangle. For example, the
edge S(b1, c1)

C3
↪→ T (c1, a2) is not in a triangle, but is present because the primary key of

T (c1, a2) occurs in S(b1, c1).
Let db be a database that is input to CERTAINTY(q) such that db contains (but is

not limited to) all facts of Fig. 2b. Since C3 is a subquery of q, db will typically contain
other facts with relation names in q \C3. Furthermore, db can contain R-facts, S-facts, and
T -facts not shown in Fig. 2b. Then, db has at least 23 = 8 repairs, because Fig. 2b shows
two R-facts with primary key a1, two S-facts with primary key b2, and two T -facts with
primary key c1. Consider now the outermost elementary cycle (in thick lines) of length 6,
i.e., the cycle using the vertices in r := {R(a1, b1), S(b1, c1), T (c1, a2), R(a2, b2), S(b2, c2),
T (c2, a1)}, which will be called a 2-embedding in Definition 18 (or an n-embedding with
n = 2). One can verify that r does not contain distinct key-equal facts and does not satisfy
C3 (because the subgraph induced by r has no triangle). Let o be the database that contains
r as well as all facts of db that are key-equal to some fact in r. A crucial observation is that
if db \ o has a repair that falsifies q, then so has db (the converse is trivially true). Indeed,
if s is a repair of db \ o that falsifies q, then s∪ r is a repair of db that falsifies q. Intuitively,
we can add r to s without creating a triangle in the

C3
↪→-graph (i.e., without making C3 true,

and thus without making q true), because the facts in r form a cycle on their own and contain
no outgoing

C3
↪→-edges to facts in s. In Section 7, the set o will be called a garbage set: its

facts can be thrown away without changing the answer to CERTAINTY(q). Note that the
C3
↪→-graph of Fig. 2b contains other elementary cycles of length 6, which, however, contain
distinct key-equal facts: for example, the cycle with vertices R(a1, b1), S(b1, c1), T (c1, a1),
R(a1, b2), S(b2, c2), T (c2, a1) contains both R(a1, b1) and R(a1, b2).

Garbage sets thus arise from cycles in the
C3
↪→-graph that (i) do not contain distinct

key-equal facts, and (ii) are not triangles satisfying C3. To find such cycles, we construct
the quotient graph of the

C3
↪→-graph with respect to the equivalence relation “is key-equal to.”

Since the equivalence classes with respect to “is key-equal to” are the blocks of the database,
we call this graph the block-quotient graph (Definition 23). The block-quotient graph for
our example is shown in Fig. 2c. The vertices are database blocks; there is an edge from

ICDT 2019

23:10 CQA for Primary Keys in Logspace

block b1 to b2 if the
C3
↪→-graph contains an edge from some fact in b1 to some fact in b2.

The block-quotient graph contains exactly one elementary directed cycle of length 6 (thick
lines); this cycle obviously corresponds to the outermost cycle of length 6 in the

C3
↪→-graph. A

core result (Lemma 22) of this article is a logspace algorithm for finding elementary cycles in
the block-quotient graph whose lengths are strict multiples of the length of the underlying
M-cycle. In our example, since the M-cycle of C3 has length 3, we are looking for cycles in the
block-quotient graph of lengths 6, 9, 12, . . . Note here that, since the

C3
↪→-graph is tripartite,

the length of any cycle in it must be a multiple of 3. Our algorithm can be encoded in
symmetric stratified Datalog. This core algorithm is then extended to compute garbage sets
(Lemma 24) for M-cycles.

In our example, C3 is a subquery of q. In general, M-cycles will be subqueries of larger
queries. The facts that belong to the garbage set for an M-cycle can be removed, but the
other facts must be maintained for computations on the remaining part of the query, and
are stored in a new schema that replaces the relations in the M-cycle with a single relation
(see Section 8.3). In our example, this new relation has attributes for x, y, and z, and stores
all triangles that are outside the garbage set for C3.

We can now sketch our approach for dealing with queries q such that CERTAINTY(q)
is in P \ FO. Lemma 11 tells us that such a query q will have an M-cycle involving two
or more atoms of mode i. The garbage set of this M-cycle is then computed, and the facts
not in the garbage set will be stored in a single new relation of mode i that replaces the
M-cycle. In this way, CERTAINTY(q) is reduced to a new problem CERTAINTY(q′), where
q′ contains less atoms of mode i than q. Lemma 25 shows that this new problem will be in
P, and that our reduction can be expressed in symmetric stratified Datalog. We can repeat
this reduction until we arrive at a query q′′ such that CERTAINTY(q′′) is in FO.

