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Abstract
We consider the problem of incrementally maintaining the triangle count query under single-tuple
updates to the input relations. We introduce an approach that exhibits a space-time tradeoff such
that the space-time product is quadratic in the size of the input database and the update time can
be as low as the square root of this size. This lowest update time is worst-case optimal conditioned
on the Online Matrix-Vector Multiplication conjecture.

The classical and factorized incremental view maintenance approaches are recovered as special
cases of our approach within the space-time tradeoff. In particular, they require linear-time
maintenance under updates, which is suboptimal. Our approach can also count all triangles in a
static database in the worst-case optimal time needed for enumerating them.
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4:2 Counting Triangles under Updates in Worst-Case Optimal Time

1 Introduction

We consider the problem of incrementally maintaining the result of the triangle count query

Q() =
∑

a∈Dom(A)

∑
b∈Dom(B)

∑
c∈Dom(C)

R(a, b) · S(b, c) · T (c, a) (1)

under single-tuple updates to the relations R, S, and T with schemas (A,B), (B,C), and
(C,A), respectively. The relations are given as functions mapping tuples over relation schemas
to tuple multiplicities. A single-tuple update δR = { (α, β) 7→ m } to relation R maps the
tuple (α, β) to a nonzero multiplicity m, which is positive for inserts and negative for deletes.

The triangle query and its counting variant have served as a milestone for worst-case
optimality of join algorithms in the centralized and parallel settings and for randomized
approximation schemes for data processing. They serve as the workhorse showcasing subop-
timality of mainstream join algorithms used currently by virtually all commercial database
systems. For a database D consisting of R, S, and T , standard binary join plans implement-
ing these queries may take O(|D|2) time, yet these queries can be solved in O(|D| 32 ) time [2].
This observation motivated a new line of work on worst-case optimal algorithms for arbitrary
join queries [18]. The triangle query has also served as a yardstick for understanding the
optimal communication cost for parallel query evaluation in the Massively Parallel Commu-
nication model [15]. The triangle count query has witnessed the development of randomized
approximation schemes with increasingly lower time and space requirements, e.g., [9].

A worst-case optimal result for incrementally maintaining the exact triangle count query
has so far not been established. Incremental maintenance algorithms may benefit from a
good range of processing techniques whose flexible combinations may make it harder to
reason about optimality. Such techniques include algorithms for aggregate-join queries with
low complexity developed for the non-incremental case [17]; pre-materialization of views that
reduces maintenance of the query to that of simpler subqueries [14]; and delta processing
that allows to only compute the change in the result instead of the entire result [7].

1.1 Existing Incremental View Maintenance (IVM) Approaches

The problem of incrementally maintaining the triangle count has received a fair amount
of attention. Existing exact approaches require at least linear time in worst case. After
each update to a database D, the naïve approach joins the relations R, S, and T in time
O(|D| 32 ) using a worst-case optimal algorithm [2, 18] and counts the result tuples. The
number of distinct tuples in the result is at most |D| 32 , which is a well-known result by
Loomis and Whitney from 1949 (see recent notes on the history of this result [17]). The
classical first-order IVM [7] computes on the fly a delta query δQ per single-tuple update δR
to relation R (or any other relation) and updates the query result:

δQ() = δR(α, β) ·
∑

c∈Dom(C)

S(β, c) · T (c, α), Q() = Q() + δQ().

The delta computation takes O(|D|) time since it needs to intersect two lists of possibly
linearly many C-values that are paired with β in S and with α in T (i.e., the multiplicity of
such pairs in S and T is nonzero). The recursive IVM [14] speeds up the delta computation
by precomputing three auxiliary views representing the update-independent parts of the
delta queries for updates to R, S, and T :
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VST (b, a) =
∑

c∈Dom(C)

S(b, c) · T (c, a)

VTR(c, b) =
∑

a∈Dom(A)

T (c, a) ·R(a, b)

VRS(a, c) =
∑

b∈Dom(B)

R(a, b) · S(b, c).

These three views take O(|D|2) space but allow to compute the delta query for single-tuple
updates to the input relations in O(1) time. Computing the delta δQ() = δR(α, β) ·VST (β, α)
requires just a constant-time lookup in VST ; however, maintaining the views VRS and VTR,
which refer to R, still requires O(|D|) time. The factorized IVM [19] materializes only one of
the three views, for instance, VST . In this case, the maintenance under updates to R takes
O(1) time, but the maintenance under updates to S and T still takes O(|D|) time.

Further exact IVM approaches focus on acyclic conjunctive queries. For free-connex
acyclic conjunctive queries, the dynamic Yannakakis approach allows for enumeration of
result tuples with constant delay under single-tuple updates [11]. For databases with or
without integrity constraints, it is known that a strict, small subset of the class of acyclic
conjunctive queries admit constant-time update, while all other conjunctive queries have
update times dependent on the size of the input database [4, 5].

Further away from our line of work is the development of dynamic descriptive complexity,
starting with the DynFO complexity class and the much-acclaimed result on FO expressibility
of the maintenance for graph reachability under edge inserts and deletes, cf. a recent
survey [20]. The k-clique query can be maintained under edge inserts by a quantifier-free
update program of arity k − 1 but not of arity k − 2 [22].

A distinct line of work investigates randomized approximation schemes with an arbitrary
relative error for counting triangles in a graph given as a stream of edges, e.g., [3, 12, 6, 16, 8].
Each edge in the data stream corresponds to a tuple insert, and tuple deletes are not
considered. The emphasis of these approaches is on space efficiency, and they express the
space utilization as a function of the number of nodes and edges in the input graph and
of the number of triangles. The space utilization is generally sublinear but may become
superlinear if, for instance, the number of edges is greater than the square root of the number
of triangles. The update time is polylogarithmic in the number of nodes in the graph.

A complementary line of work unveils structure in the PTIME complexity class by giving
lower bounds on the complexity of problems under various conjectures [10, 21].

I Definition 1 (Online Matrix-Vector Multiplication (OMv) [10]). We are given an n × n
Boolean matrix M and receive n column vectors of size n, denoted by v1, . . . ,vn, one by one;
after seeing each vector vi, we output the product Mvi before we see the next vector.

I Conjecture 2 (OMv Conjecture, Theorem 2.4 in [10]). For any γ > 0, there is no algorithm
that solves OMv in time O(n3−γ).

The OMv conjecture has been used to exhibit conditional lower bounds for many dynamic
problems, including those previously based on other popular problems and conjectures,
such as 3SUM and combinatorial Boolean matrix multiplication [10]. This also applies
to our triangle count query: For any γ > 0 and database of domain size n, there is no
algorithm that incrementally maintains the triangle count under single-tuple updates with
arbitrary preprocessing time, O(n1−γ) update time, and O(n2−γ) answer time, unless the
OMv conjecture fails [4].

ICDT 2019
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Figure 1 IVMε’s space and amortized update time parameterized by ε. The classical IVM is
recovered by setting ε ∈ {0, 1}. The factorized IVM is recovered by setting εR ∈ {0, 1}, εS = 0, and
εT = 1 when VST is materialized (similar treatment when VRS or VTR is materialized). For ε = 1

2 ,
IVMε counts all triangles in a static database in the worst-case optimal time for enumerating them.

1.2 Our Contribution
This paper introduces IVMε, an incremental view maintenance approach that maintains the
triangle count in amortized sublinear time. Our main result is as follows:

I Theorem 3. Given a database D and ε ∈ [0, 1], IVMε incrementally maintains the result of
Query (1) under single-tuple updates to D with O(|D| 32 ) preprocessing time, O(|D|max{ε,1−ε})
amortized update time, constant answer time, and O(|D|1+min{ε,1−ε}) space.

The preprocessing time is for computing the triangle count on the initial database before
the updates; if we start with the empty database, then this time is O(1). The IVMε approach
exhibits a tradeoff between space and amortized update time, cf. Figure 1.

IVMε uses a data structure that partitions each input relation into a heavy part and
a light part based on the degrees of data values. The degree of an A-value a in relation
R is the number of B-values paired with a in R. The light part of R consists of all tuples
(a, b) from R such that the degree of a in R is below a certain threshold that depends on
the database size and ε. All other tuples are included in the heavy part of R. Similarly, the
relations S and T are partitioned based on the degrees of B-values in S and C-values in T ,
respectively. The maintenance is adaptive in that it uses different evaluation strategies for
different heavy-light combinations of parts of the input relations that overall keep the update
time sublinear. Section 3 introduces this adaptive maintenance strategy.

As the database evolves under updates, IVMε needs to rebalance the heavy-light partitions
to account for a new database size and updated degrees of data values. While this rebalancing
may take superlinear time, it remains sublinear per single-tuple update. The update time is
therefore amortized. Section 4 discusses the rebalancing strategy of IVMε.

For ε = 1
2 , IVMε achieves the lowest update time O(|D| 12 ) while requiring O(|D| 32 ) space.

This update time is optimal conditioned on the OMv conjecture. For this, we specialize the
lower bound result in [4] to refer to the size |D| of the database:

I Proposition 4. For any γ > 0 and database D, there is no algorithm that incrementally
maintains the result of Query (1) under single-tuple updates to D with arbitrary preprocessing
time, O(|D| 12−γ) amortized update time, and O(|D|1−γ) answer time, unless the OMv
conjecture fails.
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This lower bound is shown in the extended paper [13]. Theorem 3 and Proposition 4
imply that IVMε incrementally maintains the triangle count with optimal update time:

I Corollary 5 (Theorem 3 and Proposition 4). Given a database D, IVMε incrementally
maintains the result of Query (1) under single-tuple updates to D with worst-case optimal
amortized update time O(|D| 12 ) and constant answer time, unless the OMv conjecture fails.

IVMε also applies to triangle count queries with self-joins, such as when maintaining the
count of triangles in a graph given by the edge relation. The space and time complexities are
the same as in Theorem 3 [13].

IVMε defines a continuum of maintenance approaches that exhibit a space-time tradeoff
based on ε. As depicted in Figure 1, the classical first-order IVM and the factorized IVM
are specific extreme points in this continuum. To recover the former, we set ε ∈ {0, 1} for
O(|D|) update time and O(|D|) space for the input relations. To recover the latter, we use a
distinct parameter ε per relation: for example, using εR ∈ {0, 1}, εS = 0, and εT = 1, we
support updates to R in O(1) time and updates to S and T in O(|D|) time; the view VST
takes O(|D|2) space [13].

We observe that at optimality, IVMε recovers the worst-case optimal time O(|D| 32 ) of
non-incremental algorithms for enumerating all triangles [18]. Whereas these algorithms are
monolithic and require processing the input data in bulk and all joins at the same time,
IVMε achieves the same complexity by inserting |D| tuples one at a time in initially empty
relations R, S, and T , and by using standard join plans [13].

2 Preliminaries

Data Model. A schema X is a tuple of variables. Each variable X has a discrete domain
Dom(X) of data values. A tuple x of data values over schema X is an element from
Dom(X) =

∏
X∈X Dom(X). We use uppercase letters for variables and lowercase letters for

data values. Likewise, we use bold uppercase letters for schemas and bold lowercase letters
for tuples of data values.

A relation K over schema X is a function K : Dom(X) → Z mapping tuples over X
to integers such that K(x) 6= 0 for finitely many tuples x. We say that a tuple x is in K,
denoted by x ∈ K, if K(x) 6= 0. The value K(x) represents the multiplicity of x in K. The
size |K| of K is the size of the set {x | x ∈ K}. A database D is a set of relations, and its
size |D| is the sum of the sizes of the relations in D.

Given a tuple x over schema X and a variable X in X, we write x[X] to denote
the value of X in x. For a relation K over X, a variable X in X, and a data value
x ∈ Dom(X), we use σX=xK to denote the set of tuples in K whose X-value is x, that is,
σX=xK = {x | x ∈ K ∧ x[X] = x }. We write πXK to denote the set of X-values in K,
that is, πXK = {x[X] | x ∈ K }.

Query Language. We express queries and view definitions in the language of functional
aggregate queries (FAQ) [1]. Compared to the original FAQ definition that uses several
commutative semirings, we define our queries using the single commutative ring (Z,+, ·, 0, 1)
of integers with the usual addition and multiplication. A query Q has one of the two forms:

1. Given a set {Xi}i∈[n] of variables and an index set S ⊆ [n], let XS denote a tuple (Xi)i∈S
of variables and xS denote a tuple of data values over the schema XS . Then,

Q(x[f ]) =
∑

xf+1∈Dom(Xf+1)

· · ·
∑

xn∈Dom(Xn)

∏
S∈M

KS(xS), where:

ICDT 2019
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M is a multiset of index sets.
For every index set S ∈M, KS : Dom(XS)→ Z is a relation over the schema XS .
X[f ] is the tuple of free variables of Q. The variables Xf+1, . . . , Xn are called bound.

2. Q(x) = Q1(x) +Q2(x), where Q1 and Q2 are queries over the same tuple of free variables.

In the following, we use
∑
xi

as a shorthand for
∑
xi∈Dom(Xi).

Updates and Delta Queries. An update δK to a relation K is a relation over the schema
of K. A single-tuple update, written as δK = {x 7→ m}, maps the tuple x to the nonzero
multiplicity m ∈ Z and any other tuple to 0; that is, |δK| = 1. The data model and query
language make no distinction between inserts and deletes – these are updates represented as
relations in which tuples have positive and negative multiplicities.

Given a query Q and an update δK, the delta query δQ defines the change in the query
result after applying δK to the database. The rules for deriving delta queries follow from
the associativity, commutativity, and distributivity of the ring operations.

Query Q(x) Delta query δQ(x)

Q1(x1) ·Q2(x2) δQ1(x1) ·Q2(x2) +Q1(x1) · δQ2(x2) + δQ1(x1) · δQ2(x2)∑
x
Q1(x1)

∑
x
δQ1(x1)

Q1(x) +Q2(x) δQ1(x) + δQ2(x)
K′(x) δK(x) when K = K′ and 0 otherwise

Computation Time. Our maintenance algorithm takes as input the triangle count query Q
and a database D and maintains the result of Q under a sequence of single-tuple updates. We
distinguish the following computation times: (1) preprocessing time is spent on initializing
the algorithm using D before any update is received, (2) update time is spent on processing
one single-tuple update, and (3) answer time is spent on obtaining the result of Q. We
consider two types of bounds on the update time: worst-case bounds, which limit the time
each individual update takes in the worst case, and amortized worst-case bounds, which limit
the average worst-case time taken by a sequence of updates. Enumerating a set of tuples
with constant delay means that the time until reporting the first tuple, the time between
reporting two consecutive tuples, and the time between reporting the last tuple and the end
of enumeration is constant. When referring to sublinear time, we mean O(|D|1−γ) for some
γ > 0, where |D| is the database size.

Computational Model. We consider the RAM model of computation. Each relation (view)
K over schema X is implemented by a data structure that stores key-value entries (x,K(x))
for each tuple x over X with K(x) 6= 0 and needs space linear in the number of such tuples.
We assume that this data structure supports (1) looking up, inserting, and deleting entries in
constant time, (2) enumerating all stored entries in K with constant delay, and (3) returning
|K| in constant time. For instance, a hash table with chaining, where entries are doubly
linked for efficient enumeration, can support these operations in constant time on average,
under the assumption of simple uniform hashing.

For each variable X in the schema X of relation K, we further assume there is an index
structure on X that allows: (4) enumerating all entries in K matching σX=xK with constant
delay, (5) checking x ∈ πXK in constant time, and (6) returning |σX=xK| in constant time,
for any x ∈ Dom(X), and (7) inserting and deleting index entries in constant time. Such
an index structure can be realized, for instance, as a hash table with chaining where each
key-value entry stores an X-value x and a doubly-linked list of pointers to the entries in K



A. Kara, H.Q. Ngo, M. Nikolic, D. Olteanu, and H. Zhang 4:7

having the X-value x. Looking up an index entry given x takes constant time on average,
and its doubly-linked list enables enumeration of the matching entries in K with constant
delay. Inserting an index entry into the hash table additionally prepends a new pointer to
the doubly-linked list for a given x; overall, this operation takes constant time on average.
For efficient deletion of index entries, each entry in K also stores back-pointers to its index
entries (as many back-pointers as there are index structures for K). When an entry is deleted
from K, locating and deleting its index entries takes constant time per index.

Data Partitioning. We partition each input relation into two parts based on the degrees of
its values. Similar to common techniques used in databases to deal with data skew, our IVM
approach employs different maintenance strategies for values of high and low frequency.

I Definition 6 (Relation Partition). Given a relation K over schema X, a variable X from
the schema X, and a threshold θ, a partition of K on X with threshold θ is a set {Kh,Kl}
satisfying the following conditions:

(union) K(x) = Kh(x) +Kl(x) for x ∈ Dom(X)

(domain partition) (πXKh) ∩ (πXKl) = ∅

(heavy part) for all x ∈ πXKh : |σX=xKh| ≥ 1
2 θ

(light part) for all x ∈ πXKl : |σX=xKl| < 3
2 θ

The set {Kh,Kl} is called a strict partition of K on X with threshold θ if it satisfies the
union and domain partition conditions and the following strict versions of the heavy part
and light part conditions:

(strict heavy part) for all x ∈ πXKh : |σX=xKh| ≥ θ

(strict light part) for all x ∈ πXKl : |σX=xKl| < θ

The relations Kh and Kl are called the heavy and light parts of K.

Definition 6 admits multiple ways to (non-strictly) partition a relation K on variable X
with threshold θ. For instance, assume that |σX=xK| = θ for some X-value x in K. Then,
all tuples in K with X-value x can be in either the heavy or light part of K; but they cannot
be in both parts because of the domain partition condition. If the partition is strict, then all
such tuples are in the heavy part of K.

The strict partition of a relation K is unique for a given threshold and can be computed
in time linear in the size of K.

3 IVMε: Adaptive Maintenance of the Triangle Count

We present IVMε, our algorithm for the incremental maintenance of the result of Query (1).
We start with a high-level overview. Consider a database D consisting of three relations R,
S, and T with schemas (A,B), (B,C), and (C,A), respectively. We partition R, S, and T
on variables A, B, and C, respectively, for a given threshold. We then decompose Query (1)
into eight skew-aware views expressed over these relation parts:

Qrst() =
∑
a,b,c

Rr(a, b) · Ss(b, c) · Tt(c, a), for r, s, t ∈ {h, l}.

Query (1) is then the sum of these skew-aware views: Q() =
∑
r,s,t∈{h,l}Qrst().

IVMε adapts its maintenance strategy to each skew-aware view Qrst to ensure amortized
update time that is sublinear in the database size. While most of these views admit sublinear

ICDT 2019
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Materialized View Definition Space Complexity

Q() =
∑

r,s,t∈{h,l}

∑
a,b,c

Rr(a, b) · Ss(b, c) · Tt(c, a) O(1)

VRS(a, c) =
∑

b
Rh(a, b) · Sl(b, c) O(|D|1+min { ε,1−ε })

VST (b, a) =
∑

c
Sh(b, c) · Tl(c, a) O(|D|1+min { ε,1−ε })

VTR(c, b) =
∑

a
Th(c, a) ·Rl(a, b) O(|D|1+min { ε,1−ε })

Figure 2 The definition and space complexity of the materialized views in V = {Q,VRS , VST , VTR}
as part of an IVMε state of a database D partitioned for ε ∈ [0, 1].

delta computation over the relation parts, few exceptions require linear-time maintenance.
For these exceptions, IVMε precomputes the update-independent parts of the delta queries as
auxiliary materialized views and then exploits these views to speed up the delta evaluation.

One such exception is the view Qhhl. Consider a single-tuple update δRh = {(α, β) 7→ m}
to the heavy part Rh of relation R, where α and β are fixed data values. Computing the delta
view δQhhl() = δRh(α, β)·

∑
c Sh(β, c)·Tl(c, α) requires iterating over all the C-values c paired

with β in Sh and with α in Tl; the number of such C-values can be linear in the size of the
database. To avoid this iteration, IVMε precomputes the view VST (b, a) =

∑
c Sh(b, c)·Tl(c, a)

and uses this view to evaluate δQhhl() = δRh(α, β) · VST (β, α) in constant time.
Such auxiliary views, however, also require maintenance. All such views created by

IVMε can be maintained in sublinear time under single-tuple updates to the input relations.
Figure 2 summarizes these views used by IVMε to maintain Query (1): VRS , VST and VTR.
They serve to avoid linear-time delta computation for updates to T , R, and S, respectively.
IVMε also materializes the result of Query (1), which ensures constant answer time.

We now describe our strategy in detail. We start by defining the state that IVMε initially
creates and maintains upon each update. Then, we specify the procedure for processing a
single-tuple update to any input relation, followed by the space complexity analysis of IVMε.
Section 4 gives the procedure for processing a sequence of such updates.

