
On the Expressive Power of Linear Algebra on
Graphs
Floris Geerts
University of Antwerp, Antwerp, Belgium
http://adrem.uantwerpen.be/floris.geerts
floris.geerts@uantwerpen.be

Abstract
Most graph query languages are rooted in logic. By contrast, in this paper we consider graph
query languages rooted in linear algebra. More specifically, we consider MATLANG, a matrix query
language recently introduced, in which some basic linear algebra functionality is supported. We
investigate the problem of characterising equivalence of graphs, represented by their adjacency
matrices, for various fragments of MATLANG. A complete picture is painted of the impact of the
linear algebra operations in MATLANG on their ability to distinguish graphs.

2012 ACM Subject Classification Information systems → Query languages; Mathematics of com-
puting → Graph theory; Theory of computation → Logic

Keywords and phrases matrix query languages, graph queries, graph theory, logics

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.7

Related Version Full version: https://arxiv.org/abs/1812.04379.

1 Introduction

Motivated by the importance of linear algebra for machine learning on big data [7, 8, 12, 46, 51]
there is a current interest in languages that combine matrix operations with relational query
languages in database systems [22, 35, 40, 41, 43]. Such hybrid languages raise many
interesting questions from a database theoretical point of view. It seems natural, however, to
first consider query languages for matrices alone. These are the focus of this paper.

More precisely, we continue the investigation of the expressive power of the matrix query
language MATLANG, recently introduced as an analog for matrices of the relational algebra
on relations [9]. Intuitively, queries in MATLANG are built-up by composing several linear
algebra operations. The language MATLANG was shown to be subsumed by aggregate logic
with only three non-numerical variables. Conversely, MATLANG can express all queries from
graph databases to binary relations that can be expressed in first-order logic with three
variables. The four-variable query asking if a graph contains a four-clique, however, is not
expressible [9].

In this paper, we further zoom in on the expressive power of MATLANG on graphs.
In particular, we investigate when two graphs are equivalent relative to some fragment of
MATLANG. These fragments are defined by allowing only certain linear algebra operations
in the queries and are denoted by ML(L), with L the list of allowed operations. A total of six
(sensible) fragments are considered and ML(L)-equivalence of graphs, i.e., their agreement
on all sentences in ML(L), is characterised. Our results are as follows.

For starters, we have the fragment ML( · , tr) that allows for matrix multiplication ( ·) and
trace (tr) computation (i.e., taking the sum of diagonal elements of a matrix). Equivalence
of graphs relative to ML( · , tr) coincides with being co-spectral, or equivalently, to having
the same number of closed walks of any length (Section 5).
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7:2 On the Expressive Power of Linear Algebra on Graphs

Another fragment, ML( · , ∗,1), allows for matrix multiplication, conjugate transposition
(∗) and the introduction of the vector 1, consisting of all ones. Here, equivalence coincides
with having the same number of (not necessarily closed) walks of any length (Section 6).
When allowing both tr and 1, equivalence relative to ML( · , tr,1) coincides, not surprisingly,
to having the same number of closed and non-closed walks of any length (Section 6).
More interesting is the fragment ML( · , ∗,1, diag), which also allows for the operation
diag( ·) that turns a vector into a diagonal matrix with that vector on its diagonal. In
this case, equivalence coincides with having a so-called common equitable partition, or
equivalently, to C2-equivalence. Here, C2 denotes the two-variable fragment of C, the
extension of first-order logic with counting (Section 7).
The combination of tr with diag results in a stronger notion of equivalence: Graphs
are equivalent relative to ML( · , tr,1, diag) when they are C2-equivalent and co-spectral
(Section 7).
Finally, equivalence relative to MATLANG is shown to correspond to C3-equivalence, the
three-variable fragment of C (Section 8). This is in agreement with the results from
Brijder et al. [9] mentioned earlier.

We remark that each of these fragments can be extended with addition and scalar multiplica-
tion at no increase in distinguishing power. We exhibit examples separating all fragments.

The characterisations are shown in a purely algebraic way, without relying on simulations
in logic. Underlying are reductions of ML(L)-equivalence of graphs to similarity notions of
their adjacency matrices. For example, it is known that two graphs G and H are C2-equivalent
if and only if they are fractionally isomorphic [48, 53, 54]. This means that the adjacency
matrices AG of G and AH of H satisfy AG ·S = S ·AH for some doubly stochastic matrix
S. As another example, C3-equivalence of graphs corresponds to AG ·O = O ·AH for some
orthogonal matrix O that is also an isomorphism between the cellular algebras of G and
H [20]. We provide similar characterisations for all our matrix query language fragments.
It is worth pointing out that beyond MATLANG, Ck-equivalence, for k ≥ 4, can also be
characterised in terms of solutions to linear problems [3, 29, 44].