To conclude this guided tour, we point out the role of atoms of mode c in the computation
of the M-graph, which was not illustrated by our running example. In the M-graph of Fig. 1
(right), we have S(y, z) M−→ U(y, z, w, x), even though w does not occur in the S-atom. The
explanation is that the query also contains the consistent relation T c(z, w), which maps
each z-value to a unique w-value. So even though w does not occur as such in S(y, z), it
is nevertheless uniquely determined by z. It is thus important to identify all relations of
mode c, which is the topic of the next section.

5 Saturated Queries

In this section, we show that we can safely extend a query q with new consistent relations.
To achieve this, we need to identify a particular type of functional dependencies for q, which
are called internal. Internal functional dependencies are used to define saturated queries.

I Definition 6. Let q be a query in sjfBCQ. Let Z → w be a functional dependency for q.
We say that Z → w is internal to q if the following two conditions are satisfied:
1. there exists a sequential proof for K(q) |= Z → w such that no atom in the sequential

proof attacks a variable in Z ∪ {w}; and
2. for some F ∈ q, Z ⊆ vars(F).
We say that q is saturated if for every functional dependency σ that is internal to q, we have
K(qcons) |= σ.

P. Koutris and J. Wijsen 23:11

I Example 7. Assume q = {S1(z, u), S2(u,w), R1(z, u′), R2(u′, w), T1(u, v), T2(v, w)}. By
using relation names as a shorthand for atoms, we have that 〈S1, S2〉 is a sequential proof
for K(q) |= z → w in which neither S1 nor S2 attacks z or w, Indeed, S1 attacks neither z
nor w because z, w ∈ S1

+,q. S2 attacks no variable because vars(S2) ⊆ S2
+,q. It follows that

the functional dependency z → w is internal to q.

The next key lemma shows that we can assume without loss of generality that every
internal functional dependency Z → w is satisfied, i.e., that every Z-value is mapped to
a unique w-value. Therefore, whenever Z → w is internal, we can safely extend q with a
new consistent relation N c(Z,w) that materializes the mapping from Z-values to w-values.
Continuing the above example, we would extend q by adding a fresh atom N c(z, w).

I Lemma 8. For every query q in sjfBCQ, it is possible to compute a query q′ in sjfBCQ
with the following properties:
1. there exists a first-order reduction from CERTAINTY(q) to CERTAINTY(q′);
2. if the attack graph of q contains no strong cycle, then the attack graph of CERTAINTY(q′)

contains no strong cycle; and
3. q′ is saturated.

6 M-Graphs and ↪→-Graphs

In this section, we introduce the M-graph of a query q in sjfBCQ, which is a generalization of
the notion of Markov-graph introduced in [20] (hence the use of the letter M). An important
new result, Lemma 11, expresses a relationship between attack graphs and M-graphs. Finally,
we define ↪→-graphs, which can be regarded as data-level instantiations of M-graphs.

I Definition 9. Let q be a query in sjfBCQ (which need not be saturated). The M-graph of
q is a directed graph whose vertices are the atoms of q. There is a directed edge from F to
G (F 6= G), denoted F M−→ G, if K(qcons) |= vars(F) → key(G). A cycle in the M-graph is
called an M-cycle.

Note that if all relation names in q have mode i, then F M−→ G implies key(G) ⊆ vars(F).
M-Graphs are technically easier to deal with than the Markov-graphs [20] on which they are
inspired. In fact, Markov-graphs were in [20] only defined for queries containing no atoms of
mode i with a composite primary key. Therefore, atoms with composite primary keys had
first to be massaged into the form required by Markov graphs. This drawback is resolved by
the new notion of M-graph.

I Example 10. The notion of M-graph is illustrated by Fig. 1. We have K(q1
cons) = {z → w}.

Since K(q1
cons) |= vars(S)→ key(U), the M-graph has a directed edge from S to U .

The following lemma tells us about how the existence of M-cycles goes hand in hand with
weak attack cycles. This relationship is important because, on the one hand, our logspace
algorithm for CERTAINTY(q), with q ∈ sjfBCQ, is centered on the existence of M-cycles, and,
on the other, it must apply whenever all cycles in q’s attack graph are weak. The notion of
saturated query is also needed here, because the lemma fails for queries that are not saturated.
The lemma generalizes Lemma 7.13 in [20]. Note that the lemma only considers strong
components of the attack graph that are initial, which will be sufficient for our purposes.

I Lemma 11. Let q be a query in sjfBCQ such that q is saturated and the attack graph of q
contains no strong cycle. Let S be an initial strong component in the attack graph of q with
|S| ≥ 2. Then, the M-graph of q contains a cycle all of whose atoms belong to S.

ICDT 2019

23:12 CQA for Primary Keys in Logspace

S y z

I 1
I 2
I 3

T c z w

1 a

2 b

U y z w x

I 1 a χ

I 2 b χ

R x y

χ I

S(I, 1)

S(I, 2)

S(I, 3)

U(I, 1, a, χ)

U(I, 2, b, χ)

R(χ, I)

Figure 3 Left: Database that is input to CERTAINTY(q1) for the query q1 in Fig. 1. The relations
for T1 and T2, which are identical to the relation for T c, have been omitted. Right: The ↪→-graph
from which, for readability reasons, T1-facts, T2-facts, and T c-facts have been omitted.

