
A Formal Framework for Complex Event
Processing
Alejandro Grez
Pontificia Universidad Católica de Chile, Santiago, Chile
Millennium Institute for Foundational Research on Data, Santiago, Chile
ajgrez@uc.cl

Cristian Riveros
Pontificia Universidad Católica de Chile, Santiago, Chile
Millennium Institute for Foundational Research on Data, Santiago, Chile
cristian.riveros@uc.cl

Martín Ugarte
Millennium Institute for Foundational Research on Data, Santiago, Chile
martin@martinugarte.com

Abstract
Complex Event Processing (CEP) has emerged as the unifying field for technologies that require
processing and correlating distributed data sources in real-time. CEP finds applications in diverse
domains, which has resulted in a large number of proposals for expressing and processing complex
events. However, existing CEP languages lack from a clear semantics, making them hard to
understand and generalize. Moreover, there are no general techniques for evaluating CEP query
languages with clear performance guarantees.

In this paper we embark on the task of giving a rigorous and efficient framework to CEP. We
propose a formal language for specifying complex events, called CEL, that contains the main features
used in the literature and has a denotational and compositional semantics. We also formalize the
so-called selection strategies, which had only been presented as by-design extensions to existing
frameworks. With a well-defined semantics at hand, we discuss how to efficiently process complex
events by evaluating CEL formulas with unary filters. We start by studying the syntactical properties
of CEL and propose rewriting optimization techniques for simplifying the evaluation of formulas.
Then, we introduce a formal computational model for CEP, called complex event automata (CEA),
and study how to compile CEL formulas with unary filters into CEA. Furthermore, we provide
efficient algorithms for evaluating CEA over event streams using constant time per event followed
by constant-delay enumeration of the results. Finally, we gather the main results of this work to
present an efficient and declarative framework for CEP.

2012 ACM Subject Classification Information systems → Data streams; Theory of computation →
Data structures and algorithms for data management; Theory of computation → Database query
languages (principles); Theory of computation → Automata extensions

Keywords and phrases Complex event processing, streaming evaluation, constant delay enumeration

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.5

Acknowledgements Cristian and Alejandro have been funded by FONDECYT grant 11150653, and
together with Martín they were partially supported by the Millennium Institute for Foundational
Research on Data (IMFD). M. Ugarte also acknowledges support from the Brussels Captial Region –
Innoviris (project SPICES). We also thank the anonymous referees for their helpful comments.

1 Introduction

Complex Event Processing (CEP) has emerged as the unifying field of technologies for
detecting situations of interest under high-throughput data streams. In scenarios like Network
Intrusion Detection [39], Industrial Control Systems [29] or Real-Time Analytics [42], CEP

© Alejandro Grez, Cristian Riveros, and Martín Ugarte;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 5; pp. 5:1–5:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ajgrez@uc.cl
mailto:cristian.riveros@uc.cl
mailto:martin@martinugarte.com
https://doi.org/10.4230/LIPIcs.ICDT.2019.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5:2 A Formal Framework for Complex Event Processing

systems aim to efficiently process arriving data, giving timely insights for implementing
reactive responses to complex events. Prominent examples of CEP systems from academia
and industry include SASE [49], EsperTech [1], Cayuga [26], TESLA/T-Rex [22, 23], among
others (see [24] for a survey). The main focus of these systems has been in practical issues
like scalability, fault tolerance, and distribution, with the objective of making CEP systems
applicable to real-life scenarios. Other design decisions, like query languages, are generally
adapted to match computational models that can efficiently process data (see for example
[50]). This has produced new data management and optimization techniques, generating
promising results in the area [49, 1].

Unfortunately, as has been claimed several times [27, 51, 22, 11] CEP query languages
lack a simple and denotational semantics, which makes them difficult to understand, extend
or generalize. Their semantics are generally defined either by examples [36, 4, 21], or
by intermediate computational models [49, 44, 40]. Although there are frameworks that
introduce formal semantics (e.g. [26, 15, 7, 22, 8]), they do not meet the expectations to pave
the foundations of CEP languages. For instance, some of them have unintuitive behavior
(e.g. sequencing is non-associative), or are severely restricted (e.g. nesting operators is
not supported). One symptom of this problem is that iteration, which is fundamental in
CEP, has not yet been defined successfully as a compositional operator. Since iteration is
difficult to define and evaluate, it is usually restricted by not allowing nesting or reuse of
variables [49, 26]. As a result of these problems, CEP languages are generally cumbersome.

The lack of simple denotational semantics makes query languages also difficult to evaluate.
A common factor in CEP systems is to find sophisticated heuristics [50, 22] that cannot be
replicated in other frameworks. Further, optimization techniques are usually proposed at
the architecture level [37, 26, 40], which does not allow for a unifying optimization theory.
Many CEP frameworks use automata-based models [26, 15, 7] for query evaluation, but these
models are usually complicated [40, 44], informally defined [26] or non-standard [22, 5]. In
practice this implies that, although finite state automata is a recurring approach in CEP,
there is no general evaluation strategy with clear performance guarantees.

Given this scenario, the goal of this paper is to give solid foundations to CEP systems
in terms of query language and query evaluation. Towards these goals, we first provide
a formal language that allows for expressing the most common features of CEP systems,
namely sequencing, filtering, disjunction, and iteration. We introduce complex event logic
(CEL), a logic with well-defined compositional and denotational semantics. We also formalize
the so-called selection strategies, an important notion of CEP that is usually discussed
directly [50, 26] or indirectly [15] in the literature but has not been formalized at the
language level.

We then focus on the evaluation of CEL. We propose a formal evaluation framework
that considers three building blocks: (1) syntactic techniques for rewriting CEL queries, (2)
a well-defined intermediate evaluation model, and (3) efficient translations and algorithms
to evaluate this model. Regarding the rewriting techniques, we introduce the notions of
well-formed and safe formulas in CEL, and show that these restrictions are relevant for query
evaluation. Further, we give a general result on rewriting CEL formulas into the so-called
LP-normal form, a normal form for dealing with unary filters. For the intermediate evaluation
model, we introduce a formal computational model for the regular fragment of CEL, called
complex event automata (CEA). We show that this model is closed under I/O-determinization
and provide translations for CEL formulas with unary filters into CEA. More important, we
show an efficient algorithm for evaluating CEA with clear performance guarantees: constant
time per tuple followed by constant-delay enumeration of the output. Finally, we bring
together our results to present a formal framework for evaluating CEL.



A. Grez, C. Riveros, and M. Ugarte 5:3

Related work. Active Database Management Systems (ADSMS) and Data Stream Manage-
ment Systems (DSMS) process data streams, and thus they are usually associated with CEP
systems. Both technologies aim to execute relational queries over dynamic data [19, 2, 9]. In
contrast, CEP systems see data streams as a sequence of events where the arrival order is
the guide for finding patterns inside streams (see [24] for a comparison between ADSMS,
DSMS, and CEP). Therefore, DSMS query languages (e.g. CQL [10]) are incomparable with
our framework since they do not focus on CEP operators like sequencing and iteration.

Query languages for CEP are usually divided into three approaches [24, 11]: logic-based,
tree-based and automata-based models. Logic-based models have their roots in temporal
logic or event calculus, and usually have a formal, declarative semantics [8, 12, 20] (see [13]
for a survey). However, this approach does not include iteration as an operator or it does not
model the output explicitly. Furthermore, their evaluation techniques rely on logic inference
mechanisms which are radically different from our approach. Tree-based models [38, 35, 1]
have also been used for CEP but their language semantics is usually non-declarative and
their evaluation techniques are based on cost-models, similar to relational database systems.

Automata-based models are close to what we propose in this paper. Previous proposals
(e.g. SASE[5], NextCEP[44], DistCED[40]) do not rely in a denotational semantics; their
output is defined by intermediate automata models. This implies that either iteration cannot
be nested [5] or its semantics is confusing [44]. Other proposals (e.g. CEDR[15], TESLA[22],
PBCED[7]) are defined with a formal semantics but they do not include iteration. An
exception is Cayuga[25], but its language does not allow reusing variables and sequencing is
non-associative, which results in an unintuitive semantics. Our framework is comparable to
these systems, but provides a well-defined language that is compositional, allowing arbitrary
nesting of operators. Moreover, we present the first evaluation of CEP queries that guarantees
constant time per event and constant-delay enumeration of the output.

Finally, there has been some research in theoretical aspects of CEP, e.g. in axiomatization
of temporal models [48], privacy [32], and load shedding [31]. This literature does not study
the semantics and evaluation of CEP and, therefore, is orthogonal to our work.

Organization. We give an intuitive introduction to CEP and our framework in Section 2.
In Section 3 and 4 we formally present our logic and selection strategies. The syntactic
structure of the logic is studied in Section 5. The computational model and compilation of
formulas are studied in Section 6. In Section 7 we develop efficient evaluation techniques and
in Section 8 we present a framework summarizing our results. Future work is discussed in
Section 9. Due to space limitations all proofs are deferred to the journal version.

2 Events in action

We start by presenting the main features and challenges of CEP. The examples used in this
section will also serve throughout the paper as running examples.

In a CEP setting, events arrive in a streaming fashion to a system that must detect certain
patterns [24]. For the purpose of illustration assume there is a stream produced by wireless
sensors positioned in a farm, whose main objective is to detect fires. As a first scenario,
assume that there are three sensors, and each of them can measure both temperature (in
Celsius degrees) and relative humidity (as the percentage of vapor in the air). Each sensor is
assigned an id in {0, 1, 2}. The events produced by the sensors consist of the id of the sensor
and a measurement of temperature or humidity. In favor of brevity, we write T (id, tmp) for

ICDT 2019



5:4 A Formal Framework for Complex Event Processing

type H T H H T T T H H . . .
id 2 0 0 1 1 0 1 1 0 . . .

value 25 45 20 25 40 42 25 70 18
index 0 1 2 3 4 5 6 7 8 . . .

Figure 1 A stream S of events measuring temperature and humidity. “value” contains degrees
and humidity for T - and H- events, respectively.

an event reporting temperature tmp from sensor with id id, and similarly H(id, hum) for
events reporting humidity. Figure 1 depicts such a stream: each column is an event and the
value row is the temperature or humidity if the event is of type T or H, respectively.

The patterns to be detected are generally specified by domain experts. For the sake of
illustration, assume that the position of sensor 0 is particularly prone to fires, and it has been
detected that a temperature measurement above 40 degrees Celsius followed by a humidity
measurement of less than 25% represents a fire with high probability. Let us intuitively
explain how we can express this as a pattern (also called a formula) in our framework:

ϕ1 = (T AS x ; H AS y) FILTER (x.tmp > 40 ∧ y.hum <= 25 ∧ x.id = 0 ∧ y.id = 0)

This formula is asking for two events, one of type temperature (T ) and one of type humidity
(H). The events of type temperature and humidity are given names x and y, respectively, and
the two events are filtered to select only those pairs (x, y) representing a high temperature
followed by a low humidity measured by sensor 0.

What should the evaluation of ϕ1 over the stream in Figure 1 return? A first important
remark is that event streams are noisy, and one does not expect the events matching a
formula to be contiguous in the stream. Then, a CEP engine needs to be able to dismiss
irrelevant events. The semantics of the sequencing operator (;) will thus allow for arbitrary
events to occur in between the events of interest. A second remark is that in CEP the set of
events matching a pattern, called a complex event, is particularly relevant to the end user.
Every time that a formula matches a portion of the stream, the final user should retrieve the
events that compose that portion of the stream. This means that the evaluation of a formula
over a stream should output a set of complex events. In our framework, each complex event
will be the set of indexes (stream positions) of the events that witness the matching of a
formula. Specifically, let S[i] be the event at position i of the stream S. What we expect for
the output of formula ϕ1 consists of sets {i, j} such that S[i] is of type T , S[j] is of type H,
i < j, and they satisfy the conditions expressed after the FILTER. By inspecting Figure 1,
we can see that the pairs satisfying these conditions are {1,2}, {1,8}, and {5,8}.

Formula ϕ1 illustrates the two most elemental features of CEP, namely sequencing and
filtering [24, 9, 50, 2, 17]. But although it detects a set of possible fires, it restricts the
order in which the two events occur: the temperature must be measured before the humidity.
Naturally, this could prevent the detection of a fire in which the humidity was measured
first. This motivates the introduction of disjunction, another common feature in CEP
engines [24, 9]. To illustrate, we extend ϕ1 by allowing events to appear in arbitrary order.

ϕ2 = [(T AS x ; H AS y) OR (H AS y ; T AS x)] FILTER

(x.tmp > 40 ∧ y.hum <= 25 ∧ x.id = 0 ∧ y.id = 0)

The OR operator allows for any of the two patterns to be matched. The result evaluation ϕ2
over S (Figure 1) is the same as the evaluation of ϕ1 plus the complex event {2,5}.



A. Grez, C. Riveros, and M. Ugarte 5:5

The previous formulas show how CEP systems raise alerts when a certain complex event
occurs. However, from a wider scope the objective of CEP is to retrieve information of interest
from streams. For example, assume that we want to see how does temperature change in the
location of sensor 1 when there is an increase of humidity. A problem here is that we do not
know a priori the amount of temperature measurements; we need to capture an unbounded
amount of events. The iteration operator + (a.k.a. Kleene closure) [24, 9, 30] is introduced
in most CEP frameworks for solving this problem. This operator introduces many difficulties
in the semantics of CEP languages. For example, since events are not required to occur
contiguously, the nesting of + is particularly tricky and most frameworks simply disallow
this (see [49, 10, 26]). Coming back to our example, the formula for measuring temperatures
whenever an increase of humidity is detected by sensor 1 is:

ϕ3 = [H AS x ; (T AS y FILTER y.id = 1)+ ; H AS z]
FILTER (x.hum < 30 ∧ z.hum > 60 ∧ x.id = 1 ∧ z.id = 1)

Intuitively, variables x and z witness the increase of humidity from less than 30% to more
than 60%, and y captures temperature measures between x and z. Note that the filter for y
is included inside the + operator. Some frameworks allow to declare variables inside a + and
filter them outside that operator (e.g. [49]). Although it is possible to define the semantics
for that syntax, this form of filtering makes the definition of nesting + difficult. Another
semantic subtlety of the + operator is the association of y to an event. Given that we want
to match the event (T AS y FILTER y.id = 1) an unbounded number of times: how should
the events associated to y occur in the complex events generated as output? Associating
different events to the same variable during evaluation has proven to make the semantics of
CEP languages hard to extend. In Section 3, we introduce a semantics that allows nesting +
and associate variables (inside + operators) to different events across repetitions.

Let us now explain the evaluation of ϕ3 over S (Figure 1). The only two humidity events
satisfying the top-most filter are S[3] and S[7], and the events in between that satisfy the
inner filter are S[4] and S[6]. As expected, {3, 4, 6, 7} is part of the output. However, there
are other complex events in the output. Since, as discussed, there might be irrelevant events
between relevant ones, the semantics of + must allow for skipping arbitrary events. This
implies that the complex events {3,6,7} and {3,4,7} are also part of the output.

The previous discussion raises an interesting question: are users interested in all complex
events? Are some complex events more informative than others? Coming back to the output
of ϕ3 ({3, 6, 7}, {3, 4, 7} and {3, 4, 6, 7}), one can easily argue that the largest complex event
is more informative since all events are contained in it. The complex events output by ϕ1
deserve a more thorough analysis. In this scenario, the pairs that have the same second
component (e.g., {1,8} and {5,8}) represent a fire occurring at the same place and time, so
one could argue that only one of the two is necessary. For cases like above, it is common
to find CEP systems that restrict the output by using so-called selection strategies (see for
example [49, 50, 22]). Selection strategies are a fundamental feature of CEP. Unfortunately,
they have only been presented as heuristics applied to particular computational models, and
thus their semantics are given by algorithms and are hard to generalize. A special mention
deserves the next selection strategy (called skip-till-next-match in [49, 50]) which models
the idea of outputting only those complex events that can be generated without skipping
relevant events. Although the semantics of next has been mentioned in previous papers (e.g
[15]), it is usually underspecified [49, 50] or complicates the semantics of other operators [26].
In Section 4, we formally define a set of selection strategies including next.

ICDT 2019



5:6 A Formal Framework for Complex Event Processing

Before formally presenting our framework, we illustrate one more common feature of CEP,
namely correlation. Correlation is introduced by filtering events with predicates that involve
more than one event. For example, consider that we want to see how does temperature
change at some location whenever there is an increase of humidity, like in ϕ3. What we need
is a pattern where all the events are produced by the same sensor, but that sensor is not
necessarily sensor 1. This is achieved by the following pattern:

ϕ4 = [H AS x; (T AS y FILTER y.id = x.id)+;H AS z]
FILTER (x.hum < 30 ∧ z.hum > 60 ∧ x.id = z.id)

Notice that here the filters contain the predicates x.id = y.id and x.id = z.id that force all
events to have the same id. Although this might seem simple, the evaluation of formulas that
correlate events introduces new challenges. Intuitively, ϕ4 is more complex because the id of
x must be remembered in order to compare it with future incoming events. This behavior
is clearly not “regular” and it will not be captured by a finite state model [33, 43]. In this
paper, we study and characterize the regular core of CEP-systems. In sections 6 and 8 we
focus on formulas without correlation. As we will see, the formal analysis of this fragment
already presents non-trivial challenges, which is why we defer the analysis of formulas like
ϕ4 for future work. It is important to mention that the semantics of our language (including
selection strategies) is general and includes more involved filters like correlation.

3 A query language for CEP

Having discussed the common operators and features of CEP, we proceed to formally introduce
CEL (Complex Event Logic), our pattern language for capturing complex events.

Schemas, Tuples and Streams. Let A be a set of attribute names and D a set of values. A
database schema R is a finite set of relation names, where each R ∈ R is associated to a tuple
of attributes in A denoted by att(R). If R is a relation name, then an R-tuple is a function
t ∶ att(R) →D. The type of an R-tuple t is R, and denote this by type(t) = R. For any relation
name R, tuples(R) denotes the set of all possible R-tuples, i.e., tuples(R) = {t ∶ att(R) →D}.
Similarly, for any database schema R, tuples(R) = ⋃R∈R tuples(R).

Given a schema R, an R-stream S is an infinite sequence S = t0t1 . . . where ti ∈ tuples(R).
When R is clear from the context, we refer to S simply as a stream. Given a stream
S = t0t1 . . . and a position i ∈ N, the i-th element of S is denoted by S[i] = ti, and the
sub-stream titi+1 . . . of S is denoted by Si. Note that we consider that the time of each event
is given by its index, and defer a more elaborated model (like [48]) for future work.

Let X be a set of variables. Given a schema R, a predicate of arity n is an n-ary relation
P over tuples(R), i.e. P ⊆ tuples(R)n. An atom is an expression P (x̄) where P is an n-ary
predicate and x̄ ∈ Xn. As usual, we express predicates as formulas over attributes, and use x.a
to reffer to the attribute a of the tuple represented by x. For example, P (x) ∶= x.hum < 30
is an atom and P is the predicate of all tuples that have a humidity attribute of less than
30. We consider that checking if a tuple t is in a predicate P takes time O(∣t∣), and that
every atom P (x̄) has constant size (and thus the size of a formula is independent of the
type of predicates). We assume a fixed set of predicates P (i.e. defined by the CEP system).
Moreover, we assume that P is closed under intersection, union, and complement, and
P contains the predicate PR(x) ∶= type(x) = R for checking if a tuple is an R-tuple for
every R ∈ R.



A. Grez, C. Riveros, and M. Ugarte 5:7

CEL syntax. Now we proceed to give the syntax of what we call the core of CEL (core-CEL
for short), a logic inspired by the operations described in the previous section. This language
contains the most essential CEP features. The set of formulas in core-CEL, or core formulas
for short, is given by the following grammar:

ϕ ∶= R AS x ∣ ϕ FILTER P (x̄) ∣ ϕ OR ϕ ∣ ϕ ; ϕ ∣ ϕ+

where R is a relation name, x is a variable in X and P (x̄) is an atom in P. For example, all
formulas in Section 2 are CEL formulas. Throughout the paper we use ϕ FILTER (P (x̄) ∧
Q(ȳ)) or ϕ FILTER (P (x̄) ∨Q(ȳ)) as syntactic sugar for (ϕ FILTER P (x̄)) FILTER Q(ȳ) or
(ϕ FILTER P (x̄)) OR (ϕ FILTER Q(ȳ)), respectively. Unlike existing frameworks, we do not
restrict the syntax, allowing for arbitrary nesting (in particular of +).

CEL semantics. We proceed to define the semantics of core formulas, for which we need to
introduce some further notation. A complex event C is defined as a non-empty and finite
set of indices. As mentioned in Section 2, a complex event contains the positions of the
events that witness the matching of a formula over a stream, and moreover, they are the
final output of evaluating a formula over a stream. We denote by ∣C ∣ the size of C and by
min(C) and max(C) the minimum and maximum element of C, respectively. Given two
complex events C1 and C2, C1 ⋅C2 denotes the concatenation of two complex events, that is,
C1 ⋅C2 ∶= C1 ∪C2 whenever max(C1) < min(C2) and is undefined otherwise.

In core-CEL formulas, variables are only used to filter and select particular events, i.e.
they are not retrieved as part of the output. As examples in Section 2 suggest, we are only
concerned with finding the events that compose the complex events, and not which position
corresponds to which variable. The reason behind this is that the operator + allows for
repetitions, and therefore variables under (possibly nested) + operators would have a special
meaning, particularly for filtering. This discussion motivates the following definitions. Given
a formula ϕ we denote by var(ϕ) the set of all variables mentioned in ϕ (including filters),
and by vdef(ϕ) all variables defined in ϕ by a clause of the form R AS x. Furthermore,
vdef+(ϕ) denotes all variables in vdef(ϕ) that are defined outside the scope of all + operators.
For example, for ϕ = (T AS x ; (H AS y)+) FILTER z.id = 1 we have that var(ϕ) = {x, y, z},
vdef(ϕ) = {x, y}, and vdef+(ϕ) = {x}. Finally, a valuation is a function ν ∶ X→ N. Given a
finite set of variables U ⊆ X and two valuations ν1 and ν2, the valuation ν1[ν2/U] is defined
by ν1[ν2/U](x) = ν2(x) if x ∈ U and by ν1[ν2/U](x) = ν1(x) otherwise.

We are ready to define the semantics of a core-CEL formula ϕ. Given a complex event
C and a stream S, we say that C is in the evaluation of ϕ over S under valuation ν

(C ∈ ⟦ϕ⟧(S, ν)) if one of the following conditions holds:
ϕ = R AS x, C = {ν(x)}, and type(S[ν(x)]) = R.
ϕ = ψ FILTER P (x1, . . . , xn), C ∈ ⟦ψ⟧(S, ν) and (S[ν(x1)], . . . , S[ν(xn)]) ∈ P .
ϕ = ψ1 OR ψ2 and C ∈ ⟦ψ1⟧(S, ν) or C ∈ ⟦ψ2⟧(S, ν).
ϕ = ψ1 ; ψ2 and there are C1 ∈ ⟦ψ1⟧(S, ν) and C2 ∈ ⟦ψ2⟧(S, ν) such that C = C1 ⋅C2.
ϕ = ψ+ and there exists ν′ such that C ∈ ⟦ψ⟧(S, ν[ν′/U]) or C ∈ ⟦ψ ; ψ+⟧(S, ν[ν′/U]),
where U = vdef+(ψ).

There are a couple of important remarks here. First, the valuation ν can be defined over
a superset of the variables mentioned in the formula. This is important for sequencing (;)
because we require the complex events from both sides to be produced with the same valuation.
Second, when we evaluate a subformula of the form ψ+, we carry the value of variables
defined outside the subformula. For example, the subformula (T AS y FILTER y.id = x.id)+
of ϕ4 does not define the variable x. However, from the definition of the semantics we see

ICDT 2019



5:8 A Formal Framework for Complex Event Processing

that x will be already assigned (because R AS x occurs outside the subformula). This is
precisely where other frameworks fail to formalize iteration, as without this construct it is
not easy to correlate the variables inside + with the ones outside, as we illustrate with ϕ4.

As previously discussed, in core-CEL variables are just used for comparing attributes
with FILTER, but are not relevant for the final output. In consequence, we say that C
belongs to the evaluation of ϕ over S (denoted C ∈ ⟦ϕ⟧(S)) if there is a valuation ν such
that C ∈ ⟦ϕ⟧(S, ν). As an example, the complex events presented in Section 2 are indeed the
outputs of ϕ1 to ϕ3 over the stream in Figure 1.

4 Selection strategies

Matching complex events is a computationally intensive task. As the examples in Section 2
suggest, the main reason behind this is that the amount of complex events can grow
exponentially in the size of the stream, forcing systems to process large numbers of candidate
outputs. In order to speed up the matching processes, it is common to restrict the set
of results [18, 49, 50]. Unfortunately, most proposals in the literature restrict outputs
by introducing heuristics to particular computational models without describing how the
semantics are affected. For a more general approach, we introduce selection strategies (or
selectors) as unary operators over core-CEL formulas. Formally, we define four selection
strategies called strict (STRICT), next (NXT), last (LAST) and max (MAX). STRICT and NXT
are motivated by previously introduced operators [49] under the name of strict-contiguity
and skip-till-next-match, respectively. LAST and MAX are useful selection strategies from a
semantic point of view. We define each selection strategy below, giving the motivation and
formal semantics.

STRICT. As the name suggest, STRICT or strict-contiguity keeps only the complex events
that are contiguous in the stream. To motivate this, recall that formula ϕ1 in Section 2
detects complex events composed by a temperature above 40 degrees followed by a humidity
of less than 25%. As already argued, in general one could expect other events between x
and y. However, it could be the case that this pattern is of interest only if the events occur
contiguously in the stream, or perhaps the stream has been preprocessed by other means and
irrelevant events have been thrown out already. For this purpose, STRICT reduces the set of
outputs selecting only strictly consecutive complex events. Formally, for any CEL formula ϕ
we have that C ∈ ⟦STRICT(ϕ)⟧(S, ν) holds if C ∈ ⟦ϕ⟧(S, ν) and for every i, j ∈ C, if i < k < j
then k ∈ C (i.e., C is an interval). In our running example, STRICT(ϕ1) would only produce
{1,2}, although {1,8} and {5,8} are also outputs for ϕ1 over S.

NEXT. The second selector, NXT, is similar to the previously proposed operator skip-till-
next-match [49]. The motivation behind this operator comes from a heuristic that consumes
a stream skipping those events that cannot participate in the output, but matching patterns
in a greedy manner that selects only the first event satisfying the next element of the query.
In [49] the authors gave the definition of this strategy just as

“a further relaxation is to remove the contiguity requirements: all irrelevant events
will be skipped until the next relevant event is read” (*).

In practice, skip-till-next-match is defined by an evaluation algorithm that greedily adds
an event to the output whenever a sequential operator is used, or adds as many events as
possible whenever an iteration operator is used. The fact that the semantics is only defined



A. Grez, C. Riveros, and M. Ugarte 5:9

by an algorithm requires a user to understand the algorithm to write meaningful queries. In
other words, this operator speeds up the evaluation by sacrificing the clarity of the semantics.

To overcome the above problem, we formalize the intuition behind (*) based on a special
order over complex events. As we will see later, this allows to speed up the evaluation
process as much as skip-till-next-match while providing clear and intuitive semantics. Let
C1 and C2 be complex events. The symmetric difference between C1 and C2 (C1 △C2) is
the set of all elements either in C1 or C2 but not in both. We say that C1 ≤next C2 if either
C1 = C2 or min(C1 △C2) ∈ C2. For example, {5,8} ≤next {1,8} since the minimum element
in {5,8} △ {1,8} = {1,5} is 1, which is in {1,8}. Note that this is intuitively similar to
skip-till-next-match, as we are selecting the first relevant event. An important property is
that the ≤next-relation forms a total order among complex events, implying the existence of
a minimum and a maximum over any finite set of complex events.

I Lemma 1. ≤next is a total order between complex events.

We can define now the semantics of NXT: for a CEL formula ϕ we have C ∈ ⟦NXT(ϕ)⟧(S, ν)
if C ∈ ⟦ϕ⟧(S, ν) and for every complex event C ′ ∈ ⟦ϕ⟧(S, ν), if max(C) = max(C ′) then
C ′ ≤next C. In other words, C must be the ≤next-maximum match among all matches that
end in max(C). In our running example, we have that {1,8} matches NXT(ϕ1) but {5,8}
does not. Furthermore, {3, 4, 6, 7} matches NXT(ϕ4) while {3, 4, 7} and {3, 6, 7} do not. Note
that we compare outputs that have the same final position. This way, complex events are
discarded only when there is a preferred complex event triggered by the same last event.

LAST. The NXT selector is motivated by the computational benefit of skipping irrelevant
events in a greedy fashion. However, from a semantic point of view it might not be what a
user wants. For example, if we consider again ϕ1 and stream S (Section 2), we know that
every complex event in NXT(ϕ1) will have event 1. In this sense, the NXT strategy selects the
oldest complex event for the formula. We argue here that a user might actually prefer the
opposite, i.e. the most recent explanation for the matching of a formula. This is the idea
captured by LAST. Formally, the LAST selector is defined exactly as NXT, but changing the
order ≤next by ≤last: if C1 and C2 are two complex events, then C1 ≤last C2 if either C1 = C2
or max(C1 △C2) ∈ C2. For example, {1,8} ≤last {5,8}. In our running example, LAST(ϕ1)
would select the most recent temperature and humidity that explain the matching of ϕ1 (i.e.
{5,8}), which might be a better explanation for a possible fire. Surprisingly, we show in
Section 7 that LAST enjoys the same good computational properties as NXT, even though it
does not come from a greedy heuristic like NXT does.

MAX. A more ambitious selection strategy is to keep the maximal complex events in terms
of set inclusion, which could be naturally more useful because these complex events are the
most informative. Formally, given a CEL formula ϕ we say that C ∈ ⟦MAX(ϕ)⟧(S, ν) holds iff
C ∈ ⟦ϕ⟧(S, ν) and for all C ′ ∈ ⟦ϕ⟧(S, ν), if max(C) = max(C ′) then C ⊆ C ′. Coming back to
ϕ1, the MAX selector will output both {1,8} and {5,8}, given that both complex events are
maximal in terms of set inclusion. On the contrary, formula ϕ3 produced {3,6,7}, {3,4,7},
and {3, 4, 6, 7}. Then, MAX(ϕ3) will only produce {3, 4, 6, 7} as output, which is the maximal
complex event. It is interesting to note that if we evaluate both NXT(ϕ3) and LAST(ϕ3) over
the stream we will also get {3, 4, 6, 7} as the only output, illustrating that NXT and LAST also
yield complex events with maximal information.

We have formally presented the foundations of a language for recognizing complex events,
and how to restrict the outputs of this language in meaningful manners. Next we study
practical aspects of the CEL syntax that impact how efficiently can formulas be evaluated.

ICDT 2019



5:10 A Formal Framework for Complex Event Processing

5 Syntactic analysis of CEL

We now study the syntactic form of CEL formulas. We define well-formed and safe formulas,
which are syntactic restrictions that characterize semantic properties of interest. Then, we
define a convenient normal form and show that any formula can be rewritten in this form.

Syntactic restrictions of formulas. Although CEL has well-defined semantics, there are
some formulas whose semantics can be unintuitive. Consider for example the formula
ϕ5 = (H AS x) FILTER (y.tmp ≤ 30). Here, x will be naturally bound to the only element in
a complex event, but y will not add a new position to the output. By the semantics of CEL,
a valuation ν for ϕ5 must assign a position for y that satisfies the filter, but such position is
not restricted to occur in the complex event. Moreover, y is not necessarily bound to any of
the events seen up to the last element, and thus a complex event could depend on future
events. For example, if we evaluate ϕ5 over our running example S (Figure 1), we have that
{2} ∈ ⟦ϕ5⟧(S), but this depends on the event at position 6. This means that to evaluate
this formula we potentially need to inspect events that occur after all events composing the
output complex event have been seen, an arguably undesired situation.

To avoid this problem, we introduce the notion of well-formed formulas. As the previous
example illustrates, this requires defining where variables are bound by a subformula of the
form R AS x. The set of bound variables of a formula ϕ is denoted by bound(ϕ) and is
recursively defined as follows:

bound(R AS x) = {x} bound(ψ FILTER P (x̄)) = bound(ψ)
bound(ψ1 OR ψ2) = bound(ψ1) ∩ bound(ψ2) bound(ψ+) = ∅

bound(ψ1 ; ψ2) = bound(ψ1) ∪ bound(ψ2) bound(SEL(ψ)) = bound(ψ)

where SEL is any selection strategy. We say that a CEL formula ϕ is well-formed if for every
subformula of the form ψ FILTER P (x̄) and every x ∈ x̄, there is another subformula ψx such
that x ∈ bound(ψx) and ψ is a subformula of ψx. This definition allows for including filters
with variables defined in a wider scope. For example, formula ϕ4 in Section 2 is well-formed
although it has the not-well-formed formula (T AS y FILTER y.id = x.id)+ as a subformula.

One can argue that it would be desirable to restrict the users to only write well-formed
formulas. Indeed, the well-formed property can be checked efficiently by a syntactic parser
and users should understand that all variables in a formula must be correctly defined. Given
that well-formed formulas have a well-defined variable structure, in the future we restrict our
analysis to well-formed formulas.

Another issue for CEL is that the reuse of variables can easily produce unsatisfiable
formulas. For example, the formula ψ = T AS x ; T AS x is not satisfiable (i.e. ⟦ψ⟧(S) = ∅
for every S) because variable x cannot be assigned to two different positions in the stream.
However, we do not want to be too conservative and disallow the reuse of variables in
the whole formula (otherwise formulas like ϕ2 in Section 2 would not be permitted). This
motivates the notion of safe CEL formulas. We say that a CEL formula is safe if for every
subformula of the form ϕ1 ; ϕ2 it holds that vdef+(ϕ1) ∩ vdef+(ϕ2) = ∅. For example, all
CEL formulas in this paper are safe except for the formula ψ above.

The safe notion is a mild restriction to help evaluating CEL, and can be easily checked
during parsing time. However, safe formulas are a subclass of CEL and it could be the case
that they do not capture the full language. We show that this is not the case. Formally, we
say that two CEL formulas ϕ and ψ are equivalent, denoted by ϕ ≡ ψ, if ⟦ϕ⟧(S) = ⟦ψ⟧(S)
for every stream S.



A. Grez, C. Riveros, and M. Ugarte 5:11

I Theorem 2. Given a core-CEL formula ϕ, there is a safe formula ϕ′ such that ϕ ≡ ϕ′ and
∣ϕ′∣ is at most exponential in ∣ϕ∣.

By this result, we can restrict our analysis to safe formulas without loss of generality.
Unfortunately, we do not know if the exponential size of ϕ′ is unavoidable. We conjecture
that this is the case, but we do not know yet the corresponding lower bound.

LP-normal form. Now we study how to rewrite CEL formulas to simplify the evaluation of
unary filters. Intuitively, filter operators in a CEL formula can become difficult to handle for
a query engine. To illustrate this, consider again formula ϕ1 in Section 2. Syntactically, this
formula states “find an event x followed by an event y, and then check that they satisfy the
filter conditions”. However, we would like an execution engine to only consider those events
x with id = 0 that represent temperature above 40 degrees. Only afterwards the possible
matching events y should be considered. In other words, formula ϕ1 can be restated as:

ϕ′1 = [(T AS x) FILTER (x.tmp > 40 ∧ x.id = 0)];
[(H AS y) FILTER (y.hum <= 25 ∧ y.id = 0)]

This example motivates defining the locally parametrized normal form (LP normal form).
Let U be the set of all predicates P ∈ P of arity 1 (i.e. P ⊆ tuples(R)). We say that a formula
ϕ is in LP-normal form if, for every subformula ϕ′ FILTER P (x̄) of ϕ with P ∈ U, it holds
that x̄ = {x} and ϕ′ = R AS x for some R and x. In other words, all filters containing unary
predicates are applied directly to the definitions of their variables. For instance, formula ϕ′1
is in LP-normal form while formulas ϕ1 and ϕ2 are not. Note that non-unary predicates are
not restricted, and they can be used anywhere in the formula.

One can easily see that having formulas in LP-normal form would be an advantage for
an evaluation engine, because it can filter out some events as soon as they arrive. However,
formulas that are not in LP-normal form can still be very useful for declaring patterns. To
illustrate this, consider the formula:

ϕ6 = (T AS x); ((T AS y FILTER x.temp ≥ 40) OR (H AS y FILTER x.temp < 40))

Here, the FILTER operator works like a conditional statement: if the x-temperature is greater
than 40, then the following event should be a temperature, and a humidity event otherwise.
This type of conditional statements can be very useful, but also hard to evaluate. Fortunately,
the next result shows that one can always rewrite a formula into LP-normal form, incurring
in the worst case in an exponential blow-up in the size of the formula.

I Theorem 3. Let ϕ be a CEL formula. Then, there is a CEL formula ψ in LP-normal
form such that ϕ ≡ ψ, and ∣ψ∣ is at most exponential in ∣ϕ∣.

The importance of this result and Theorem 2 will become clear in the next sections,
where we show that safe formulas in LP-normal form have good properties for evaluation.
Similar to Theorem 2, we do not know if the exponential blow-up is unavoidable and leave
this for future work.

6 A computational model for CEL

In this section, we introduce a formal computational model for evaluating CEL formulas
called complex event automata (CEA for short). Similar to classical database management
systems (DBMS), it is useful to have a formal model that stands between the query language

ICDT 2019



5:12 A Formal Framework for Complex Event Processing

and the evaluation algorithms, in order to simplify the analysis and optimization of the whole
evaluation process. There are several examples of DBMS that are based on this approach like
regular expressions and finite state automata [33, 6], and SQL and relational algebra [3, 41].
Here, we propose CEA as the intermediate evaluation model for CEL and show later how to
compile any (unary) CEL formula into a CEA.

As its name suggests, complex event automata (CEA) are an extension of Finite State
Automata (FSA). The first difference from FSA comes from handling streams instead of words.
A CEA is said to run over a stream of tuples, unlike FSA which run over words of a certain
alphabet. The second difference arises directly from the first one by the need of processing
tuples, which can have infinitely many different values, in contrast to the finite input alphabet
of FSA. To handle this, our model is extended the same way as a Symbolic Finite Automata
(SFA) [47]. SFAs are finite state automata in which the alphabet is described implicitly by a
boolean algebra over the symbols. This allows automata to work with a possibly infinite
alphabet and, at the same time, use finite state memory for processing the input. CEA are
extended analogously, which is reflected in transitions labeled by unary predicates over tuples.
The last difference addresses the need to generate complex events instead of boolean answers.
A well known extension for FSA are Finite State Transducers [16], which are capable of
producing an output whenever an input element is read. Our computational model follows
the same approach: CEA are allowed to generate and output complex events when reading a
stream.

Recall from Section 5 that U is the subset of unary predicates of P. Let ●, ○ be two
symbols. A complex event automaton (CEA) is a tuple A = (Q,∆, I, F ) where Q is a finite
set of states, ∆ ⊆ Q × (U × {●, ○}) ×Q is the transition relation, and I,F ⊆ Q are the set
of initial and final states, respectively. Given a stream S = t0t1 . . ., a run ρ of A over S is
a sequence of transitions: ρ ∶ q0

P0/m0ÐÐ→ q1
P1/m1ÐÐ→ ⋯ Pn/mnÐÐ→ qn+1 such that q0 ∈ I, ti ∈ Pi and

(qi, Pi,mi, qi+1) ∈ ∆ for every i ≤ n. We say that ρ is accepting if qn+1 ∈ F and mn = ●. We
denote by Runn(A, S) the set of accepting runs of A over S of length n. Further, events(ρ)
is the set of positions where the run marks S, namely events(ρ) = {i ∈ [0, n] ∣ mi = ●}.
Intuitively this means that when a transition is taken, if the transition has the ● symbol then
the current position of the stream is included in the output (similar to the execution of a
transducer). Note that we require the last position of an accepting run to be marking, as
otherwise an output could depend on future events (see the discussion about well-formed
formulas in Section 5). Given a stream S and n ∈ N, we define the set of complex events of
A over S at position n as ⟦A⟧n(S) = {events(ρ) ∣ ρ ∈ Runn(A, S)} and the set of all complex
events as ⟦A⟧(S) = ⋃n ⟦A⟧n(S). Note that ⟦A⟧(S) can be infinite, but ⟦A⟧n(S) is finite.

Consider as an example the CEA A depicted in Figure 2. In this CEA, each transition
P (x)∣● marks one H-tuple and each transition P ′(x)∣● marks a T -tuple with temperature
bigger than 40. Note also that the transitions labelled by TRUE ∣○ allow A to arbitrarily skip
tuples of the stream. Then, for every stream S, ⟦A⟧(S) represents the set of all complex
events that begin and end with an H-tuple and also contain some of the T -tuples with
temperature higher than 40.

It is important to stress that CEA are designed to be an evaluation model for the
unary fragment of CEL (a formal definition is presented in the next paragraph). Several
computational models have been proposed for complex event processing [26, 40, 49, 44], but
most of them are informal and non-standard extensions of finite state automata. In our
framework, we want to take a step back compared to previous proposals and define a simple
but powerful model that captures the regular core of CEL. Intuitively, formulas like ϕ1, ϕ2
and ϕ3 in Section 2 can be evaluated using a bounded amount of memory. In contrast,



A. Grez, C. Riveros, and M. Ugarte 5:13

q1 q2 q3
P (x) ∣ ●

TRUE ∣ ○ P ′(x) ∣ ● TRUE ∣ ○

P (x) ∣ ●

Figure 2 A CEA that can generate an unbounded amount of complex events. Here P (x) ∶=

type(x) = H and P ′(x) ∶= type(x) = T ∧ x.temp > 40.

formula ϕ4 needs unbounded memory to store candidate events seen in the past, and thus,
it calls for a more sophisticated model (e.g. data automata [45]). Of course one would like
to have a full-fledged model for CEL, but to this end we must first understand the regular
fragment. A computational model for the whole CEP logic is left as future work.

Compiling unary CEL into CEA. We now show how to compile a well-formed and unary
CEL formula ϕ into a CEA Aϕ. Formally, we say a CEL formula ϕ is equivalent to a CEA A
if ⟦ϕ⟧(S) = ⟦A⟧(S) for every stream S. A CEL formula ϕ is unary if for every subformula of
ϕ of the form ϕ′ FILTER P (x̄), it holds that P (x̄) is a unary predicate (i.e. P (x̄) ∈ U). For
example, formulas ϕ1, ϕ2, and ϕ3 in Section 2 are unary, but formula ϕ4 is not (the predicate
y.id = x.id is binary). As motivated in Section 2 and 5, despite their apparent simplicity
unary formulas already present non-trivial computational challenges (see Section 7).

I Theorem 4. For every well-formed formula ϕ in unary core-CEL, there is a CEA Aϕ

equivalent to ϕ. Furthermore, Aϕ is of size at most linear in ∣ϕ∣ if ϕ is safe and in LP-normal
form, and at most double exponential in ∣ϕ∣ otherwise.

The proof of Theorem 4 is closely related with the safeness condition and the LP-normal form
presented in Section 5. The construction first converts ϕ into an equivalent CEL formula ϕ′
in LP-normal form (Theorem 3) and then builds an equivalent CEA from ϕ′. Unfortunately,
there is an exponential blow-up for converting ϕ into LP-normal form. However, we show
that the output is of linear size if ϕ′ is safe, and of exponential size otherwise, suggesting
that restricting the language to safe formulas allows for more efficient evaluation.

We have described the compilation process without considering selection strategies. To
include them, we extend our notation and allow selection strategies to be applied over CEA.
Given a CEA A, a selection strategy SEL ∈ {STRICT,NXT,LAST,MAX} and stream S, the set of
outputs ⟦SEL(A)⟧(S) is defined analogously to ⟦SEL(ϕ)⟧(S) for a formula ϕ. Then, we say
that a CEA A1 is equivalent to SEL(A2) if ⟦A1⟧(S) = ⟦SEL(A2)⟧(S) for every stream S.

I Theorem 5. Let SEL be a selection strategy. For any CEA A, there is a CEA ASEL

equivalent to SEL(A). Furthermore, the size of ASEL is, with respect to the size of A, at most
linear if SEL = STRICT, and at most exponential otherwise.

At first this result might seem unintuitive, specially in the case of NXT, LAST and MAX. It
is not immediate (and rather involved) to show that there exists a CEA for these strategies
because they need to track an unbounded number of complex events using finite memory.
Still, this can be done with an exponential blow-up in the number of states.

Theorem 5 concludes our study of the compilation of unary CEL into CEA. We have
shown that not only is CEA able to evaluate CEL formulas, but it can also be exploited
to evaluate selections strategies. We conclude this section by introducing the notion of
I/O-determinism that will be crucial for our evaluation algorithms in the next section.

ICDT 2019



5:14 A Formal Framework for Complex Event Processing

I/O-deterministic CEA. To evaluate CEA in practice we will focus on the class of the
so-called I/O-deterministic CEA (for Input/Output deterministic). A CEA A = (Q,∆, I, F )
is I/O-deterministic if ∣I ∣ = 1 and for any two transitions (p,P1,m1, q1) and (p,P2,m2, q2),
either P1 and P2 are mutually exclusive (i.e. P1 ∩ P2 = ∅), or m1 ≠ m2. Intuitively, this
notion imposes that given a stream S and a complex event C, there is at most one run over
S that generates C (thus the name referencing the input and the output). In contrast, the
classic notion of determinism would allow for at most one run over the entire stream.

I/O-deterministic CEA are important because they allow for a simple and efficient
evaluation algorithm (discussed in Section 7). But for this algorithm to be useful, we need
to make sure that every CEA can be I/O determinized. Formally, we say that two CEA A1
and A2 are equivalent (denoted A1 ≡ A2) if for every stream S we have ⟦A1⟧(S) = ⟦A2⟧(S).

I Proposition 6. For every CEA A there is an I/O-deterministic CEA A′ such that A ≡
A′, and A′ is of size at most exponential over ∣A∣. That is, CEA are closed under I/O-
determinization.

This result and the compilation process allow us to evaluate any CEL formula by means
of I/O-deterministic CEA without loss of generality.

7 Algorithms for evaluating CEA

In this section we show how to efficiently evaluate CEA. We start by formalizing the notion
of efficient evaluation in CEP, which has not been formalized before in the CEP literature.

Efficiency in CEP. Defining a notion of efficiency for CEP is challenging since we would like
to compute complex events in one pass and using a restricted amount of resources. Streaming
algorithms [34, 28] are a natural starting point as they usually restrict the time allowed
to process each tuple and the space needed to process the first n items of a stream (e.g.,
constant or logarithmic in n). However, an important difference is that in CEP the arrival
of a single event might generate an exponential number of complex events as output. To
overcome this problem, we propose to divide the evaluation in two parts: (1) consuming new
events and updating the internal memory of the system and (2) generating complex events
from the internal memory of the system. We require both parts to be as efficient as possible.
First, (1) should process each event in a time that does not depend on the number of events
seen in the past. Second, (2) should not spend any time processing and instead it should be
completely devoted to generating the output. To formalize this notion, we assume that there
is a special instruction yieldS that returns the next element of a stream S. Then, given a
function f ∶ N → N, a CEP evaluation algorithm with f -update time is an algorithm that
evaluates a CEA A over a stream S such that:
1. between any two calls to yieldS , the time spent is bounded by O(f(∣A∣) ⋅ ∣t∣), where t is

the tuple returned by the first of such calls, and
2. maintains a data structure D in memory, such that after calling yieldS n times, the set

⟦A⟧n(S) can be enumerated from D with constant delay.
The notion of constant-delay enumeration was defined in the database community [46, 14]
precisely for defining efficiency whenever generating the output might use considerable time.
Formally, it requires the existence of a routine Enumerate that receives D as input and
outputs all complex events in ⟦A⟧n(S) without repetitions, while spending a constant amount
of time before and after each output. Naturally, the time to generate a complex event C
must be linear in ∣C ∣. We remark that 1. is a natural restriction imposed in the streaming
literature [34], while 2. is the minimum requirement if an arbitrarily large set of arbitrarily
large outputs must be produced [46].



A. Grez, C. Riveros, and M. Ugarte 5:15

Parser
(Th. 2)

Query
Rewrite
(Th. 3)

Compilation
(Th. 4, 5)

Evaluation
(Th. 6, 7)

Complex
EventsCEL

Stream

WF and safe LP-normal form CE automaton

Figure 3 Evaluation framework for CEL.

Note that the update time O(f(∣A∣) ⋅ ∣t∣) is linear in ∣t∣ if we consider that A is fixed.
Since this is the case in practice (i.e. the automaton is generally small with respect to the
stream, and does not change during evaluation), this amounts to constant update time when
measured under data complexity (tuples can also be considered of constant size).

Efficient evaluation of CEA. Having a good notion of efficiency, we proceed to show how
to evaluate CEA efficiently. As it was previously discussed in Section 6, I/O deterministic
CEA are specially designed for having CEP evaluation algorithms with linear update time.
Furthermore, given that any CEA can be I/O-determinized (Proposition 6), this implies a
CEP evaluation algorithm to evaluate any CEA. Unfortunately, the determinization procedure
has an exponential blow-up in the size of the automaton, increasing the update time when
the automaton is not I/O deterministic.

I Theorem 7. For every I/O-deterministic CEA A, there is a CEP evaluation algorithm
with ∣A∣-update time. Furthermore, if A is any CEA, there is a CEP evaluation algorithm
with 2∣A∣-update time.

We can further extend the CEP evaluation algorithm for I/O-deterministic CEA to any
selection strategies by using the results of Theorem 5. However, by naively applying Theorem 5
and then I/O-determinizing the resulting automaton, we will have a double exponential
blow-up. By doing the compilation of the selection strategies and the I/O-determinization
together, we can lower the update time. Moreover, and rather surprisingly, we can evaluate
NXT and LAST without determinizing the automaton, and therefore with linear update time.

I Theorem 8. Let SEL be a selection strategy. For any CEA A, there is a CEP evaluation
algorithm for SEL(A). Furthermore, the update time is ∣A∣ if SEL ∈ {NXT,LAST}, 2∣A∣ if
SEL = STRICT and 4∣A∣ if SEL = MAX.

8 An evaluation framework for CEL

Having all the building blocks, we put all the results in perspectives and show how to evaluate
unary CEL formulas. In Figure 3, we show the evaluation cycle of a CEL formula in our
framework and how all the results and theorems fit together. To explain this framework,
consider a unary CEL formula ϕ (possibly with selection strategies). The process starts in the
parser module, where we check if ϕ is well-formed and safe. These conditions are important
to ensure that ϕ is satisfiable and make a correct use of variables. Note that a CEP system
could translate unsafe formulas (Theorem 2), incurring however in an exponential blow-up..

The next module rewrites a well-formed and safe formula ϕ into LP-normal form by using
the rewriting process of Theorem 3. In the worst case this produces an exponentially larger
formula. To avoid this, in many cases one can apply local rewriting rules [3, 41]. For example,
in Section 2 we converted ϕ1 into ϕ′1 by applying a filter push, avoiding the exponential

ICDT 2019



5:16 A Formal Framework for Complex Event Processing

blow-up of Theorem 3. Unfortunately, we cannot apply this over formulas like ϕ6 in Section 5.
Nevertheless, formulas like ϕ6 are rather uncommon in practice and local rewriting rules will
usually produce LP-formulas of polynomial size.

The third module receives a formula in LP-normal form and builds a CEA Aϕ of
polynomial size (Theorem 4 and 5). Then, the last module runs Aϕ over the stream by
using our CEP evaluation procedure for I/O deterministic CEA (Theorem 7). If there is no
selection strategy, Aϕ must be determinized before running the CEP evaluation algorithm.
In the worst case, this determinization is exponential in Aϕ, nevertheless, in practice the
size of Aϕ is rather small. If a selection strategy SEL is used, we can use the algorithms of
Theorem 8 for evaluating SEL(Aϕ), having a similar update time than evaluating Aϕ alone.
It is worth mentioning that evaluating NXT(Aϕ) or LAST(Aϕ) has even better performance
than evaluating Aϕ directly, given that the update time is linear in the size of Aϕ.

9 Future work

This paper settles new foundations for CEP systems, stimulating new research directions. In
particular, a natural next step is to study the evaluation of non-unary CEL formulas. This
requires new insight in rewriting formulas and a more powerful computational model with
CEP evaluation algorithms. Another relevant problem is to understand the expressive power
of different fragments of CEL and the relationship between the different operators. In this
same direction, we envision as future work a generalization of the concept behind selection
strategies, together with a thorough study of their expressive power.

Finally, we have focused on the fundamental features of CEP languages, leaving other
features outside to keep the language and analysis simple. These features include correlation,
time windows, aggregation, consumption policies, among others. We plan to extend CEL
gradually with these features to establish a more complete and formal framework for CEP.

References
1 Esper Enterprise Edition website. Accessed on 2018-01-05. URL: http://www.espertech.com/.
2 D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Erwin, E. Galvez, M. Hatoun,

A. Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R. Yan, and S. Zdonik.
Aurora: A Data Stream Management System. In SIGMOD, 2003.

3 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases: the logical level.
Addison-Wesley, 1995.

4 Asaf Adi and Opher Etzion. Amit-the situation manager. VLDB Journal, 2004.
5 Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. Efficient pattern

matching over event streams. In SIGMOD, 2008.
6 Alfred V. Aho. Algorithms for Finding Patterns in Strings. In Handbook of Theoretical

Computer Science. Elsevier, 1990.
7 Mert Akdere, Uǧur Çetintemel, and Nesime Tatbul. Plan-based complex event detection

across distributed sources. VLDB, 2008.
8 Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stühmer, Nenad Stojanovic, and Rudi

Studer. A rule-based language for complex event processing and reasoning. In RR, 2010.
9 Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Itaru Nishizawa,

Justin Rosenstein, and Jennifer Widom. STREAM: The Stanford Stream Data Manager
(Demonstration Description). In SIGMOD, 2003.

10 Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL Continuous Query Language:
Semantic Foundations and Query Execution. The VLDB Journal, 2006.

http://www.espertech.com/


A. Grez, C. Riveros, and M. Ugarte 5:17

11 Alexander Artikis, Alessandro Margara, Martin Ugarte, Stijn Vansummeren, and Matthias
Weidlich. Complex Event Recognition Languages: Tutorial. In DEBS, pages 7–10. ACM, 2017.

12 Alexander Artikis, Marek Sergot, and Georgios Paliouras. An event calculus for event
recognition. IEEE Transactions on Knowledge and Data Engineering, 27(4):895–908, 2015.

13 Alexander Artikis, Anastasios Skarlatidis, François Portet, and Georgios Paliouras. Logic-based
event recognition. The Knowledge Engineering Review, 27(4):469–506, 2012.

14 Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On Acyclic Conjunctive Queries
and Constant Delay Enumeration. In CSL, 2007.

15 Roger S. Barga, Jonathan Goldstein, Mohamed H. Ali, and Mingsheng Hong. Consistent
Streaming Through Time: A Vision for Event Stream Processing. In CIDR, 2007.

16 Jean Berstel. Transductions and context-free languages. Springer-Verlag, 2013.
17 Alejandro Buchmann and Boris Koldehofe. Complex event processing. IT-Information

Technology Methoden und innovative Anwendungen der Informatik und Informationstechnik,
2009.

18 Jan Carlson and Björn Lisper. A resource-efficient event algebra. Science of Computer
Programming, 2010.

19 Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: A Scalable
Continuous Query System for Internet Databases. In SIGMOD, 2000.

20 Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni. A logic-based, reactive
calculus of events. Fundamenta Informaticae, 105(1-2):135–161, 2010.

21 Gianpaolo Cugola and Alessandro Margara. Raced: an adaptive middleware for complex event
detection. In Middleware, 2009.

22 Gianpaolo Cugola and Alessandro Margara. TESLA: a formally defined event specification
language. In DEBS, 2010.

23 Gianpaolo Cugola and Alessandro Margara. Complex Event Processing with T-REX. The
Journal of Systems and Software, 2012.

24 Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From data stream
to complex event processing. ACM Computing Surveys (CSUR), 2012.

25 Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker White. A
general algebra and implementation for monitoring event streams. Technical report, Cornell
University, 2005.

26 Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker White.
Towards expressive publish/subscribe systems. In EDBT, 2006.

27 Antony Galton and Juan Carlos Augusto. Two approaches to event definition. In DEXA,
2002.

28 Lukasz Golab and M Tamer Özsu. Issues in data stream management. Sigmod Record, 2003.
29 Mikell P Groover. Automation, production systems, and computer-integrated manufacturing.

Prentice Hall, 2007.
30 Daniel Gyllstrom, Jagrati Agrawal, Yanlei Diao, and Neil Immerman. On supporting kleene

closure over event streams. In ICDE 2008, pages 1391–1393. IEEE, 2008.
31 Yeye He, Siddharth Barman, and Jeffrey F. Naughton. On Load Shedding in Complex Event

Processing. In ICDT, pages 213–224, 2014.
32 Yeye He, Siddharth Barman, Di Wang, and Jeffrey F Naughton. On the complexity of

privacy-preserving complex event processing. In PODS, pages 165–174, 2011.
33 John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, 1979.
34 Elena Ikonomovska and Mariano Zelke. Algorithmic Techniques for Processing Data Streams.

Dagstuhl Follow-Ups, 2013.
35 Mo Liu, Elke Rundensteiner, Kara Greenfield, Chetan Gupta, Song Wang, Ismail Ari, and

Abhay Mehta. E-cube: multi-dimensional event sequence analysis using hierarchical pattern
query sharing. In SIGMOD, pages 889–900, 2011.

ICDT 2019



5:18 A Formal Framework for Complex Event Processing

36 D Luckham. Rapide: A language and toolset for simulation of distributed systems by partial
orderings of events, 1996.

37 Masoud Mansouri-Samani and Morris Sloman. GEM: A generalized event monitoring language
for distributed systems. Distributed Systems Engineering, 1997.

38 Yuan Mei and Samuel Madden. Zstream: a cost-based query processor for adaptively detecting
composite events. In SIGMOD, pages 193–206. ACM, 2009.

39 Biswanath Mukherjee, L Todd Heberlein, and Karl N Levitt. Network intrusion detection.
IEEE network, 1994.

40 Peter Pietzuch, Brian Shand, and Jean Bacon. A framework for event composition in distributed
systems. In Middleware, 2003.

41 Raghu Ramakrishnan and Johannes Gehrke. Database management systems (3 ed.). McGraw-
Hill, 2003.

42 BS Sahay and Jayanthi Ranjan. Real time business intelligence in supply chain analytics.
Information Management & Computer Security, 2008.

43 Jacques Sakarovitch. Elements of automata theory. Cambridge University Press, 2009.
44 Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter Pietzuch. Distributed complex

event processing with query rewriting. In DEBS, 2009.
45 Luc Segoufin. Automata and logics for words and trees over an infinite alphabet. In CSL,

2006.
46 Luc Segoufin. Enumerating with constant delay the answers to a query. In ICDT 2013, pages

10–20, 2013.
47 Margus Veanes. Applications of symbolic finite automata. In CIAA, 2013.
48 Walker White, Mirek Riedewald, Johannes Gehrke, and Alan Demers. What is next in event

processing? In PODS, pages 263–272, 2007.
49 Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex event processing over

streams. In SIGMOD, 2006.
50 Haopeng Zhang, Yanlei Diao, and Neil Immerman. On complexity and optimization of

expensive queries in complex event processing. In SIGMOD, 2014.
51 Detlef Zimmer and Rainer Unland. On the semantics of complex events in active database

management systems. In ICDE, 1999.


	Introduction
	Events in action
	A query language for CEP
	Selection strategies
	Syntactic analysis of CEL
	A computational model for CEL
	Algorithms for evaluating CEA
	An evaluation framework for CEL
	Future work