Moreover, whenever possible, we also provide characterisations in terms of spectral
properties of graphs. A wealth of results exists in spectral graph theory on what information
can be obtained from the adjacency matrix, or from other matrices like the Laplacian, of
a graph [10, 16, 26]. We rely quite a bit on known results in that area. Nevertheless, we
believe that the connections made in this paper are of interest in their own right. They relate
combinatorial and spectral graph invariants by means of query languages. We refer to work
by Fürer [24, 25] for more examples of the power of graph invariants and to Dawar et al. [20]
for connections between logic, combinatorial and spectral invariants.

Although links to logics such as C2 and C3 are made, the connection between MATLANG,
rank logics and fixed-point logics with counting, as studied in the context of the descriptive
complexity of linear algebra [18, 17, 19, 27, 30, 34], is yet to be explored. Similarly for
connections to logic-based graph query languages [2, 5].

2 Background

We denote the set of real numbers by R and the set of complex numbers by C. The set of
m× n-matrices over the real (resp., complex) numbers is denoted by Rm×n (resp., Cm×n).
Vectors are elements of Rm×1 (or Cm×1). The entries of an m × n-matrix A are denoted
by Aij , for i = 1, . . . ,m and j = 1, . . . , n. The entries of a vector v are denoted by vi, for
i = 1, . . . ,m. We often identify R1×1 with R, and C1×1 with C. The following classes of
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matrices are of interest in this paper: square matrices (elements in Rn×n or Cn×n), symmetric
matrices (such that Aij = Aji for all i and j), doubly stochastic matrices (Aij ∈ R, Aij ≥ 0,∑n
j=1Aij = 1 and

∑m
i=1Aij = 1 for all i and j), doubly quasi-stochastic matrices (Aij ∈ R,∑n

j=1Aij = 1 and
∑m
i=1Aij = 1 for all i and j), and orthogonal matrices (O ∈ Rn×n,

Ot ·O = I = O ·Ot, where Ot denotes the transpose of O obtained by switching rows and
columns, · denotes matrix multiplication, and I is the identity matrix in Rn×n).

We only need a couple of notions of linear algebra. We refer to the textbook by Axler [4]
for more background. An eigenvalue of a matrix A is a scalar λ in C for which there is
a non-zero vector v satisfying A ·v = λv. Such a vector is called an eigenvector of A for
eigenvalue λ. The eigenspace of an eigenvalue is the vector space obtained as the span of a
maximal set of linear independent eigenvectors for this eigenvalue. Here, the span of a set of
vectors just refers to the set of all linear combinations of vectors in that set. A set of vectors
is linear independent if no vector in that set can be written as a linear combination of other
vectors. The dimension of an eigenspace is the minimal number of eigenvectors that span
the eigenspace.

We will only consider undirected graphs without self-loops. Let G = (V,E) be such
a graph with vertices V = {1, . . . , n} and unordered edges E ⊆ {{i, j} | i, j ∈ V }. The
order of G is simply the number of vertices. Then, the adjacency matrix of a graph G of
order n, denoted by AG, is an n × n-matrix whose entries (AG)ij are set to 1 if and only
if {i, j} ∈ E, all other entries are set to 0. The matrix AG is a symmetric real matrix
with zeroes on its diagonal. The spectrum of an undirected graph can be represented as

spec(G) =
(
λ1 λ2 · · · λp
m1 m2 · · · mp

)
, where λ1 < λ2 < · · · < λp are the distinct real eigenvalues

of the adjacency matrix AG of G, and where m1,m2, . . . ,mp denote the dimensions of the
corresponding eigenspaces. Two graphs are said to be co-spectral if they have the same
spectrum. We introduce other relevant notions throughout the paper.

3 Matrix Query Languages

As described in Brijder et al. [9], matrix query languages can be formalised as compositions of
linear algebra operations. Intuitively, a linear algebra operation takes a number of matrices
as input and returns another matrix. Examples of operations are matrix multiplication,
conjugate transposition, computing the trace, just to name a few. By closing such operations
under composition “matrix query languages” are formed. More specifically, for linear
algebra operations op1, . . . , opk the corresponding matrix query language is denoted by
ML(op1, . . . , opk) and consists of expressions formed by the following grammar:

e := X | op1
(
e1, . . . , ep1

)
| · · · | opk

(
e1, . . . , epk

)
,

where X denotes a matrix variable which serves to indicate the input to expressions and pi
denotes the number of inputs required by operation opi. We focus on the case when only a
single matrix variable X is present. The treatment of multiple variables is left for future
work.