Given a query q, every database that instantiates the schema of q naturally gives rise to
an instantiation of the M−→-edges in q’s M-graph, in a way that is captured by the following
definition.

I Definition 12. The following notions are defined relative to a query q in sjfBCQ and a
database db. The ↪→-graph of db is a directed graph whose vertices are the atoms of db.
There is a directed edge from A to B, denoted A ↪→ B, if there exists a valuation θ over vars(q)
and an edge F M−→ G in the M-graph of q such that θ(q) ⊆ db, A = θ(F), and B ∼ θ(G).
A cycle in the ↪→-graph is also called a ↪→-cycle. In spoken language, the ↪→-graph may be
called the instantiated M-graph.

The notion of ↪→-graph is illustrated by Fig. 3. The following lemma states that if the
↪→-graph of a database db has a directed edge from some fact A to some G-fact B, then A
has outgoing edges to all the facts of block(B,db), and to no other G-facts.

I Lemma 13. Let q ∈ sjfBCQ and let db be a database. Let A,B ∈ db and F,G ∈ q.
1. if A ↪→ B, then A ↪→ B′ for all B′ ∈ block(B,db);
2. if A ↪→ B and A ↪→ B′ and genreq(B) = genreq(B′), then B ∼ B′.

7 Garbage Sets

Let db be a database that is an input to CERTAINTY(q) with q ∈ sjfBCQ. In this section, we
show that it is generally possible to downsize db by deleting blocks from it without changing
the answer to CERTAINTY(q). That is, if the downsized database has a repair falsifying q,
then so does the original database (the converse holds trivially true). Intuitively, the deleted
blocks can be considered as “garbage” for the problem CERTAINTY(q).

I Definition 14. The following definition is relative to a fixed query q in sjfBCQ. Let q0 ⊆ q.
Let db be a database. We say that a subset o of db is a garbage set for q0 in db if the
following conditions are satisfied:
1. for every A ∈ o, we have that genreq(A) ∈ q0 and block(A,db) ⊆ o; and
2. there exists a repair r of o such that for every valuation θ over vars(q), if θ(q) ⊆ (db \ o)∪r,

then θ(q0) ∩ r = ∅ (and thus θ(q0) ∩ o = ∅).

P. Koutris and J. Wijsen 23:13

The first condition in the above definition says that the relation names of facts in o must
occur in q0, and that every block of db is either included in or disjoint with o. The second
condition captures the crux of the definition and was illustrated in Section 4.

We now show a number of useful properties of garbage sets that are quite intuitive. In
particular, by Lemma 15, there exists a unique maximum (with respect to ⊆) garbage set for
q0 in db, which will be called the maximum garbage set for q0 in db.

I Lemma 15. Let q be a query in sjfBCQ, and let q0 ⊆ q. Let db be a database. If o1 and
o2 are garbage sets for q0 in db, then o1 ∪ o2 is a garbage set for q0 in db.

I Lemma 16. Let q be a query in sjfBCQ, and let q0 ⊆ q. Let db be a database. Let o be a
garbage set for q0 in db. Then, every repair of db satisfies q if and only if every repair of
db \ o satisfies q (i.e., db and db \ o agree on their answer to CERTAINTY(q)).

I Lemma 17. Let q be a query in sjfBCQ, and let q0 ⊆ q. Let db be a database. Let o be a
garbage set for q0 in db. Then, every garbage set for q0 in db \ o is empty if and only if o
is the maximal garbage set for q0 in db.

8 Garbage Sets for M-Cycles

In this section, we bring together notions of the two preceding sections. We focus on queries
q in sjfBCQ whose M-graph has a cycle C. From here on, if C is an elementary cycle in the
M-graph of some query q in sjfBCQ, then the subset of q that contains all (and only) the
atoms of C, is also denoted by C.

Section 8.1 shows a procedural characterization of the maximal garbage set for C.
Section 8.2 shows that the maximal garbage set for C can be computed in symmetric
stratified Datalog. Finally, Section 8.3 shows a reduction, expressible in symmetric stratified
Datalog, that replaces C with a single atom.

8.1 Characterizing Garbage Sets for M-Cycles
We define how a given M-cycle C of length k can be instantiated by cycles in the ↪→-graph,
called embeddings, whose lengths are multiples of k.

I Definition 18. Let q be a query in sjfBCQ. Let db be a database. Let C be an elementary
directed cycle in the M-graph of q. The cycle C naturally induces a subgraph of the ↪→-graph,
as follows: the vertex set of the subgraph contains all (and only) the facts A of db such that
genreq(A) is an atom in C; there is a directed edge from A to B, denoted A C

↪→ B, if A ↪→ B

and the cycle C contains a directed edge from genreq(A) to genreq(B).
Let k be the length of C. Obviously, the length of every C

↪→-cycle must be a multiple of k.
Let n be a positive integer. An n-embedding of C in db (or simply embedding if the value n
is not important) is an elementary C

↪→-cycle of length nk containing no two distinct key-equal
facts. A 1-embedding of C in db is said to be relevant if there exists a valuation θ over
vars(q) such that θ(q) ⊆ db and θ(q) contains every fact of the 1-embedding; otherwise the
1-embedding is said to be irrelevant.

Let C and q be as in Definition 18, and let db be a database. There exists an intimate
relationship between garbage sets for C in db and different sorts of embeddings.

Let A ∈ db such that genreq(A) belongs to C. If A belongs to some relevant 1-embedding
of C in db, then A will have an outgoing edge in the C

↪→-graph. If A does not belong to
some relevant 1-embedding of C in db, then A will have no outgoing edge in the C

↪→-graph,
and block(A,db) is a garbage set for C in db by Definition 14 (choose o = block(A,db)
and r = {A}).

ICDT 2019

23:14 CQA for Primary Keys in Logspace

Every irrelevant 1-embedding of C in db gives rise to a garbage set. To illustrate this
case, let C = {R(x, y, z), S(y, x, z)}. Assume that R(a, b, 1) C

↪→ S(b, a, 2) C
↪→ R(a, b, 1) is

a 1-embedding of C in db. This 1-embedding is irrelevant, because 1 6= 2. It can be
easily seen that R(a, ∗, ∗) ∪ S(b, ∗, ∗) is a garbage set for q in db.
Every n-embedding of C in db with n ≥ 2 gives rise to a garbage set. This was illustrated
in Section 4 by means of the outermost cycle of length 6 in Fig. 2b, which is a 2-embedding
of {R(x, y), S(y, z), T (z, x)}.

These observations lead to the following lemma which provides a procedural characterization
of the maximal garbage set for C in a given database.

I Lemma 19. Let q be a query in sjfBCQ. Let C = F0
M−→ F1

M−→ · · · M−→ Fk−1
M−→ F0 be

an elementary cycle of length k (k ≥ 2) in the M-graph of q. Let db be a database. Let o be
a minimal (with respect to ⊆) subset of db satisfying the following conditions:
1. the set o contains every fact A of db with genreq(A) ∈ {F0, . . . , Fk−1} such that A has

zero outdegree in the C
↪→-graph;

2. the set o contains every fact that belongs to some irrelevant 1-embedding of C in db;
3. the set o contains every fact that belongs to some n-embedding of C in db with n ≥ 2;
4. Recursive condition: if o contains some fact of a relevant 1-embedding of C in db, then

o contains every fact of that 1-embedding; and
5. Closure under “is key-equal to”: if o contains some fact A, then o includes block(A,db).
Then, o is the maximal garbage set for C in db.

I Corollary 20. Let C be an elementary cycle in the M-graph of a query q in sjfBCQ. Let S
be a strong component in the C

↪→-graph of a database db. If some fact of S belongs to the
maximal garbage set for C in db, then every fact of S belongs to the maximal garbage set
for C in db.

8.2 Computing Garbage Sets for M-Cycles
In this section, we translate Lemma 19 into a Datalog program that computes, in deterministic
logspace, the maximal garbage set for an M-cycle C. The main computational challenge lies in
condition 3 of Lemma 19, which adds to the maximal garbage set all facts belonging to some
n-embedding with n ≥ 2, where the value of n is not upper bounded. Such n-embeddings can
obviously be computed in nondeterministic logspace by using directed reachability in the C

↪→-
graph. This section shows a trick that allows doing the computation by using only undirected
reachability, which, by the use of Reingold’s algorithm [32], will lead to an algorithm that
runs in deterministic logspace.

By Corollary 20, instead of searching for n-embeddings, n ≥ 2, it suffices to search for
strong components of the C

↪→-graph containing such n-embeddings. These strong components
can be recognized by a first-order reduction to the following problem, called LONGCYCLE(k),
which is in logspace by Lemma 22.

I Definition 21. A k-circle-layered graph [25] is a k-partite directed graph G = (V,E)
where edges only exist between adjacent partitions. More formally, the vertices of G can be
partitioned into k groups such that V = V0 ∪ V1 ∪ · · · ∪ Vk−1 and Vi ∩ Vj = ∅ if i 6= j. The
only edges from a partition Vi go to the partition V(i+1) mod k.

For every positive integer k, LONGCYCLE(k) is the following problem.
Problem LONGCYCLE(k)
Instance A connected k-circle-layered graph G = (V,E) such that every edge of E belongs to

a directed cycle of length k.
Question Does G have an elementary directed cycle of length at least 2k?

P. Koutris and J. Wijsen 23:15

I Lemma 22. For every positive integer k, LONGCYCLE(k) is in L and can be expressed in
SymStratDatalog.

Proof (Sketch). Let G = (V,E) be an instance of LONGCYCLE(k). A cycle of length k in
G is called a k-cycle. Let Ĝ be the undirected graph whose vertices are the k-cycles of G;
there is an undirected edge between two vertices if their k-cycles have an element in common.
The full proof in [22] shows that G has an elementary directed cycle of length ≥ 2k if and
only if one of the following conditions is satisfied:

for some n such that 2 ≤ n ≤ 2k− 3, G has an elementary directed cycle of length nk; or
Ĝ has a chordless undirected cycle (i.e., a cycle without cycle chord) of length ≥ 2k.

The first condition can be tested in FO; the second condition can be reduced to an undirected
connectivity problem, which is in logspace [32] and can be expressed in SymStratDatalog. J

To use Lemma 22, we take a detour via the quotient graph of the C
↪→-graph relative to

the equivalence relation “is key-equal to.”

I Definition 23. Let q be a query in sjfBCQ. Let db be a database. Let C be an elementary
directed cycle of length k ≥ 2 in the M-graph of q. The block-quotient graph is the quotient
graph of the C

↪→-graph of db with respect to the equivalence relation ∼. 1

The block-quotient graph of a database can obviously be constructed in FO. The
strong components of the C

↪→-graph that contain some n-embedding of C, n ≥ 2, can then
be recognized in logspace by executing the algorithm for LONGCYCLE(k) on the block-
quotient graph.

I Lemma 24. Let q be a query in sjfBCQ. Let C be an elementary cycle of length k (k ≥ 2)
in the M-graph of q. There exists a program in SymStratDatalog that takes a database db as
input and returns, as output, the maximal garbage set for C in db.

8.3 Elimination of M-Cycles
Given a database db, the Datalog program of Lemma 24 allows us to compute the maximal
garbage set o for C in db. The C

↪→-graph of db′ := db \o will be a set of strong components,
all initial, each of which is a collection of relevant 1-embeddings of C in db′. The following
Lemma 25 introduces a reduction that encodes this C

↪→-graph by means of a fresh atom
T (u, ~w), where vars(~w) = vars(C) and u is a fresh variable. Whenever θ(q) ⊆ db′ for some
valuation θ over vars(q), the reduction will add to the database a fact T (cid, θ(~w)) where
cid is an identifier for the strong component (in the C

↪→-graph) that contains θ(C). The
construction is illustrated by Fig. 4. The following lemma captures this reduction and states
that it (i) is expressible in SymStratDatalogmin, and (ii) does not result in an increase of
computational complexity.

I Lemma 25. Let q be a query in sjfBCQ. Let C = F0
M−→ F1

M−→ · · · M−→ Fk−1
M−→ F0

with k ≥ 2 be an elementary cycle in the M-graph of q. Let u be a variable such that
u 6∈ vars(q). Let T be an atom with a fresh relation name such that key(T) = {u} and
vars(T) = vars(C) ∪ {u}. Let p be a set containing, for every i ∈ {1, . . . , k}, an atom Ni of
mode c with a fresh relation name such that key(Ni) = key(Fi) and vars(Ni) = key(Fi) ∪ {u}.
Then,

1 The quotient graph of a directed graph G = (V,E) with respect to an equivalence relation ≡ on V is a
directed graph whose vertices are the equivalence classes of ≡; there is a directed edge from class A to
class B if E has a directed edge from some vertex in A to some vertex in B.

ICDT 2019

23:16 CQA for Primary Keys in Logspace

R(a, 1, α)

R(b, 1, β)

R(b, 2, β)

R(c, 3, β)

S(1, a, α)

S(1, b, β)

S(2, b, β)

S(3, c, β)

T u x y z

a a 1 α

a b 1 β

a b 2 β

c c 3 β

N c
1 x u

a a

b a

c c

N c
2 y u

1 a

2 a

3 c

Figure 4 Left: Two strong components in the C
↪→-graph of a database for an M-cycle R(x, y, z) M−→

S(y, x, z) M−→ R(x, y, z). The maximal garbage set is empty. Right: Encoding of the relevant 1-
embeddings in each strong component. The u-values a and c are used to identify the strong
components, and are chosen as the smallest x-values in each strong component.

1. there exists a reduction from CERTAINTY(q) to CERTAINTY((q \ C) ∪ {T} ∪ p) that is
expressible in SymStratDatalogmin; and

2. if the attack graph of q contains no strong cycle and some initial strong component of
the attack graph contains every atom of {F0, F1, . . . , Fk−1}, then the attack graph of
(q \ C) ∪ {T} ∪ p contains no strong cycle either.

Proof (Crux). The crux in the proof of the first item is the deterministic choice of u-values
for T -blocks. In Fig. 4, for example, the T -block encoding the top strong component uses
u = a, and the T -block encoding the bottom strong component uses u = c. These u-values
are the smallest x-values in the strong components, which can be obtained by the query (2)
introduced in Section 3. In the example, we assumed a = min{a, b} and c = min{c}. J

The proof of the main theorem, Theorem 5, is now fairly straightforward and is given in
full detail in [22]. Informally, let q be a saturated query in sjfBCQ such that the attack graph
of q has no strong attack cycles. If q contains an atom of mode i without incoming attacks,
then this atom is rewritten in first-order logic, in the form defined by [34, Definition 8.3];
otherwise some M-cycle, which exists by Lemma 11, is eliminated in the way previously
described in this section. In either case, the remaining smaller query will have a consistent
SymStratDatalogmin rewriting.

9 Joins on Primary Keys

It is common that the join condition in a join of two tables expresses a foreign-to-primary
key match, i.e., the columns (called the foreign key) of one table reference the primary key
of another table. In our setting, we have primary keys but no foreign keys. Nevertheless,
foreign keys can often be inferred from the query. For example, in the following query, the
variable d in Movies references the primary key of Directors:

{Movies(m, t, ‘1963’, d),Directors(d, ‘Hitchcock’, b)}.

Given relation schemas Movies(M#,Title,Year,Director) and Directors(D#,Name,BirthYear),
this query asks whether there exists a movie released in 1963 and directed by Hitchcock.

P. Koutris and J. Wijsen 23:17

The key-join property that we define below captures this common type of join. Informally,
a query has the key-join property if whenever two atoms have a variable in common, then
their set of shared variables is either equal to the set of primary-key variables of one of the
atoms, or contains all primary-key variables of both atoms.

I Definition 26. We say that a query q in sjfBCQ has the key-join property if for all F,G ∈ q,
either vars(F) ∩ vars(G) ∈ {∅, key(F), key(G)} or vars(F) ∩ vars(G) ⊇ key(F) ∪ key(G).

Theorem 27 shows that if some query q in sjfBCQ has the key-join property, then
CERTAINTY(q) falls on the logspace side of the dichotomy of Theorem 5.

I Theorem 27. For every query q in sjfBCQ that has the key-join property, CERTAINTY(q)
is expressible in SymStratDatalogmin (and is thus in L).

It is worth noting that many of the queries covered by Theorem 27 have an acyclic attack
graph as well, and thus even have a consistent first-order rewriting.

10 Conclusion

The main result of this paper is a theorem stating that for every query q in sjfBCQ (i.e.,
the class of self-join-free Boolean conjunctive queries), CERTAINTY(q) is coNP-complete
or expressible in SymStratDatalogmin (and thus in L). Since there exist queries q ∈ sjfBCQ
such that CERTAINTY(q) is L-complete, the logspace upper bound in Theorem 2 is tight.
The theorem thus culminates a long line of research that started with the ICDT 2005 paper
of Fuxman and Miller [13]. The outcome of this research is the following theorem.

I Theorem 28. For every self-join-free Boolean conjunctive query q,
if the attack graph of q is acyclic, then CERTAINTY(q) is in FO;
if the attack graph of q is cyclic but contains no strong cycle, then CERTAINTY(q) is
L-complete and expressible in SymStratDatalogmin; and
if the attack graph of q contains a strong cycle, then CERTAINTY(q) is coNP-complete.

An intriguing open problem is to extend these complexity results to Boolean conjunct-
ive queries with self-joins and to UCQ. Progress in the latter problem may deepen our
understanding of relationships between CQA and CSP, which were first discovered in [12].

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995. URL: http://webdam.inria.fr/Alice/.
2 Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent Query Answers in

Inconsistent Databases. In ACM PODS, pages 68–79, 1999. doi:10.1145/303976.303983.
3 Marcelo Arenas, Leopoldo E. Bertossi, Jan Chomicki, Xin He, Vijay Raghavan, and Jeremy P.

Spinrad. Scalar aggregation in inconsistent databases. Theor. Comput. Sci., 296(3):405–434,
2003. doi:10.1016/S0304-3975(02)00737-5.

4 Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A Linear-Time Algorithm for
Testing the Truth of Certain Quantified Boolean Formulas. Inf. Process. Lett., 8(3):121–123,
1979. doi:10.1016/0020-0190(79)90002-4.

5 Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An Introduction to Description
Logic. Cambridge University Press, 2017. URL: http://www.cambridge.org/de/academic/
subjects/computer-science/knowledge-management-databases-and-data-mining/
introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97.

ICDT 2019

http://webdam.inria.fr/Alice/
http://dx.doi.org/10.1145/303976.303983
http://dx.doi.org/10.1016/S0304-3975(02)00737-5
http://dx.doi.org/10.1016/0020-0190(79)90002-4
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97

23:18 CQA for Primary Keys in Logspace

6 Pablo Barceló and Gaëlle Fontaine. On the data complexity of consistent query answering over
graph databases. J. Comput. Syst. Sci., 88:164–194, 2017. doi:10.1016/j.jcss.2017.03.015.

7 Leopoldo E. Bertossi. Database Repairing and Consistent Query Answering. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2011. doi:10.2200/
S00379ED1V01Y201108DTM020.

8 Meghyn Bienvenu and Camille Bourgaux. Inconsistency-Tolerant Querying of Description
Logic Knowledge Bases. In Jeff Z. Pan, Diego Calvanese, Thomas Eiter, Ian Horrocks,
Michael Kifer, Fangzhen Lin, and Yuting Zhao, editors, Reasoning Web: Logical Foundation
of Knowledge Graph Construction and Query Answering - 12th International Summer School
2016, Aberdeen, UK, September 5-9, 2016, Tutorial Lectures, volume 9885 of Lecture Notes in
Computer Science, pages 156–202. Springer, 2016. doi:10.1007/978-3-319-49493-7_5.

9 Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM Trans.
Comput. Log., 12(4):24:1–24:66, 2011. doi:10.1145/1970398.1970400.

10 László Egri, Benoit Larose, and Pascal Tesson. Symmetric Datalog and Constraint Satisfaction
Problems in Logspace. In LICS, pages 193–202, 2007. doi:10.1109/LICS.2007.47.

11 László Egri, Benoit Larose, and Pascal Tesson. Directed st-Connectivity Is Not Expressible in
Symmetric Datalog. In ICALP, pages 172–183, 2008. doi:10.1007/978-3-540-70583-3_15.

12 Gaëlle Fontaine. Why is it Hard to Obtain a Dichotomy for Consistent Query Answering? In
LICS, pages 550–559, 2013. doi:10.1109/LICS.2013.62.

13 Ariel Fuxman and Renée J. Miller. First-Order Query Rewriting for Inconsistent Databases.
In ICDT, pages 337–351, 2005. doi:10.1007/978-3-540-30570-5_23.

14 Ariel Fuxman and Renée J. Miller. First-order query rewriting for inconsistent databases. J.
Comput. Syst. Sci., 73(4):610–635, 2007. doi:10.1016/j.jcss.2006.10.013.

15 Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y. Vardi,
Yde Venema, and Scott Weinstein. Finite Model Theory and Its Applications. Texts in Theor-
etical Computer Science. An EATCS Series. Springer, 2007. doi:10.1007/3-540-68804-8.

16 Sergio Greco, Fabian Pijcke, and Jef Wijsen. Certain Query Answering in Partially Con-
sistent Databases. PVLDB, 7(5):353–364, 2014. URL: http://www.vldb.org/pvldb/vol7/
p353-greco.pdf, doi:10.14778/2732269.2732272.

17 Martin Grohe and Thomas Schwentick. Locality of order-invariant first-order formulas. ACM
Trans. Comput. Log., 1(1):112–130, 2000. doi:10.1145/343369.343386.

18 Phokion G. Kolaitis, Enela Pema, and Wang-Chiew Tan. Efficient Querying of Inconsistent
Databases with Binary Integer Programming. PVLDB, 6(6):397–408, 2013. URL: http:
//www.vldb.org/pvldb/vol6/p397-tan.pdf, doi:10.14778/2536336.2536341.

19 Paraschos Koutris and Jef Wijsen. The Data Complexity of Consistent Query Answering for
Self-Join-Free Conjunctive Queries Under Primary Key Constraints. In PODS, pages 17–29,
2015. doi:10.1145/2745754.2745769.

20 Paraschos Koutris and Jef Wijsen. Consistent Query Answering for Self-Join-Free Conjunctive
Queries Under Primary Key Constraints. ACM Trans. Database Syst., 42(2):9:1–9:45, 2017.
doi:10.1145/3068334.

21 Paraschos Koutris and Jef Wijsen. Consistent Query Answering for Primary Keys and
Conjunctive Queries with Negated Atoms. In PODS, pages 209–224, 2018. doi:10.1145/
3196959.3196982.

22 Paraschos Koutris and Jef Wijsen. Consistent Query Answering for Primary Keys in Logspace.
CoRR, abs/1810.03386, 2018. arXiv:1810.03386.

23 Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi, and Domenico Fabio
Savo. Inconsistency-tolerant query answering in ontology-based data access. J. Web Sem.,
33:3–29, 2015. doi:10.1016/j.websem.2015.04.002.

24 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2004. doi:10.1007/978-3-662-07003-1.

http://dx.doi.org/10.1016/j.jcss.2017.03.015
http://dx.doi.org/10.2200/S00379ED1V01Y201108DTM020
http://dx.doi.org/10.2200/S00379ED1V01Y201108DTM020
http://dx.doi.org/10.1007/978-3-319-49493-7_5
http://dx.doi.org/10.1145/1970398.1970400
http://dx.doi.org/10.1109/LICS.2007.47
http://dx.doi.org/10.1007/978-3-540-70583-3_15
http://dx.doi.org/10.1109/LICS.2013.62
http://dx.doi.org/10.1007/978-3-540-30570-5_23
http://dx.doi.org/10.1016/j.jcss.2006.10.013
http://dx.doi.org/10.1007/3-540-68804-8
http://www.vldb.org/pvldb/vol7/p353-greco.pdf
http://www.vldb.org/pvldb/vol7/p353-greco.pdf
http://dx.doi.org/10.14778/2732269.2732272
http://dx.doi.org/10.1145/343369.343386
http://www.vldb.org/pvldb/vol6/p397-tan.pdf
http://www.vldb.org/pvldb/vol6/p397-tan.pdf
http://dx.doi.org/10.14778/2536336.2536341
http://dx.doi.org/10.1145/2745754.2745769
http://dx.doi.org/10.1145/3068334
http://dx.doi.org/10.1145/3196959.3196982
http://dx.doi.org/10.1145/3196959.3196982
http://arxiv.org/abs/1810.03386
http://dx.doi.org/10.1016/j.websem.2015.04.002
http://dx.doi.org/10.1007/978-3-662-07003-1

P. Koutris and J. Wijsen 23:19

25 Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight Hardness for
Shortest Cycles and Paths in Sparse Graphs. In ACM-SIAM SODA, pages 1236–1252, 2018.
doi:10.1137/1.9781611975031.80.

26 Carsten Lutz and Frank Wolter. On the Relationship between Consistent Query Answering
and Constraint Satisfaction Problems. In ICDT, pages 363–379, 2015. doi:10.4230/LIPIcs.
ICDT.2015.363.

27 Mónica Caniupán Marileo and Leopoldo E. Bertossi. The consistency extractor system: Answer
set programs for consistent query answering in databases. Data Knowl. Eng., 69(6):545–572,
2010. doi:10.1016/j.datak.2010.01.005.

28 Dany Maslowski and Jef Wijsen. A dichotomy in the complexity of counting database repairs.
J. Comput. Syst. Sci., 79(6):958–983, 2013. doi:10.1016/j.jcss.2013.01.011.

29 Dany Maslowski and Jef Wijsen. Counting Database Repairs that Satisfy Conjunctive Queries
with Self-Joins. In ICDT, pages 155–164, 2014. doi:10.5441/002/icdt.2014.18.

30 Fabian Pijcke. Theoretical and Practical Methods for Consistent Query Answering in the
Relational Data Model. PhD thesis, University of Mons, 2018.

31 Piotr Przymus, Aleksandra Boniewicz, Marta Burzanska, and Krzysztof Stencel. Recursive
Query Facilities in Relational Databases: A Survey. In FGIT, pages 89–99, 2010. doi:
10.1007/978-3-642-17622-7_10.

32 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, 2008.
doi:10.1145/1391289.1391291.

33 Jef Wijsen. On the first-order expressibility of computing certain answers to conjunctive queries
over uncertain databases. In PODS, pages 179–190, 2010. doi:10.1145/1807085.1807111.

34 Jef Wijsen. Certain conjunctive query answering in first-order logic. ACM Trans. Database
Syst., 37(2):9:1–9:35, 2012. doi:10.1145/2188349.2188351.

35 Jef Wijsen. A Survey of the Data Complexity of Consistent Query Answering under Key
Constraints. In FoIKS, pages 62–78, 2014. doi:10.1007/978-3-319-04939-7_2.

ICDT 2019

http://dx.doi.org/10.1137/1.9781611975031.80
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.363
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.363
http://dx.doi.org/10.1016/j.datak.2010.01.005
http://dx.doi.org/10.1016/j.jcss.2013.01.011
http://dx.doi.org/10.5441/002/icdt.2014.18
http://dx.doi.org/10.1007/978-3-642-17622-7_10
http://dx.doi.org/10.1007/978-3-642-17622-7_10
http://dx.doi.org/10.1145/1391289.1391291
http://dx.doi.org/10.1145/1807085.1807111
http://dx.doi.org/10.1145/2188349.2188351
http://dx.doi.org/10.1007/978-3-319-04939-7_2

	Motivation
	Related Work
	Preliminaries
	The Main Theorem and an Informal Guide of its Proof
	Saturated Queries
	M-Graphs and hookrightarrow-Graphs
	Garbage Sets
	Garbage Sets for M-Cycles
	Characterizing Garbage Sets for M-Cycles
	Computing Garbage Sets for M-Cycles
	Elimination of M-Cycles

	Joins on Primary Keys
	Conclusion