I Definition 7 (IVMε State). Given a database D = {R,S, T} and ε ∈ [0, 1], an IVMε state
of D is a tuple Z = (ε,N,P,V), where:

N is a natural number such that the size invariant
⌊ 1

4N
⌋
≤ |D| < N holds. N is called

the threshold base.
P = {Rh, Rl, Sh, Sl, Th, Tl} consists of the partitions of R, S, and T on variables A, B,
and C, respectively, with threshold θ = N ε.
V is the set of materialized views {Q,VRS , VST , VTR} as defined in Figure 2.

The initial state Z of D has N = 2 · |D|+ 1 and the three partitions in P are strict.

By construction, |P| = |D|. The size invariant implies |D| = Θ(N) and, together with the
heavy and light part conditions, facilitates the amortized analysis of IVMε in Section 4.
Definition 6 provides two essential upper bounds for each relation partition in an IVMε state:
The number of distinct A-values in Rh is at most N

1
2N

ε = 2N1−ε, i.e., |πARh| ≤ 2N1−ε, and
the number of tuples in Rl with an A-value a is less than 3

2N
ε, i.e., |σA=aRl| < 3

2N
ε, for any

a ∈ Dom(A). The same bounds hold for B-values in {Sh, Sl} and C-values in {Th, Tl}.
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3.1 Preprocessing Stage

The preprocessing stage constructs the initial IVMε state given a database D and ε ∈ [0, 1].

I Proposition 8. Given a database D and ε ∈ [0, 1], constructing the initial IVMε state of
D takes O(|D| 32 ) time.

Proof. We analyze the time to construct the initial state Z = (ε,N,P,V) of D. Retrieving
the size |D| and computing N = 2 · |D|+ 1 take constant time. Strictly partitioning the input
relations from D using the threshold N ε, as described in Definition 6, takes O(|D|) time.
Computing the result of the triangle count query on D (or P) using a worst-case optimal join
algorithm [18] takes O(|D| 32 ) time. Computing the auxiliary views VRS , VST , and VTR takes
O(|D|1+min{ε,1−ε}) time, as shown next. Consider the view VRS(a, c) =

∑
bRh(a, b) · Sl(b, c).

To compute VRS , one can iterate over all (a, b) pairs in Rh and then find the C-values in
Sl for each b. The light part Sl contains at most N ε distinct C-values for any B-value,
which gives an upper bound of |Rh| ·N ε on the size of VRS . Alternatively, one can iterate
over all (b, c) pairs in Sl and then find the A-values in Rh for each b. The heavy part Rh
contains at most N1−ε distinct A-values, which gives an upper bound of |Sl| · N1−ε on
the size of VRS . The number of steps needed to compute this result is upper-bounded by
min{ |Rh| ·N ε, |Sl| ·N1−ε } < min{N ·N ε, N ·N1−ε } = N1+min{ε,1−ε}. From |D| = Θ(N)
follows that computing VRS on the database partition P takes O(|D|1+min{ε,1−ε}) time; the
analysis for VST and VTR is analogous. Note that maxε∈[0,1]{1 + min{ε, 1− ε}} = 3

2 . Overall,
the initial state Z of D can be constructed in O(|D| 32 ) time. J

The preprocessing stage of IVMε happens before any update is received. In case we start
from an empty database, the preprocessing cost of IVMε is O(1).

3.2 Processing a Single-Tuple Update

We describe the IVMε strategy for maintaining the result of Query (1) under a single-tuple
update to the relation R. This update can affect either the heavy or light part of R, hence
we write δRr, where r stands for h or l. We assume that checking whether the update affects
the heavy or light part of R takes constant time. The update is represented as a relation
δRr = { (α, β) 7→ m }, where α and β are data values and m ∈ Z. Due to the symmetry of
the triangle query and auxiliary views, updates to S and T are handled similarly.

Figure 3 shows the procedure ApplyUpdate that takes as input a current IVMε state
Z and the update δRr, and returns a new state that results from applying δRr to Z. The
procedure computes the deltas of the skew-aware views referencing Rr, which are δQrhh
(Line 3), δQrhl (Line 4), δQrlh (Line 5), and δQrll (Line 6), and uses these deltas to maintain
the triangle count (Line 7). These skew-aware views are not materialized, but their deltas
facilitate the maintenance of the triangle count. If the update affects the heavy part Rh of R,
the procedure maintains VRS (Line 9) and Rh (Line 12); otherwise, it maintains VTR (Line
11) and Rl (Line 12). The view VST remains unchanged as it has no reference to Rh or Rl.

Figure 3 also gives the time complexity of computing these deltas and applying them to
Z. This complexity is either constant or dependent on the number of C-values for which
matching tuples in the parts of S and T have nonzero multiplicities.

I Proposition 9. Given a state Z constructed from a database D for ε ∈ [0, 1], IVMε

maintains Z under a single-tuple update to any input relation in O(|D|max{ε,1−ε}) time.
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ApplyUpdate(δRr,Z) Time

1 let δRr = {(α, β) 7→ m}

2 let Z = (ε,N, {Rh, Rl, Sh, Sl, Th, Tl}, {Q,VRS , VST , VTR})

3 δQrhh() = δRr(α, β) ·
∑

c
Sh(β, c) · Th(c, α) O(|D|1−ε)

4 δQrhl() = δRr(α, β) · VST (β, α) O(1)

5 δQrlh() = δRr(α, β) ·
∑

c
Sl(β, c) · Th(c, α) O(|D|min {ε,1−ε})

6 δQrll() = δRr(α, β) ·
∑

c
Sl(β, c) · Tl(c, α) O(|D|ε)

7 Q() = Q() + δQrhh() + δQrhl() + δQrlh() + δQrll() O(1)

8 if (r is h)

9 VRS(α, c) = VRS(α, c) + δRh(α, β) · Sl(β, c) O(|D|ε)
10 else
11 VTR(c, β) = VTR(c, β) + Th(c, α) · δRl(α, β) O(|D|1−ε)
12 Rr(α, β) = Rr(α, β) + δRr(α, β) O(1)

13 return Z

Total update time: O(|D|max{ε,1−ε})

Figure 3 (left) Counting triangles under a single-tuple update. ApplyUpdate takes as input an
update δRr to the heavy or light part of R, hence r ∈ {h, l}, and the current IVMε state Z of a
database D partitioned using ε ∈ [0, 1]. It returns a new state that results from applying δRr to
Z. Lines 3-6 compute the deltas of the affected skew-aware views, and Line 7 maintains Q. Lines
9 and 11 maintain the auxiliary views VRS and VTR, respectively. Line 12 maintains the affected
part Rr. (right) The time complexity of computing and applying deltas. The evaluation strategy for
computing δQrlh in Line 5 may choose either Sl or Th to bound C-values, depending on ε. The total
time is the maximum of all individual times. The maintenance procedures for S and T are similar.

Proof. We analyze the running time of the procedure from Figure 3 given a single-tuple
update δRr = {(α, β) 7→ m} and a state Z = (ε,N,P,V) of D. Since the query and auxiliary
views are symmetric, the analysis for updates to S and T is similar.

We first analyze the evaluation strategies for the deltas of the skew-aware views Qrst:
(Line 3) Computing δQrhh requires summing over C-values (α and β are fixed). The
minimum degree of each C-value in Th is 1

2N
ε, which means the number of distinct

C-values in Th is at most N
1
2N

ε = 2N1−ε. Thus, this delta evaluation takes O(N1−ε) time.
(Line 4) Computing δQrhl requires constant-time lookups in δRr and VST .
(Line 5) Computing δQrlh can be done in two ways, depending on ε: either sum over
at most 2N1−ε C-values in Th for the given α or sum over at most 3

2N
ε C-values in Sl

for the given β. This delta computation takes at most min{2N1−ε, 3
2N

ε} constant-time
operations, thus O(Nmin {ε,1−ε}) time.
(Line 6) Computing δQrll requires summing over at most 3

2N
ε C-values in Sl for the

given β. This delta computation takes O(N ε) time.
Maintaining the result of Query (1) using these deltas takes constant time (Line 7). The views
VRS and VTR are maintained for updates to distinct parts of R. Maintaining VRS requires
iterating over at most 3

2N
ε C-values in Sl for the given β (Line 9); similarly, maintaining

VTR requires iterating over at most 2N1−ε C-values in Th for the given α (Line 11). Finally,
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maintaining the (heavy or light) part of R affected by δRr takes constant time (Line 12).
The total update time is O(max{1, N ε, N1−ε, Nmin{ε,1−ε}}) = O(Nmax{ε,1−ε}). From the
invariant |D| = Θ(N) follows the claimed time complexity O(|D|max{ε,1−ε}). J

3.3 Space Complexity
We next analyze the space complexity of the IVMε maintenance strategy.

I Proposition 10. Given a database D and ε ∈ [0, 1], the IVMε state constructed from D to
support the maintenance of the result of Query (1) takes O(|D|1+min{ε,1−ε}) space.

Proof. We consider a state Z = (ε,N,P,V) of database D. N and ε take constant space
and |P| = |D|. Figure 2 summarizes the space complexity of the materialized views Q, VRS ,
VST , and VTR from V. The result of Q takes constant space. As discussed in the proof of
Proposition 8, to compute the auxiliary view VRS(a, c) =

∑
bRh(a, b) · Sl(b, c), we can use

either Rh or Sl as the outer relation:

|VRS | ≤ min{ |Rh| · max
b∈πBSl

|σB=bSl|, |Sl| · max
b∈πBRh

|σB=bRh| } < min{N · 3
2N

ε, N · 2N1−ε }

The size of VRS is thus O(N1+min{ε,1−ε}). From |D| = Θ(N) follows that VRS takes
O(|D|1+min{ε,1−ε}) space; the space analysis for VST and VTR is analogous. Overall, the
state Z of D takes O(|D|1+min{ε,1−ε}) space. J

4 Rebalancing Partitions

The partition of a relation may change after updates. For instance, an insert δRl = {(α, β) 7→
1} may violate the size invariant

⌊ 1
4N
⌋
≤ |D| < N or may violate the light part condition

|σA=αRl| < 3
2N

ε and require moving all tuples with the A-value α from Rl to Rh. As the
database evolves under updates, IVMε performs major and minor rebalancing steps to ensure
the size invariant and the conditions for heavy and light parts of each partition always hold.
This rebalancing also ensures that the upper bounds on the number of data values, such as
the number of B-values paired with α in Rl and the number of distinct A-values in Rh, are
valid. The rebalancing cost is amortized over multiple updates.

Major Rebalancing

If an update causes the database size to fall below b 1
4Nc or reach N , IVMε halves or,

respectively, doubles N , followed by strictly repartitioning the database with the new
threshold N ε and recomputing the materialized views, as shown in Figure 4.

I Proposition 11. Given ε ∈ [0, 1], major rebalancing of an IVMε state constructed from a
database D takes O(|D|1+min{ε,1−ε}) time.

Proof. We consider the major rebalancing procedure from Figure 4. Strictly partitioning the
input relations takes O(|D|) time. From the proof of Proposition 8 and |D| = Θ(N) follow
that recomputing VRS , VST , and VTR takes O(|D|1+min{ε,1−ε}) time. J

The (super)linear time of major rebalancing is amortized over Ω(N) updates. After
a major rebalancing step, it holds that |D| = 1

2N (after doubling), or |D| = 1
2N −

1
2 or

|D| = 1
2N − 1 (after halving, i.e., setting N to

⌊ 1
2N
⌋
− 1; the two options are due to the

floor functions in the size invariant and halving expression). To violate the size invariant⌊ 1
4N
⌋
≤ |D| < N and trigger another major rebalancing, the number of required updates is

at least 1
4N . Section 4.1 proves the amortized O(|D|min{ε,1−ε}) time of major rebalancing.
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OnUpdate(δR,Z)

let δR = {(α, β) 7→ m}
let Z = (ε,N, {Rh, Rl} ∪P,V)
if (α ∈ πARh or ε = 0)
Z = ApplyUpdate(δRh = {(α, β) 7→ m},Z)

else
Z = ApplyUpdate(δRl = {(α, β) 7→ m},Z)

if (|D| = N)
N = 2N
Z = MajorRebalancing(Z)

else if (|D| <
⌊

1
4N
⌋
)

N =
⌊

1
2N
⌋
− 1

Z = MajorRebalancing(Z)
else if (α ∈ πARl and |σA=αRl| ≥ 3

2N
ε)

Z = MinorRebalancing(Rl, Rh, A, α,Z)
else if (α ∈ πARh and |σA=αRh| < 1

2N
ε)

Z = MinorRebalancing(Rh, Rl, A, α,Z)
return Z

MajorRebalancing(Z)

let Z = (ε,N, {Rh, Rl, Sh, Sl, Th, Tl},
{Q,VRS , VST , VTR})

{Rh, Rl} = StrictPartition(Rh, Rl, A,N ε)
{Sh, Sl} = StrictPartition(Sh, Sl, B,N ε)
{Th, Tl} = StrictPartition(Th, Tl, C,N ε)
VRS(a, c) =

∑
b
Rh(a, b) · Sl(b, c)

VST (b, a) =
∑

c
Sh(b, c) · Tl(c, a)

VTR(c, b) =
∑

a
Th(c, a) ·Rl(a, b)

return Z

MinorRebalancing(Ksrc,Kdst , X, x,Z)

foreach t ∈ σX=xKsrc do
m = Ksrc(t)
Z = ApplyUpdate(δKsrc = { t 7→ −m },Z)
Z = ApplyUpdate(δKdst = { t 7→ m },Z)

return Z

Figure 4 Counting triangles under a single-tuple update with rebalancing. OnUpdate takes
as input an update δR and the current IVMε state Z of a database D. It returns a new state
that results from applying δR to Z and, if necessary, rebalancing partitions. The condition ε = 0
in the third line ensures that all tuples are in Rh when ε = 0. ApplyUpdate is given in Fig-
ure 3. MinorRebalancing(Ksrc,Kdst , X, x,Z) moves all tuples with the X-value x from Ksrc to
Kdst . MajorRebalancing(Z) recomputes the relation partitions and views in Z. StrictParti-
tion(Kh,Kl, X, θ) constructs a strict partition of relation K on variable X with threshold θ (see
Definition 6). The OnUpdate procedures for updates to relations S and T are analogous.

Minor Rebalancing

After each update δR = {(α, β) 7→ m}, IVMε checks whether the two conditions |σA=αRh| ≥
1
2N

ε and |σA=αRl| < 3
2N

ε still hold. If the first condition is violated, all tuples in Rh with
the A-value α are moved to Rl and the affected views are updated; similarly, if the second
condition is violated, all tuples with the A-value α are moved from Rl to Rh, followed by
updating the affected views. Figure 4 shows the procedure for minor rebalancing, which
deletes affected tuples from one part and inserts them into the other part.

I Proposition 12. Given ε ∈ [0, 1], minor rebalancing of an IVMε state constructed from a
database D takes O(|D|ε+max{ε,1−ε}) time.

Proof. Consider a state Z = (ε,N,P,V). Minor rebalancing moves fewer than 1
2N

ε tuples
(from heavy to light) or fewer than 3

2N
ε + 1 tuples (from light to heavy). Each tuple move

performs one delete and one insert and costs O(|D|max{ε,1−ε}) by Proposition 9. Since there
are O(N ε) such operations and |D| = Θ(N), the total time is O(|D|ε+max{ε,1−ε}). J

The (super)linear time of minor rebalancing is amortized over Ω(N ε) updates. This
lower bound on the number of updates comes from the heavy and light part conditions
(cf. Definition 6), namely from the gap between the two thresholds in these conditions.
Section 4.1 proves the amortized O(|D|max{ε,1−ε}) time of minor rebalancing.
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Figure 4 gives the trigger procedure OnUpdate that maintains Query (1) under a
single-tuple update to relation R and, if necessary, rebalances partitions; the procedures for
updates to S and T are analogous. Given an update δR = {(α, β) 7→ m} and an IVMε state
of a database D, the procedure first checks in constant time whether the update affects the
heavy or light part of R. The update targets Rh if there exists a tuple with the same A-value
α already in Rh, or ε is set to 0; otherwise, the update targets Rl. When ε = 0, all tuples are
in Rh, while Rl remains empty. Although this behavior is not required by IVMε (without
the ε = 0 condition, Rl would contain only tuples whose A-values have the degree of 1, and
Rh would contain all other tuples), it allows us to recover existing IVM approaches, such as
classical IVM and factorized IVM, which do not partition relations; by setting ε to 0 or 1,
IVMε ensures that all tuples are in Rh or respectively Rl. The procedure OnUpdate then
invokes ApplyUpdate from Figure 3. If the update causes a violation of the size invariant⌊ 1

4N
⌋
≤ |D| < N , the procedure invokes MajorRebalancing to recompute the relation

partitions and auxiliary views (note that major rebalancing has no effect on the triangle
count). Otherwise, if the heavy or light part condition is violated, MinorRebalancing
moves all tuples with the given A-value α from the source part to the destination part of R.

4.1 Proof of Theorem 3
We are now ready to prove Theorem 3 that states the complexity of IVMε.

Proof. The preprocessing stage constructs the initial IVMε state from a database D in
O(|D| 32 ) time, as shown in Proposition 8. Materializing the query result ensures constant
answer time. The space complexity O(|D|1+min{ε,1−ε}) follows from Proposition 10.

We next analyze the amortized update time complexity. Let Z0 = (ε,N0,P0,V0)
be the initial IVMε state of a database D0 and u0, u1, . . . , un−1 a sequence of arbitrary
single-tuple updates. The application of this update sequence to Z0 yields a sequence
Z0

u0−→ Z1
u1−→ . . .

un−1−→ Zn of IVMε states, where Zi+1 is the result of executing the
procedure OnUpdate(ui,Zi) from Figure 4, for 0 ≤ i < n. Let ci denote the actual
execution cost of OnUpdate(ui,Zi). For some Γ > 0, we can decompose each ci as:

ci = capply
i + cmajor

i + cminor
i + Γ, for 0 ≤ i < n,

where capply
i , cmajor

i , and cminor
i are the actual costs of the subprocedures ApplyUpdate,

MajorRebalancing, and MinorRebalancing, respectively, in OnUpdate. If update ui
causes no major rebalancing, then cmajor

i = 0; similarly, if ui causes no minor rebalancing,
then cminor

i = 0. These actual costs admit the following worst-case upper bounds:

capply
i ≤ γNmax{ε,1−ε}

i (by Proposition 9),

cmajor
i ≤ γN1+min{ε,1−ε}

i (by Proposition 11), and

cminor
i ≤ γN ε+max{ε,1−ε}

i (by Proposition 12),

where γ is a constant derived from their asymptotic bounds, and Ni is the threshold base of
Zi. The actual costs of major and minor rebalancing can be superlinear in the database size.

The crux of this proof is to show that assigning a sublinear amortized cost ĉi to each
update ui accumulates enough budget to pay for such expensive but less frequent rebalancing
procedures. For any sequence of n updates, our goal is to show that the accumulated
amortized cost is no smaller than the accumulated actual cost:

n−1∑
i=0

ĉi ≥
n−1∑
i=0

ci. (2)
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The amortized cost assigned to an update ui is ĉi = ĉapply
i + ĉmajor

i + ĉminor
i + Γ, where

ĉapply
i = γN

max{ε,1−ε}
i , ĉmajor

i = 4γNmin{ε,1−ε}
i , ĉminor

i = 2γNmax{ε,1−ε}
i , and

Γ and γ are the constants used to upper bound the actual cost of OnUpdate. In contrast to
the actual costs cmajor

i and cminor
i , the amortized costs ĉmajor

i and ĉminor
i are always nonzero.

We prove that such amortized costs satisfy Inequality (2). Since ĉapply
i ≥ capply

i for
0 ≤ i < n, it suffices to show that the following inequalities hold:

(amortizing major rebalancing)
n−1∑
i=0

ĉmajor
i ≥

n−1∑
i=0

cmajor
i and (3)

(amortizing minor rebalancing)
n−1∑
i=0

ĉminor
i ≥

n−1∑
i=0

cminor
i . (4)

We prove Inequalities (3) and (4) by induction on the length n of the update sequence.

Major rebalancing.
Base case: We show that Inequality (3) holds for n = 1. The preprocessing stage sets
N0 = 2 · |D0|+ 1. If the initial database D0 is empty, then N0 = 1 and u0 triggers major
rebalancing (and no minor rebalancing). The amortized cost ĉmajor

0 = 4γNmin{ε,1−ε}
0 = 4γ

suffices to cover the actual cost cmajor
0 ≤ γN

1+min{ε,1−ε}
0 = γ. If the initial database is

nonempty, u0 cannot trigger major rebalancing (i.e., violate the size invariant) because⌊ 1
4N0

⌋
=
⌊ 1

2 |D0|
⌋
≤ |D0| − 1 (lower threshold) and |D0|+ 1 < N0 = 2 · |D0|+ 1 (upper

threshold); then, ĉmajor
0 ≥ cmajor

0 = 0. Thus, Inequality (3) holds for n = 1.
Inductive step: Assumed that Inequality (3) holds for all update sequences of length up
to n− 1, we show it holds for update sequences of length n. If update un−1 causes no
major rebalancing, then ĉmajor

n−1 = 4γNmin{ε,1−ε}
n−1 ≥ 0 and cmajor

n−1 = 0, thus Inequality (3)
holds for n. Otherwise, if applying un−1 violates the size invariant, the database size
|Dn| is either

⌊ 1
4Nn−1

⌋
− 1 or Nn−1. Let Zj be the state created after the previous

major rebalancing or, if there is no such step, the initial state. For the former (j > 0),
the major rebalancing step ensures |Dj | = 1

2Nj after doubling and |Dj | = 1
2Nj −

1
2

or |Dj | = 1
2Nj − 1 after halving the threshold base Nj ; for the latter (j = 0), the

preprocessing stage ensures |Dj | = 1
2Nj −

1
2 . The threshold base Nj changes only with

major rebalancing, thus Nj = Nj+1 = . . . = Nn−1. The number of updates needed to
change the database size from |Dj | to |Dn| (i.e., between two major rebalancing) is at
least 1

4Nn−1 since min{ 1
2Nj − 1− (

⌊ 1
4Nn−1

⌋
− 1), Nn−1 − 1

2Nj} ≥
1
4Nn−1. Then,

n−1∑
i=0

ĉmajor
i ≥

j−1∑
i=0

cmajor
i +

n−1∑
i=j

ĉmajor
i (by induction hypothesis)

=
j−1∑
i=0

cmajor
i +

n−1∑
i=j

4γNmin{ε,1−ε}
n−1 (Nj = . . . = Nn−1)

≥
j−1∑
i=0

cmajor
i + 1

4Nn−1 4γNmin{ε,1−ε}
n−1 (at least 1

4Nn−1 updates)

=
j−1∑
i=0

cmajor
i + γN

1+min{ε,1−ε}
n−1

≥
j−1∑
i=0

cmajor
i + cmajor

n−1 =
n−1∑
i=0

cmajor
i (cmajor

j = . . . = cmajor
n−2 = 0).

Thus, Inequality (3) holds for update sequences of length n.



A. Kara, H.Q. Ngo, M. Nikolic, D. Olteanu, and H. Zhang 4:15

Minor rebalancing. When the degree of a value in a partition changes such that the heavy
or light part condition no longer holds, minor rebalancing moves the affected tuples between
the heavy and light parts of the partition. To prove Inequality (4), we decompose the cost of
minor rebalancing per relation and data value of its partitioning variable.

cminor
i =

∑
a∈Dom(A)

cR,ai +
∑

b∈Dom(B)

cS,bi +
∑

c∈Dom(C)

cT,ci and

ĉminor
i =

∑
a∈Dom(A)

ĉR,ai +
∑

b∈Dom(B)

ĉS,bi +
∑

c∈Dom(C)

ĉT,ci

We write cR,ai and ĉR,ai to denote the actual and respectively amortized costs of minor
rebalancing caused by update ui, for relation R and an A-value a. If update ui is of the form
δR = {(α, β) 7→ m} and causes minor rebalancing, then cR,αi = cminor

i ; otherwise, cR,αi = 0.
If update ui is of the form δR = {(α, β) 7→ m}, then ĉR,αi = ĉminor

i regardless of whether ui
causes minor rebalancing or not; otherwise, ĉR,αi = 0. The actual costs cS,bi and cT,ci and the
amortized costs ĉS,bi and ĉT,ci are defined similarly.

We prove that for the partition of R and any α ∈ Dom(A) the following inequality holds:

n−1∑
i=0

ĉR,αi ≥
n−1∑
i=0

cR,αi . (5)

Due to the symmetry of the triangle query, Inequality (4) follows directly from Inequality (5).
We prove Inequality (5) for an arbitrary α ∈ Dom(A) by induction on the length n of the

update sequence.
Base case: We show that Inequality (5) holds for n = 1. Assume that update u0 is of
the form δR = {(α, β) 7→ m}; otherwise, ĉR,α0 = cR,α0 = 0, and Inequality (5) follows
trivially for n = 1. If the initial database is empty, u0 triggers major rebalancing but
no minor rebalancing, thus ĉR,α0 = 2γNmax{ε,1−ε}

0 ≥ cR,α0 = 0. If the initial database is
nonempty, each relation is partitioned using the threshold N ε

0 . For update u0 to trigger
minor rebalancing, the degree of the A-value α in Rh or Rl has to either decrease from
dN ε

0e to
⌈ 1

2N
ε
0
⌉
− 1 (heavy to light) or increase from dN ε

0e − 1 to
⌈ 3

2N
ε
0
⌉
(light to heavy).

The former happens only if dN ε
0e = 1 and update u0 removes the last tuple with the

A-value α from Rh, thus no minor rebalancing is needed; the latter cannot happen since
update u0 can increase |σA=αRl| to at most dN ε

0e, and dN ε
0e <

⌈ 3
2N

ε
0
⌉
. In any case,

ĉR,α0 ≥ cR,α0 , which implies that Inequality (5) holds for n = 1.
Inductive step: Assumed that Inequality (5) holds for all update sequences of length up
to n− 1, we show it holds for update sequences of length n. Consider that update un−1
is of the form δR = {(α, β) 7→ m} and causes minor rebalancing; otherwise, ĉR,αn−1 ≥ 0 and
cR,αn−1 = 0, and Inequality (5) follows trivially for n. Let Zj be the state created after the
previous major rebalancing or, if there is no such step, the initial state. The threshold
changes only with major rebalancing, thus Nj = Nj+1 = . . . = Nn−1. Depending on
whether there exist minor rebalancing steps since state Zj , we distinguish two cases:
Case 1: There is no minor rebalancing caused by an update of the form δR = {(α, β′) 7→

m′} since state Zj ; thus, cR,αj = . . . = cR,αn−2 = 0. From state Zj to state Zn, the
number of tuples with the A-value α either decreases from at least

⌈
N ε
j

⌉
to
⌈ 1

2N
ε
n−1
⌉
−1

(heavy to light) or increases from at most
⌈
N ε
j

⌉
− 1 to

⌈ 3
2N

ε
n−1
⌉
(light to heavy). For

this change to happen, the number of updates needs to be greater than 1
2N

ε
n−1 since

Nj = Nn−1 and min{
⌈
N ε
j

⌉
− (
⌈ 1

2N
ε
n−1
⌉
− 1),

⌈ 3
2N

ε
n−1
⌉
− (
⌈
N ε
j

⌉
− 1)} > 1

2N
ε
n−1. Then,
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n−1∑
i=0

ĉR,αi ≥
j−1∑
i=0

cR,αi +
n−1∑
i=j

ĉR,αi (by induction hypothesis)

=
j−1∑
i=0

cR,αi +
n−1∑
i=j

2γNmax{ε,1−ε}
n−1 (Nj = . . . = Nn−1)

>

j−1∑
i=0

cR,αi + 1
2N

ε
n−12γNmax{ε,1−ε}

n−1 (more than 1
2N

ε
n−1 updates)

≥
j−1∑
i=0

cR,αi + cR,αn−1 =
n−1∑
i=0

cR,αi (cR,αj = . . . = cR,αn−2 = 0).

Case 2: There is at least one minor rebalancing step caused by an update of the form
δR = {(α, β′) 7→ m′} since state Zj . Let Z` denote the state created after the
previous minor rebalancing caused by an update of this form; thus, cR,α` = . . . =
cR,αn−2 = 0. The minor rebalancing steps creating Z` and Zn move tuples with the
A-value α between Rh and Rl in opposite directions. From state Z` to state Zn,
the number of such tuples either decreases from

⌈ 3
2N

ε
l

⌉
to
⌈ 1

2N
ε
n−1
⌉
− 1 (heavy to

light) or increases from
⌈ 1

2N
ε
l

⌉
− 1 to

⌈ 3
2N

ε
n−1
⌉
(light to heavy). For this change to

happen, the number of updates needs to be greater than N ε
n−1 since Nl = Nn−1 and

min{
⌈ 3

2N
ε
l

⌉
− (
⌈ 1

2N
ε
n−1
⌉
− 1),

⌈ 3
2N

ε
n−1
⌉
− (
⌈ 1

2N
ε
l

⌉
− 1)} > N ε

n−1. Then,
n−1∑
i=0

ĉR,αi ≥
`−1∑
i=0

cR,αi +
n−1∑
i=`

ĉR,αi (by induction hypothesis)

=
`−1∑
i=0

cR,αi +
n−1∑
i=`

2γNmax{ε,1−ε}
n−1 (Nj = . . . = Nn−1)

>

`−1∑
i=0

cR,αi +N ε
n−12γNmax{ε,1−ε}

n−1 (more than N ε
n−1 updates)

>

`−1∑
i=0

cR,αi + cR,αn−1 =
n−1∑
i=0

cR,αi (cR,α` = . . . = cR,αn−2 = 0).

Cases 1 and 2 imply that Inequality (5) holds for update sequences of length n.

This shows that Inequality (2) holds when the amortized cost of OnUpdate(ui,Zi) is

ĉi = γN
max{ε,1−ε}
i + 4γNmin{ε,1−ε}

i + 2γNmax{ε,1−ε}
i + Γ, for 0 ≤ i < n,

where Γ and γ are constants. The amortized cost ĉmajor
i of major rebalancing is 4γNmin{ε,1−ε}

i ,
and the amortized cost ĉminor

i of minor rebalancing is 2γNmax{ε,1−ε}
i . From the size invariant⌊ 1

4Ni
⌋
≤ |Di| < Ni follows that |Di| < Ni < 4(|Di| + 1) for 0 ≤ i < n, where |Di| is the

database size before update ui. This implies that for any database D, the amortized major re-
balancing time is O(|D|min{ε,1−ε}), the amortized minor rebalancing time is O(|D|max{ε,1−ε}),
and the overall amortized update time of IVMε is O(|D|max{ε,1−ε}). J

Given ε ∈ [0, 1], IVMε maintains the triangle count query in O(|D|max{ε,1−ε}) amortized
update time while using O(|D|1+min{ε,1−ε}) space. It thus defines a tradeoff between time
and space parameterized by ε, as shown in Figure 1. IVMε achieves the optimal amortized
update time O(|D| 12 ) at ε = 1

2 , for which the space is O(|D| 32 ).
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5 Conclusion and Future Work

This paper introduces IVMε, an incremental maintenance approach to counting triangles
under updates that exhibits a space-time tradeoff such that the space-time product is
quadratic in the size of the database. IVMε can trade space for update time. The amortized
update time can be as low as the square root of the database size, which is worst-case
optimal conditioned on the Online Matrix-Vector Multiplication (OMv) conjecture. The
space requirements of IVMε can be improved to linear while keeping the amortized update
time optimal by using a refined partitioning that takes into account the degrees of data
values for both variables (instead of one variable only) in each relation [13]. IVMε captures
classical and factorized IVM as special cases with suboptimal, linear update time [13].

There are worst-case optimal algorithms for join queries in the static setting [17]. In
contrast, IVMε is worst-case optimal for the count aggregate over the triangle join query in the
dynamic setting. The latter setting poses challenges beyond the former. First, the optimality
argument for static join algorithms follows from their runtime being linear(ithmic) in their
output size; this argument does not apply to our triangle count query, since its output is a
scalar and hence of constant size. Second, optimality in the dynamic setting requires a more
fine-grained argument that exploits the skew in the data for different evaluation strategies,
view materialization, and delta computation; in contrast, there are static worst-case optimal
join algorithms that do not need to exploit skew, materialize views, nor delta computation.

This paper opens up a line of work on dynamic worst-case optimal query evaluation algo-
rithms. The goal is a complete characterization of the complexity of incremental maintenance
for arbitrary functional aggregate queries over various rings [1]. Different rings can be used
as the domain of tuple multiplicities (or payloads). We used here the ring (Z,+, ·, 0, 1) of
integers to support counting. The relational data ring supports payloads with listing and
factorized representations of relations, and the degree-m matrix ring supports payloads with
gradients used for learning linear regression models [19].

Towards the aforementioned goal, we would first like to find a syntactical characterization
of all queries that admit incremental maintenance in (amortized) sublinear time. Using known
(first-order, fully recursive, or factorized) incremental maintenance techniques, cyclic and even
acyclic joins require at least linear update time. Our intuition is that this characterization
is given by a notion of diameter of the query hypergraph. This class strictly contains the
q-hierarchical queries, which admit constant-time updates [4].

Minor variants of IVMε can be used to maintain the counting versions of any query built
using three relations, the 4-path query, and the Loomis-Whitney queries in worst-case optimal
time [13]. The same conditional lower bound on the update time shown for the triangle
count applies for most of the mentioned queries, too. This leads to the striking realization
that, while in the static setting the counting versions of the cyclic query computing triangles
and the acyclic query computing paths of length 3 have different complexities, O(|D| 32 ) and
O(|D|), and pose distinct computational challenges, they share the same complexity and
can use a very similar approach in the dynamic setting. A further IVMε variant allows the
constant-delay enumeration of all triangles after each update, while preserving the same
optimal amortized update time as for counting triangles [13]. These variants exploit the
fact that our amortization technique is agnostic to the query to maintain and the update
mechanism. It relies on two prerequisites. First, rebalancing is performed by moving tuples
between relation parts. Second, the number of moved tuples per rebalancing is asymptotically
no more than the number of updates performed since the previous rebalancing.
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