The semantics of an expression e(X) in ML(op1, . . . , opk) is defined inductively, relat-
ive to an assignment ν of X to a matrix ν(X) ∈ Cm×n, for some dimensions m and n.
We denote by e

(
ν(X)

)
the result of evaluating e(X) on ν(X). As expected, we define

opi(e1(X), . . . , epi
(X))(ν(X)) := opi

(
e1(ν(X)), . . . , epi

(ν(X))
)
for linear algebra operation

opi. In Table 1 we list the operations constituting the basis matrix query language MATLANG,
introduced in Brijder et al. [9]. In the table we also show their semantics. We note that

ICDT 2019



7:4 On the Expressive Power of Linear Algebra on Graphs

Table 1 Linear algebra operations (supported in MATLANG [9]) and their semantics. In the first
operation, for Aji ∈ C, A∗

ji denotes complex conjugation. In the last operation, Ω =
⋃

k>0 Ωk, where
Ωk consists of functions f : Ck → C.

conjugate transposition (op(e) = e∗)
e(ν(X)) = A ∈ Cm×n e(ν(X))∗ = A∗ ∈ Cn×m (A∗)ij = A∗

ji

one-vector (op(e) = 1(e))
e(ν(X)) = A ∈ Cm×n 1(e(ν(X)) = 1 ∈ Cm×1 1i = 1
diagonalization of a vector (op(e) = diag(e))
e(ν(X)) = A ∈ Cm×1 diag(e(ν(X)) = diag(A) ∈ Cm×m diag(A)ii = Ai,

diag(A)ij = 0, i 6= j

matrix multiplication (op(e1, e2) = e1 ·e2)
e1(ν(X)) = A ∈ Cm×n

e1(ν(X)) ·e2(ν(X)) = C ∈ Cm×o Cij =
∑n

k=1 Aik ×Bkj
e2(ν(X)) = B ∈ Cm×o

matrix addition (op(e1, e2) = e1 + e2)
ei(ν(X)) = A(i) ∈ Cm×n e1(ν)(X) + e2(ν(X)) = B ∈ Cm×n Bij = A

(1)
ij +A

(2)
ij

scalar multiplication (op(e) = c× e, c ∈ C)
e(ν(X)) = A ∈ Cm×n c× e(ν(X)) = B ∈ Cm×n Bij = c×Aij

trace (op(e) = tr(e))
e(ν(X)) = A ∈ Cm×m tr(e(ν(X)) = c ∈ C c =

∑m

i=1 Aii

e(ν(X)) = A ∈ Cm×1 tr(e(ν(X)) = c ∈ C c =
∑m

i=1 Ai

pointwise function application (op(e1, . . . , ep) = apply[f ](e1, . . . , ep)), f : Cp → C ∈ Ω
ei(ν(X)) = A(i) ∈ Cm×n apply[f ]

(
e1(ν(X)), . . . , ep(ν(X))

)
= B ∈ Cm×n Bij = f(A(1)

ij , . . . , A
(p)
ij )

restrictions on the dimensions are in place to ensure that operations are well-defined. Using
a simple type system one can formalise a notion of well-formed expressions which guarantees
that the semantics of such expressions is well-defined [9]. We only consider well-formed
expressions from here on.
I Remark 3.1. The list of operations in Table 1 differs slightly from the list presented in
Brijder et al. [9]: We explicitly mention scalar multiplication (×) and addition (+), and the
trace operation (tr), all of which can be expressed in MATLANG. Hence, MATLANG and
ML( · , ∗, tr,1, diag,+,×, apply[f ], f ∈ Ω) are equivalent.

4 Expressive Power

As mentioned in the introduction, we are interested in the expressive power of matrix query
languages. In this paper, we consider sentences in these languages. We define an expression
e(X) in ML(op1, . . . , opk) to be a sentence if e(ν(X)) returns a 1×1-matrix for any assignment
ν of X. We note that the type system of MATLANG allows to check whether an expression
in ML(L) is a sentence (see Brijder et al. [9] for more details). Having defined sentences, a
notion of equivalence naturally follows.

I Definition 4.1. Two matrices A and B in Cm×n are said to be ML(op1, . . . , opk)-equivalent,
denoted by A ≡ML(op1,...,opk) B, if and only if e(A) = e(B) for all sentences e(X) in
ML(op1, . . . , opk).

In other words, equivalent matrices cannot be distinguished by sentences in the matrix query
language under consideration. Equivalence with regards to sentences resembles the standard
notion of equivalence used in logic.
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We aim to characterise equivalence for various matrix query languages. We will, however,
not treat this problem in full generality and instead, to gain intuition, start by considering
adjacency matrices of undirected graphs. The corresponding notion of equivalence on graphs
is defined, as expected:

I Definition 4.2. Two graphs G and H of the same order are said to be ML(op1, . . . , opk)-
equivalent, denoted by G ≡ML(op1,...,opk) H, if and only if their adjacency matrices are
ML(op1, . . . , opk)-equivalent.

I Remark 4.3. One could imagine defining equivalence with regards to arbitrary expressions,
i.e., expressions in MATLANG that are not necessarily sentences. