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—— Abstract

The chase has become a staple of modern database theory with applications in data integration,
query optimisation, data exchange, ontology-based query answering, and many other areas. Most
application scenarios and implementations require the chase to terminate and produce a finite
universal model, and a large arsenal of sufficient termination criteria is available to guarantee this
(generally undecidable) condition. In this invited tutorial, we therefore ask about the expressive
power of logical theories for which the chase terminates. Specifically, which database properties
can be recognised by such theories, i.e., which Boolean queries can they realise? For the skolem
(semi-oblivious) chase, and almost any known termination criterion, this expressivity is just that of
plain Datalog. Surprisingly, this limitation of most prior research does not apply to the chase in
general. Indeed, we show that standard—chase terminating theories can realise queries with data
complexities ranging from PTIME to non-elementary that are out of reach for the terminating skolem
chase. A “Datalog-first” standard chase that prioritises applications of rules without existential
quantifiers makes modelling simpler — and we conjecture: computationally more efficient. This is
one of the many open questions raised by our insights, and we conclude with an outlook on the
research opportunities in this area.
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1 Introduction

Forty years ago, the first versions of the chase algorithm were developed, initially as a way of
deciding implication problems of specific classes of dependencies [26, 2], and soon thereafter
as a proof system for the more general (and undecidable) case of tuple-generating and equality-
generating dependencies (TGDs and EGDs) [6, 7]. As of today, the chase is understood
as an iterative method for constructing universal models of Horn logic theories [19], which
corresponds to the computation of most general solutions to logical entailment problems. Such
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universal solutions have many natural applications in data integration, query optimisation,
data exchange, and query answering under constraints. The re-discovery of TGDs as
existential rules, and their application to ontological modelling and knowledge representation
has motivated many further studies [3, 11, 15].

Of course, our practical interest is usually in cases where the chase terminates and the
resulting model is therefore finite, corresponding to a database that has been “repaired” to
satisfy the given dependencies. Unfortunately, chase termination is undecidable, no matter if
we ask for the termination on a particular database [7] or for “universal” termination on all
databases [22, 23]. Nonetheless, practical implementations of chase procedures have been
successfully applied in many contexts [21, 4, 9, 8, 35]. It is then up to the user to provide
terminating inputs, and this is facilitated by many decidable sufficient criteria for ensuring
chase termination, which have been developed for this purpose [20, 27, 3, 25, 15, 12].

This brings up a natural question: given an efficient practical implementation of some
variant of the chase, what computational problems can we solve with it? That is: what is
the expressive power of logical theories for which the chase terminates? To answer this, we
first need to clarify what the input is: the theory and database, or merely the database while
the theory is fixed? These two views can be associated with traditional perspectives from
formerly separated and now converging fields of computer science [31]. The first perspective
is that of knowledge representation, where logical theories (“ontologies”) are exchanged and
combined, and reasoning over such theories is necessary to access the encoded knowledge.

The second perspective is common in database theory, where theories are comparatively
small and static, whereas databases are large and dynamic. This is also reflected in many
current chase implementations, which treat logical theories as “programs,” usually in a
tool-specific format that prevents any kind of interchange, while supporting data-level
interoperability with standard sources (such as relational DBMS or RDF stores). The
data-centric view is also taken by most studies on termination criteria, which aim to identify
theories for which the chase will terminate with every database instance.

We can therefore specify our question as follows: what is the expressivity of logical
theories for which the chase terminates on all database instances? Surprisingly little is known
about this, and what we can conclude from previous results is thoroughly disappointing:
if our chase variant is the skolem (a.k.a. semi-oblivious) chase, expressivity is essentially
limited to traditional Datalog [27, 25, 36]. The vast majority of known termination criteria
applies to the skolem chase [15], and is therefore facing the same limitations. In spite of the
significant challenges that existential quantifiers introduce to rule-based reasoning, it seems
that our current approaches to ensuring decidability cannot offer substantial advantages
regarding the problems that one can solve in practice.

Surprisingly, this apparent weakness of the chase is specific to the skolem chase and the
termination criteria that are tailored to this variant. We show this by demonstrating

1. that there are PTIME decision problems that are not expressible in Datalog, and hence
neither via terminating skolem chase, but that can be solved in the terminating standard
(a.k.a. restricted) chase, and

2. that the terminating standard chase can solve decision problems of non-elementary (data)
complexity, whereas Datalog and the skolem chase have PTIME data complexity.

Therefore, the standard chase is superior to the skolem chase regarding tractable as well as

highly complex computations. Each implementation of this algorithm inherits this power —

as long as one is willing to give up the restriction to skolem-chase terminating theories.
As another contribution, we investigate a particularly natural class of chase strategies,
where Datalog rules (containing no existential quantification) are always applied before any
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true existential rule. This Datalog-first strategy simplifies the construction of universally
terminating theories, and in fact is the only variant of the chase for which we could solve
decision problems as in (1) in polynomial time. Although we give an encoding of (1) that
terminates in the standard chase, this might require exponentially many steps (in spite of
the query describing a property of databases recognizable in PTIME).

A major consequence of our study is that focussing research activities related to chase
termination on the skolem chase is arguably too restrictive, since one relinquishes significant
expressive power when doing so. This insight is complemented by recent empirical studies
proving the standard chase almost always more efficient in practical implementations [8, 35].
This might be surprising, given that a standard chase step is computationally more demanding
[23]; but the reduction in redundant computation seems to compensate for this cost even in
cases where termination does not rely on it. Shifting the focus away from the skolem chase
also reveals how little we know about more complex chase variants, and raises a number of
open questions for future research.

After a quick overview of preliminary definitions (Section 2), we review several important
chase variants (Section 3), and the state of the art regarding their termination (Section 4).
Thereafter, we make the previously established expressive limits of the skolem chase explicit
(Section 5). We then continue to demonstrate that these limits can be overcome both on
queries in PTIME (Section 6) and on queries of considerably higher complexity (Section 7).
We conclude with an overview of open questions and conjectures (Section 8).

2 Preliminaries

We briefly introduce the necessary concepts and terminology. For a more thorough introduc-
tion, we refer to [1, 14]. We construct expressions from countably infinite, mutually disjoint
sets V of variables, F of (skolem) function symbols, N of labelled nulls, and R of relation
names. Each function or relation name s € FUR has an arity ar(s) > 0. Function symbols
of arity 0 are constants, and we set C := {c € F | ar(c) = 0}. Terms are either elements of
V UN U C, or, recursively, expressions f(t1, ...,t,) with f € F, ar(f) =n, and t1,...,t,
terms. We generally use £ to denote a list Z1,...,%4 of terms, and similar for special types of
terms. An atomn is an expression r(t) with » € R, t a list of terms, and ar(r) = |¢|. Ground
terms or atoms contain neither variables nor nulls.

Rules and queries. An ezistential rule (or just rule) p is a formula

p=Vz,y. plz,y] = 3z. Y[y, 2], (1)

where ¢ and 1 are conjunctions of atoms using only terms from C or from the mutually
disjoint lists of variables x,y,z C V. We call ¢ the body (denoted body(p)), 1 the head
(denoted head(p)), and y the frontier of p. We often treat conjunctions of atoms like sets, and
omit the universal quantifiers in rules. A rule is Datalog if it has no existential quantifiers.
A conjunctive query (CQ) ¢[x] with free variables x is a formula Jy.[x, y|, where ¢ is a
conjunction of atoms using only constants and variables from x Uy. A boolean conjunctive
query (BCQ) is a CQ without free variables. Since CQ answering and BC(Q answering are
polynomially reducible to one another [3], we restrict our attention to BCQs.

Databases and morphism. A database T is a set of atoms without variables. A concrete
database D is a finite database without function symbols, except for constants. Given a
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set of atoms A and database Z, a homomorphism h : A — T is a function that maps the
terms occurring in A to (the variable-free) terms occurring in Z, such that: (i) for all f € F:
R(f(t)) = f(h(t)); (i) for all » € R: if r(¢) € A, then r(h(t)) € Z, where h(t) is the list of
h-images of the terms t. A homomorphism h is strong if r(t) € A < r(h(t)) € T for all
r € R, and an embedding if it is strong and injective.

Semantics of rules and queries. A match of a rule p in a database Z is a function h from
the universally quantified variables of p to Z that restricts to a homomorphism body(p) — Z.!
A match h of p in T is satisfied if there is a homomorphism A’ : head(p) — Z that agrees
with A on all frontier variables. Rule p is satisfied by Z, written Z = p, if every match
of p in 7 is satisfied. A set of rules X is satisfied by Z, written Z = X, if Z |= p for all
p € ¥. We may treat a concrete database D as sets of rules with empty bodies (also called
facts), and write, e.g., T = D, X to express that Z = ¥ and D C Z. In this case, Z is a
model of ¥ and D. A BCQ ¢ = Jx.p[x] is satisfied by a database Z, written Z [ ¢, if
there is a homomorphism @[] — Z; it is entailed by a concrete database D and rule set
Y, written D, X |= ¢, if Z = ¢ for every Z with Z = D, ¥ (note that for empty rule sets,
satisfaction coincides with entailment). Since homomorphisms are closed under composition,
the existence of homomorphisms ¢ — Z and Z — J implies that ¢ is satisfied by [J: the set
of databases that satisfy a BCQ is closed under homomorphisms.

Expressivity. When discussing expressivity of query languages, it is convenient to have
an abstract notion of (boolean) queries. An abstract query over a given finite signature
REPB C R of so-called extensional database relations is a set © of concrete databases over
RFEPE. We say that a given set of rules ¥ and BCQ ¢ realise ® if for every database D over
REPE holds D, ¥ |= ¢ exactly if D € D. Note that ¥ and ¢ can make use of other (so-called
intensional database) relations not in REPE. This notion of query realisation allows us to
focus on input databases which are “well-formed” in terms of the relation names used.

For an arbitrary set of rules X, checking D, ¥ = ¢ is undecidable, however, the set
{D | D,¥ E ¢} is recursively enumerable and closed under homomorphisms. In fact, for
every homomorphism-closed, recursively enumerable abstract query ®, there exist ¥ and ¢
that realise © [32].

3 Universal Models and the Chase

BCQ entailment (and CQ answering) can be solved by computing universal models [19]. A
model Z of a set of rules ¥ is universal if it admits a homomorphism h : Z — J to every model
J of 3. Due to closure under homomorphisms, BCQs that are entailed by a universal model
are entailed by every model. Since the converse is also true, universal models characterise
BCQ entailment.? For this reason (among others), many algorithms for computing universal
models have been developed. Their basic approach, known as the chase, is to construct such
models bottom-up by applying rules to facts. We consider several variants of this approach:
the standard (a.k.a. restricted) chase [20], the skolem (a.k.a. semi-oblivious) chase [27], and
the core chase [19].

L If all frontier variables occur in body atoms (i.e., the rule is safe), h is a homomorphism body(p) — T
itself; the chosen definition accommodates the possibility of unsafe rules.

2 'We remark that universal models are generally neither unique, nor the only models that characterise
BCQ entailment (see [13] for some discussion).



M. Krotzsch, M. Marx, and S. Rudolph

We first define the standard and skolem chases. For a rule p of form (1), the skolemised
rule sk(p) is [z, y] = Y[y, t:], where Y[y, t,] is obtained from [y, z] by replacing each
variable z € z with a skolem term f(y) using a fresh skolem function symbol f. Notions
that were defined for existential rules naturally extend to skolemised rules. For uniformity,
the next definition also treats skolemised rules as formulas of the form (1), where z is empty
and ¢ may contain functions instead.

» Definition 1. A chase sequence for a concrete database D and a set of existential or
skolemised rules ¥ is a potentially infinite sequence D°, D', ... such that
(1) D° =D;
(2) for every D' with i > 0, there is a match h for some rule p = plz,y] — Jz.4bly,z] € X
in D such that
a. h is an unsatisfied match in D* (i.e., h cannot be extended to a homomorphism
Y — DY), and
b. DL = DU (y), b (2)], where b’ : ) — D't is such that W' (y) = h(y) for all
y €y, and for all z € z, W' (2) € N is a distinct labelled null that does not occur in
D' (in particular, h is a satisfied match in D**1).
(3) if h is a match for a rule p € X and D* (i > 0), then there is j > i such that h is satisfied
in D’ (fairness).

The chase for such a chase sequence is the database | J;~ Dl

Note that this definition allows individual rule applications to occur in any (fair) order,
and in particular does not require that all matches for a rule are processed together. This
generality makes sense to cover all current implementations, some of which deploy parallelised,
streaming rule applications that might result in such an interleaved derivation order [30].

Given a set X of existential rules, a chase for ¥ is called standard chase, and a chase for
sk(X) is called skolem chase. A Datalog-first chase is a standard chase where non-Datalog
rules are applied in step (2) only if all matches for Datalog rules in D~! are satisfied.
Standard and Datalog-first chases might not be unique, due to the dependence of condition
(2.a) on the order of rule applications, i.e., on the chase strategy.

» Example 2. Consider the concrete database r(a,b) and the rules

r(z,y) = Jvr(y,v) (2)
r(@,y) = (Y, y) (3)

In the standard chase, we can apply rule (2) with the match {z — a,y — b} to derive
r(b,n1), where n; is a new null. Applying (3) to {x — a,y — b} yields r(b, ), which would
have blocked the first rule application if it had been computed earlier. Depending on the
order of further rule applications in the given strategy, the standard chase might terminate
after arbitrarily many steps, or fail to terminate altogether. In contrast, the Datalog-first
chase prioritises (3), and therefore terminates with the model {r(a,b),r(b,b)}. Regarding the
entailed BCQs, all of these results (including the infinite r-chain with loops) are equivalent.

The Datalog-first chase restricts to a sensible class of strategies, but it does not free
the chase from its dependence on a selected strategy. For example, standard and Datalog-
first chases coincide whenever there are no Datalog rules, which is easy to achieve by
extending rule heads with redundant existential statements, e.g., we could replace (3) by
r(z,y) = Jvr(y,y) Ar(z,v). In contrast, the skolem chase is always unique, since (2.a) is
equivalent to ¥[h(y)] € D*~! in this case.
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» Example 3. Skolemising Example 2, rule (2) turns into 7(x,y) — r(y, f(y)) for some skolem
function f. The skolem chase is the infinite database {r(a,b),r(b,b), (b, f (b)), r(f(b), f (b)),

r(f(0), F(f(0)));---}-

Further variations of these chases have been defined in the literature [8]. For example,
the parallel chase computes D! from D! by considering all matches (w.r.t. D) in step (2).
Dt then contains new derivations from many rule applications, even if some of them could
have prevented the application of others. The I-parallel chase is similar, but only considers
the matches of one rule in each step. These modifications lead to variants of the standard
and Datalog-first chase, but do not affect the skolem chase.

An important extension of the parallel standard chase is the core chase, where the
database is reduced to a core after each derivation step [19]. A database T is a core if
every homomorphism h : Z — 7 is an embedding. Given a database J, a core of J
is a core obtained by restricting J to its image under some appropriate homomorphism
h:J — J [24, 5]. Every finite database D has a unique core (up to isomorphism),® which
we denote by core(D).

» Definition 4. A core chase sequence for a concrete database D and a set of existential
rules ¥ is a mazimal sequence D = DO, DL, ..., such that D' is not isomorphic to D'T' and
D! = core(X(D?)), where X(D?) is the result of applying all rules p € ¥ that have a match
for D' as in step (2) of Definition 1. If this sequence is finite, then its final element D’ is
the core chase, which is then unique up to isomorphism.

The key advantage of this more complex algorithm is that it characterises when a set of
rules admits a finite universal model over a given database:

» Theorem 5 ([19]). A concrete database D and a set of existential rules ¥ admit a finite
universal model if and only if the core chase terminates (producing such a model).

4 Chase Termination

In practice, we are particularly interested in cases where the chase produces a finite universal
model. In this section, we discuss this situation and review several criteria for recognising it
effectively. We start by defining the most important types of termination.

Let ¥ be a set of existential rules and a concrete database D. ¥ has an all-strategies
terminating standard chase on D if all chase sequences for 3 and D are finite. Adopting
notation of Grahne and Onet [23], we write CT%‘@ for the class of all such rule sets. Analogously,
CT%‘; denotes the class of all Datalog-first terminating rule sets. These notions can be
generalised to require all-instances termination:* CT5g = (N, CT5y, and CTY = Np CTHE.
For the skolem chase and for the core chase, the chosen strategy does not affect termination,
hence we simplify notation and write CT% and CTffk, respectively, and similarly for the core
chase. Tt is known that CTS ¢ CTS < CTS™ [23], and it is similarly easy to see that we
also have CTSY ¢ CTH < €T,

Termination is generally undecidable, often not even recursively enumerable [22, 23],° but
many sufficient criteria have been proposed. Most existing works give criteria for inclusion in

3 Infinite databases can have several non-isomorphic cores, or none at all [13].

4 Note that this includes instances D that do not only contain extensional database relations, i.e.,
termination is also required if the input database is not “well-formed.”

5 For the Datalog-first chase, one can reduce from the undecidable termination problems for the standard
chase by extending Datalog rules with irrelevant existential quantifiers.
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CTSVk [20, 27, 28, 25, 3, 15], and some can also be used for data-dependent classes CT% [28, 15].
Comparatively few works propose criteria that exploit the better termination behaviour of
the standard chase [19, 28, 12]. We give a more detailed overview below.

Recent works established the decidability of termination for syntactically restricted classes
of rules: CTS is decidable on sticky rules [10], while CTSY is decidable on linear rules [29]
and also on guarded rules [34]. An even stronger notion than all-instances termination is
k-boundedness, which requires that any fact in the chase can be derived by at most k rule
applications. This criterion is known to be decidable for skolem and standard chase [18].

4.1 Termination of the Skolem Chase

In general, the question “3 € CT%‘?” is clearly semi-decidable by simply running the chase,
ie., CTSDk is recursively enumerable. Marnette observed that all-instance termination can be
reduced to this special case by considering what he called the critical instance [27].

» Definition 6. Let ¥ be a rule set, and denote by const(X) the sets of constants occurring in
Y. The critical instance for ¥ is the concrete database D* consisting of all atoms of form r(t),
where 1 is a relation name occurring in X and t is a list of constants from {*} U const(X),
with % a fresh constant. By a slight abuse of notation, we write CTS%. for the class of all rule
sets for which the skolem chase on their respective critical instance terminates.

» Theorem 7 ([27]). CT%. = CTS<.

Therefore, CTS\;k is recursively enumerable, and, moreover, any technique for establishing
skolem-chase termination on a specific instance can be used to establish all-instance termina-
tion. Many such techniques have been proposed. We can readily turn the chase itself into a
decidable termination criterion if we ensure that the computation will halt even if the chase
does not terminate. For example, we can stop the skolem chase when a cyclic skolem term
occurs, i.e., a term of the form f(¢1,...,t,) where f also occurs in some ¢;. This termination
criterion was called MFA (model-faithful acyclicity) and yields one of the largest decidable
classes of skolem-chase terminating rules known today [15].

MFA is decidable but 2ExXPTIME-complete, and the chase might become double exponen-
tial before a cyclic term occurs. Many easier-to-check criteria are obtained by abstracting
from the exact chase sequence and adapting the notion of cycle accordingly. If we identify
terms that use the same outermost function symbol (equivalently: replace skolem terms by
constants), we obtain MSA (model-summarising acyclicity), which is EXPTIME-complete [15].
Super-weak acyclicity (SWA) [27] and joint acyclicity (JA) [25] replace terms by places and
positions, respectively, both of which describe terms based on the general shape of inferred
facts they might occur in. These possible facts can be (over-)estimated in polynomial time,
and both criteria are PTIME-complete. Even simpler — namely NL-complete — is weak-
acyclicity (WA), which over-estimates term propagation by solving a reachability problem
[20]. In terms of generality, the notions form a total order:

WA C JA ¢ SWA € MSA C MFA c CT3

Another way of abstracting MFA is to consider dependencies among rules instead of propaga-
tion of terms, i.e., we ask whether the conclusion produced by one rule might make another
rule applicable. Termination is guaranteed if we thus obtain an acyclic graph of rule depend-
encies [3]. While subsumed by MFA, this NP-complete criterion is incomparable to other
term-based notions [15]. Various kinds of dependencies of rules can be used to decompose
rule sets into strata, which can then be analysed independently for termination [19, 28, 3].
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Other sufficient criteria for skolem-chase termination were proposed. However, to the
best of our knowledge, our listing includes all of the best-performing basic proposals in terms
of complexity /expressivity trade-off.®

4.2 Termination of the Standard and Core Chase

Much less is known for the standard chase. Skolem chase termination yields a sufficient
condition, since CTf,k C CTsvts, but very few criteria take advantage of the standard chase’s
stronger inclination to terminate. Deutsch et al. define rule dependencies that are specific to
the standard chase [19], and obtain a criterion for all-instances termination of the standard
chase under some strategies. A corrected version that works for all strategies was proposed
by Meier et al. [28].

These early dependency-based termination conditions were combined with weak acyclicity,
i.e., term-level cycle detection remained confined to conditions for CT;k. The difficulty is that
the critical instance can no longer be used to detect universal termination, since the standard
chase always terminates on this instance. More generally, the set of databases on which the
standard chase with a given rule set terminates is no longer closed under homomorphisms —
adding more facts may lead to termination.

Carral et al. recently proposed a way of approaching this problem [12]. Their notions
of restricted JA (RJA) and restricted MFA (RMFA) show membership in CT®), i.e., for
arbitrary instances and Datalog-first strategies, while also covering rule sets that are not in
CTS (or CTY). The essential idea for RMFA is to perform a modified skolem chase that,
like MFA, starts from the critical instance and checks for cyclic terms. However, a match
of a skolem rule is only applied after verifying that the match is not necessarily satisfied
in all Datalog-first chase sequences. To this end, rule applications are retraced to find the
most general set of facts from which the considered rule match can follow — a “universal
premise” of the match that has a homomorphism into any chase where this match occurs.
The Datalog-first strategy is honoured by further closing these facts under the given Datalog
rules. If the match is satisfied by this Datalog-closed, universal premise, then the match is
blocked and will not be used. The approach for RJA uses a similar block check to restrict
the estimated propagation of terms along positions in JA.

It is easy to generalise RMFA and RJA to arbitrary (not necessarily Datalog-first)
strategies by simply omitting the closure under Datalog rules. However, the wider practical
applicability shown empirically by Carral et al. often hinges on the presence of Datalog rules
that make the use of other existential rules obsolete.

For the core chase, due to Theorem 5, termination criteria correspond to general criteria
for showing that a rule set has a finite universal model. We are not aware of any specific

criteria that were proposed for this case while covering cases that are not in CTff\‘j.

5 The Weakness of the Terminating Skolem Chase

Already when Marnette first proposed the skolem chase, he observed an important feature
that is tied to its all-instances termination: the size of the chase of any rule set in CTffk is
polynomial in the size of the underlying concrete database [27]. It follows that the data
complexity of BCQ answering over CTf,k is in PTIME, but also that CTSVk is inherently limited

6 There can be no “most general termination criterion” for any complexity class that is closed under finite
variations, so “best-performing” can only refer to empirical coverage of rule sets found in practice [15].
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in terms of its expressive power. In this section, we elaborate on this limitation and relate
it to more recent insights on the expressivity limits of Datalog. Let us start by explaining
Marnette’s result:

» Theorem 8 ([27]). For every ¥ € CTS and concrete database D, the skolem chase over X
and D is polynomial in the size of D. The data complexity of BCQ entailment over CTS‘Vk 18
PTIME-complete.

Proof. We expand on the idea underlying the use of the critical instance in Theorem 7.
Let chases (X, D) denote the skolem chase over ¥ and D. For any concrete database D, let
h : D — D* be the unique mapping that (i) is identical on const(X), (ii) maps all other
constants to *, and (iii) satisfies h(f(t)) = f(h(t)) for all f € F with ar(f) > 1. Then
h extends to a mapping h’ : chasey (3, D) — chasew (X, D*) satisfying (i)—(iii), as is easy
to show by induction along the length of the chase sequence. In particular, chaseg (3, D)
contains only terms for which a term of the same nesting structure occurs in chaseg (X, D*).
The number k& of distinct terms in chaseg (3, D*) is finite, and there is a largest number
£ of occurrences of constants in these terms. Therefore, if D contains n distinct nulls and
constants, and relation names of arity < a, then chasey (X, D) contains < kn® terms and
< (kn®)® facts, which is polynomial in n. The number of possible matches of any rule body
likewise is polynomial in n, and chaseg (2, D) can therefore be computed in polynomial time.
PTiME-hardness follows from the known data complexity of Datalog. <

Theorem 8 already establishes that rule sets in CTSVk cannot express properties that are
not in PTIME, such as defining an EXPTIME-hard set of concrete databases. However, we can
obtain even tighter limits. Krétzsch and Rudolph define a transformation from jointly acyclic
rule sets (a subset of CTS) to Datalog that preserves entailment of (similarly rewritten)
BCQs [25]. Zhang et al. observed that this idea generalises to all of CTS and that BCQ
rewriting is not necessary if we allow for a set of weakly acyclic “output” rules on top of
Datalog [36]. In summary, we find that CTffk has the same expressivity as Datalog:

» Theorem 9. For every ¥ € CTffk and BCQ q, there is a set of Datalog rules X' and BCQ
q such that {D | D, X = q} =4{D | D, %Y ¢}

Proof sketch. As observed in the proof of Theorem 8, the size of terms occurring in any
chase of ¥ is bounded. We can therefore encode terms as bounded-length lists of elements
(that occur as leaves in the term tree), new auxiliary constants (to encode function symbols of
arity > 1), and the special constant OJ (to fill unused positions in a list). If the maximal arity
of skolem functions is £ and the maximal nesting depth of functions in the critical-instance
chase is ¢, then each term can be represented as a list of k* + k=1 +1 elements (corresponding
to the total number of leaves and inner nodes of a tree of depth ¢ and branching factor
k). For example, if £ = 2 and ¢ = 2, then the fact p(f(a,g(b))) can be “flattened” to
p(f,a,0,0,g,b,0). It is not hard to modify all (skolemised) rules accordingly. <

It is clear that CT‘@k does not capture PTIME (since existential rules can only express
properties that are preserved under homomorphisms), but Theorem 9 further confines CTS\;k
to the expressiveness boundaries of Datalog, which cannot even express every homomorphism-
closed Boolean query in PTIME. Dawar and Kreutzer show that the following query cannot
be realised by Datalog [17]:

» Definition 10. Consider the following decision problem:

Input: A directed graph G with two distinguished vertices s and t

n2
Question: Is G cyclic, or is there a simple path from s to t of length 22" for some n € N?
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The DK query ®pk s the abstract Boolean query containing exactly those concrete databases
that encode an instance of this decision problem using a binary relation edge and constant
symbols s and t.

Dpk is closed under homomorphisms: homomorphisms preserve cycles, and simple paths
are either preserved or mapped to sub-structures with cycles. Moreover, the DK query can
be checked in polynomial time, where we note that the length of any simple path is at most
linear in the size of the input. Therefore, since the DK query is not expressible in Datalog
[17], Theorem 9 implies that there are homomorphism-closed PTIME queries that cannot be
expressed in CTS

» Theorem 11. The DK query ®pxk is homomorphism-closed and in PTIME, yet it is not
realised by any ¥ € CTY and BCQ q.

6 Beyond the Skolem Chase

Surprisingly, the mechanisms that limit the expressive power of CTf,k are specific to the
skolem chase. Other chase variants are not confined in such ways, and can break both the
PTiMmE-barrier of Theorem 8 and surpass the expressive power of Datalog within PTIME. In
this section, we focus on the latter aspect by discussing several techniques of expressing the
Dawar-Kreutzer query of Definition 10. We start with a result for the Datalog-first chase:

» Theorem 12. There is a rule set 3 € CTdvl\; and BCQ q that realise the DK query.
Moreover, the Datalog-first chase on 3 is polynomial in the size of the input database.

Note that Theorem 12 establishes two independent results: (1) that the terminating
Datalog-first chase is more expressive than the terminating skolem chase even on polynomial-
time queries; and (2) that it will terminate in polynomial time in spite of this increased
expressivity. For the standard chase, we will also establish property (1), but we conjecture
that (2) cannot be attained.

Proof of Theorem 12. Inspired by a technique from Rudolph and Thomazo [33], we provide
a rule set X € CTdvl\g with the required properties in Figure 1, where the corresponding BCQ
is goal (a query with a nullary relation name). The first group of rules (4)—(6) computes
the transitive closure path of edge, and derives goal if there is a cycle.

Rules (7)—(16) check for the other condition of the DK query by measuring the length
of paths from s to t. We define an initial zero element (7) and assign it to measure the
distance of s from itself (8). Representatives of numbers larger than zero are created by
adding successors (9), used in rule (10) to measure the s-distance of further vertices reached
via edge. Note that a vertex might be assigned more than one distance if it is reachable
through paths of different lengths. Two details are significant: (i) successors are only created
for elements that are already used as distances (9), which ensures that the creation of
successors terminates naturally in acyclic graphs; and (ii) establishing the relation of vertices
to distances in rule (10) is independent of the creation of new successor elements in (9),
which ensures that succ forms a unique chain, used globally to measure distances. Together,
(i) and (ii) imply that only a linear number of new elements are created in acyclic graphs,
even though such graphs might contain an exponential number of distinct paths.

Using the linear order of succ, rules (11)—(15) axiomatise arithmetic relationships in
the usual way. Relation names have the expected intended meaning: add(z,y,z) means
“r+y=2" mul(x,y,z) means “z*xy = 2", and exp(x,y) means “2* = y.” Finally, rule (16)
derives goal if an s—t path of the required length is discovered.



M. Krotzsch, M. Marx, and S. Rudolph

edge(v1,v2) — path(vy, va) 4

edge(v1, v2) A path(vg,v3) — path(vy, v3) (5
path(v,v) — goal (6

— dx.zero(x) (7

zero(z) — dist(s,x) (8

9

dist(v,z) — 32’ .succ(x,z’)
)

dist(vi,x1) A edge(vy,va) A succ(xy,xo) — dist(ve, z2)

zero(z) A dist(v,y) — add(x,y,y) Amul(z,y, )

add(z,y, z) A succ(z,z') A succ(z,2') — add(2’,y, 2')
/

!/

zero(z) A succ(x,x’) — exp

)

7:I’J
")

(

(
mul(z,y, 2) A succ(x, ') A add(z,y,2") — mul(z’,y, 2’)
) (z
exp(z,y) A succ(z,z’) Aadd(y,y,y’) — exp(z
mul(x,z,y) A exp(y,y’) A exp(y’,2) Adist(t, z) — goal

dist(v,z) A goal — succ(z, )

Figure 1 Rule set in CTY, that expresses the DK query, with termination guaranteed after
polynomially many chase steps.

As argued above, the rules terminate polynomially on acyclic graphs (even when using
the skolem chase). If there are cycles, however, paths can be of unbounded length, leading to
a non-terminating creation of successor elements in (9). This is prevented by rule (17), which
entails succ-loops on all distances once goal was derived, thus blocking further applications
of (9) in the standard chase. In the Datalog-first chase, cycles will be detected before creating
any elements, and succ-loops are established before considering (9). Therefore, this chase
terminates after polynomially many steps on cyclic graphs as well. |

Although the rules of Figure 1 are in CT@@, they do not fall into the RMFA fragment of
Carral et al. [12]. Indeed, we obtain termination by a case distinction: either the graph is
cyclic and existential rules will be blocked, or the graph is acyclic and existential rules will
apply at most once for each vertex. It is open how this type of reasoning by cases can be
integrated into practical termination criteria.

Also note that the rules of Figure 1 are neither in CTSVk nor in CTSVt\;j. The skolem chase
produces an infinite succ-chain if an edge-cycle is reachable from s, and rule (17) cannot
prevent the application of rule (9) in this chase. The standard chase does have the ability to
block rule (9), but it fails to do so if its strategy is to apply rule (9) before rule (17).

Indeed, our rule (17) effectively acts as an “emergency break” for the chase. Similar
devices were considered before. Grahne and Onet introduce so-called denial constraints, which
are rules that, when applied, stop the chase immediately [23]. Gogacz and Marcinkowski
observe that this is also achievable with regular rules in the style of (17), which they call
flooding rules [22]. This approach is strategy-dependent since it requires that the “break” is
triggered eagerly before creating further unnecessary elements.

Can we modify Figure 1 to work for the standard chase? Even with arbitrary strategies,
we require fairness, so all rule matches must eventually be satisfied. This is not enough,
however, since rule (17) has an unbounded number of matches that could all be satisfied
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— Jx.zero(x) (21)

zero(z) — dist(s,z) A ins(s,z,z) A done(z) (22)

dist(v1, z1) A edge(vy,v2) A done(x1) — Jxo.ins(ve, 21, x2) A subset(za, x2) (23)
subset(xy, z2) A ins(v, xg, 1) — ins(v, x2,x2) A subset(zg, z2) (24)

subset(z1, x2) A zero(x1) — ins(s,x2,z3) A done(zs) (25)

dist(v1, z1) A edge(v1, v2) A ins(ve, 21, x2) — dist(vs, x2) A succ(xy, z2) (26)

Figure 2 Rules for creating sets of vertices to represent simple paths.

too late. An all-strategies terminating version can be obtained by modifying (17) to require
only a single satisfied match to halt all computation globally. To this end, we introduce two
new unary relation names block and real, remove the rules (9) and (17), add new rules:

— Jdx.block(z) A succ(x, x) (18)
dist(v,z) Ablock(y) — Jz’.succ(z,x’) A real(z’) A succ(z’,y) (19)
block(x) A goal — real(x) (20)

and replace every body atom of the form succ(e, f) with a conjunction succ(e, f) A real(f)
in any of the other rules.

Intuitively, block defines a single element that acts as a universal blocker for all potential
applications of rule (19). However, rules are restricted to work with successors that are
marked as real, which is initially not the case for the blocking element. The block becomes
“real” and therefore effective when rule (20) is applied. In contrast to the earlier version, (20)
only needs to be applied for a single match. By fairness, any cyclic graph will eventually lead
to the derivation of goal and hence to the application of (20). Therefore, the modified rule
set is in CT\S}\g, but there termination can take arbitrarily long depending on the strategy.

This result connects to recent observations of Gogacz et al., who show that fairness is
irrelevant for standard chase termination if all rules have only one atom per rule head [34].
They noted, however, that this no longer holds if rules may have multiple head atoms. Our
construction requires such larger heads in all existential rules that should be affected by the
global blocker, i.e., rule (19) in our example.

We have therefore learned that the standard chase, too, is strictly more expressive than
the skolem chase. We can strengthen this result to obtain an upper bound for the size of the
chase, albeit not a polynomial one:

» Theorem 13. There is a rule set ¥ € CTa9 and BCQ q that realise the DK query.
Moreover, the standard chase on 3 is at most exponential in the size of the input database.

It remains open whether this can be strengthened to obtain a polynomial runtime
guarantee — we conjecture that the exponential increase in effort is unavoidable. Indeed, the
rule set used to show Theorem 13 may result in a chase of exponential size, even when using
the Datalog-first strategy.

Proof of Theorem 13. A bigger change in our original approach is now needed. Instead of
constructing a unique succ-chain to measure distances, we build a tree-like succ-structure
that grows one branch for every s-path, and which stops to grow when encountering cycles.
In other words, every element of the succ-structure represents a simple path. To accomplish
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first(v) — Jx.start(z,z,v) A end(z) (27)

start(x,u,v) A end(u) Anext(v,v") — Iy, ya.start(yr, z,v') A
succ(y1,y2) A end(y2)
— Jy.left(z,y) A start(y,u’,v)

start(z,u,v) A succ(u, v’

left(z,y) — Jy .right(z,y’) A succ(y,y’)

(28)
(29)
(30)
— Iy left(z,y') Asucc(y,y’)  (31)
(32)
(33)
(34)

!/

right(z,y) A succ(z,
end(z) A right(z,
start(z,u,v) A end(u) A last(v) A succ(z,

— end(y)

") = chain(x, z’)

"

)
y)
a’)
y)
)
)

chain(z,2’) A succ(2’,2”) — chain(z’, 2")

Figure 3 Rule set to generate a k-exponentially long chain for the proof of Theorem 14.

this, we associate each element with the set of all vertices that have previously been visited

along this path. The rules (7)—(10) and (17) in Figure 1 are replaced by the rules in Figure 2.

We use facts of the form ins(v,x,y) to express that y is the result of inserting v into the set
x, e, “{v} Uz =y In particular, ins(v, z,x) can be read as “v € x.” Rules (21) and (22)
initialise a zero element to encode {s}. Rule (23) creates a new vertex set when required for
extending a path, where done(x1) asserts that set x; was fully initialised and subset(x1, x2)
states that xo contains all elements of z;. Rules (24) and (25) propagate subset to farther
ancestors while establishing that all previously added vertices are also in the newly created
set. A set is only considered done when when reaching the zero element {s} (25). Finally,
rule (26) uses the vertex sets to measure distances. The resulting succ branches are used as
a basis for arithmetic operations as before, using rules (11)—(16).

At any given intermediate stage of the chase, we can associate any element ¢ with a
set [c] that contains all elements e for which there is a fact ins(e, ¢, ¢). Clearly, the unique
zero element ¢g with zero(cg) satisfies [cg] = {s}. By an easy induction, one can show that
elements ¢, for which done(c,) was derived satisfy the following: there is a unique chain
of facts ins(eq, ¢, ¢1), ..., ins(en, Cn—1, ¢y ) With ¢; # ¢;41, and we have [¢,,] = {s,e1,...€,}
and subset(c;, ¢,) for all 0 < i < n. The existence of these facts implies that a match h of
rule (23) is always satisfied if h(v) € [h(x1)], i.e., the rule can only be used to create strictly
larger sets. Since the size of any set of vertices is bounded by the size of the input, there are
at most exponentially many such elements, even if the graph has cycles.

If the graph is acyclic, then the succ relation forms a tree structure that corresponds to
an unravelling of the directed acyclic graph rooted in s. The distance-related checks work as
in Theorem 12. If the graph is cyclic, then succ might also contain cycles, but is still finite.
Rules (4)—(6) will detect the cycle and lead to acceptance, as required. <

7 Beyond Polynomial Time

After observing the superior expressive power of the standard and Datalog-first chase on
polynomial time problems, we turn to the question of whether one can also express queries of
higher complexity in rule sets that are guaranteed to terminate in these chases. The answer
is a resounding yes:
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» Theorem 14. There is a rule set ¥ € CT@'@ and a BCQ q that express a non-elementary

Boolean query.

Proof. We reduce from the following non-elementary decision problem:

Input: A Turing machine M and a number k R

Question: When started on the empty tape, does M halt in at most 92" steps?

k times

The number & is encoded by input facts first(eg),next(eg,e1),...,next(ex_1,ex), last(eg).
We use the chase to construct a chain of the required k-exponential length. A simulator for
k-exponential Turing machine computations can then be implemented with Datalog rules
using a standard construction [16]. Note that the query result on inputs that do not use the
required encoding (of k or the Turing machine) is irrelevant for hardness; yet we must ensure
that the chase terminates on such inputs.

We first describe the basic construction of the k-exponential chain and discuss ter-
mination later. The rules in Figure 3 produce a series of k full binary trees of depth
1,2,22,222, ... Each tree starts on the second level (containing two elements) and uses
relation names left and right to define a node’s children. Nodes on the same level form a
chain succ(ny, ng), succ(nz,n3), ..., succ(ng_1,n¢); the first element n; is marked by a fact
start(ny, u,v) where u defines the level of the tree, and v defines the number of the tree;
the last element n, is marked by end(ny).

Rule (27) creates a one-element “tree” as a start (not in the above list of k rootless trees).
Rule (28) initialises the first level of the next tree, using the succ-chain of the last level of
the previous tree to count up the levels. Subsequent levels of the tree are initialised by (29)
and completed by rules (30) and (31). The next level’s last element is marked by (32). Rules
(33) and (34) define the last level of the last tree as the required chain.

It is not hard to see that the rules in Figure 3 terminate, even in the skolem chase, if the
next-graph does not have cycles and the database only mentions the relation names first,
next, and last. To ensure termination in case of next-cycles, we can add cycle-detection
rules similar to (4)—(6). To ensure termination on all database instances (i.e., such that
already contain facts using other relation names such as succ or start), we need to detect
similar cyclic arrangements involving succ or start. Termination of the Datalog-first chase
can then be ensured by adding “flooding rules” akin to (17), in this case creating ubiquitous
start, left, right, and succ relations, so as to block rules (28)—(31). <

As discussed in Section 6, the flooding rules used to ensure termination of the Datalog-first
chase can be replaced by introducing a global blocking element that can be activated in a
single rule application when a cycle is detected. Fairness then also ensures the termination
of the standard chase, and we obtain:

» Theorem 15. There is a rule set 3 € CTffg and a BCQ q that express a non-elementary

Boolean query.

It is not difficult to define a fixed next-chain in rules, so as to use a constant tower of k
exponentials instead of a data-dependent one. This yields rule sets that realise k-EXPTIME-
complete queries, which by the Time Hierarchy theorems cannot be realised in (k—1)-
exponential time. This yields the following:

» Theorem 16. The classes of rule sets in CTf}g that terminate after at most k-exponentially

many steps form a hierarchy of strictly increasing expressivity. The same applies to k-

exponentially terminating rule sets in CT,.
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8 Conclusion

We have studied classes CT@M of existential rules for which a certain chase variant x €
{sk, std, dIf, core} terminates on all database instances, and (where applicable) under all
strategies. To review our results, it is meaningful to further distinguish chase termination
classes by upper bounds in terms of the size of the input database. For example, CT@'@(poly)
would denote the subset of CTdvl\; where chase termination is guaranteed after polynomial
time. Now given such a class CT, we investigated the set [CT] of all abstract queries (sets of
concrete databases over an input signature) that can be expressed by some theory from CT.
Using this notation, our main results are as follows:

(Thm 9) k(Thm 12) dif (Thm 16) dif (Thm 16) dif (Thm 14) diF
[Datalog] = [CT] € [CT (poly)] € [CT(exp)] C ... C [U, CTH (k-exp)] € [CTE
(Thm 8) || Ul Ul Ul Ul

(Thm 16) (Thm 16) (Thm 15)

[CT¥ (poly)] € [CTH (poly)] € [CTH (exp)] C ... € [U, CTH(k-exp)] € [CTH

Many further questions remain open, and indicate promising directions for future research:

Absolute expressibility. A terminating chase can only express queries that are decidable
and closed under homomorphism, but we saw that the skolem chase can express much less.
Some of the other chase variants might actually capture this class of queries. Even if not, it
would be interesting to characterise their expressivity semantically.

Relative expressibility. We know that [CTSO] C [CTH] C [CTS™], but it remains open
if any of these inclusions are strict. If some are equalities, it would be interesting to find
computable rewritings that produce rule sets for which a weaker chase terminates.

Complexity relationships. Theorem 13 achieved termination for the standard chase at the
cost of an exponential runtime increase. We conjecture that this is unavoidable, and that
[CTS (poly)] € [CTH(poly)]. Can all queries in [CTS] be implemented in worst-case
optimal time? And can the standard chase express the same queries at an exponential
penalty? Do we even have [CT] # [CTS¢ (poly)]?

Decidable termination criteria. None of our beyond-skolem queries satisfy any of the
known termination criteria. New approaches are needed to encompass our examples.

Termination on restricted database classes. We required termination on all databases,
using databases with restricted EDB signatures only to define query realisation. Requiring
termination only on databases over EDB relations might lead to larger classes of rule sets,
possibly with higher expressivity. This certainly occurs when restricting to specific “well-
formed” instance databases: if we would exclude cyclic databases, even the skolem chase
could express non-elementary queries. However, such restrictions are also enough to capture
all of PTIME (assuming negation and order to be axiomatised), and even unrealistically
powerful classes, such as non-uniform Py -

Practical applications. Practical implementations for standard chase and also for Datalog-
first chase exist, so it is promising to explore the use of beyond-skolem expressive power in
applications. Specific uses could help guide the theoretical research.
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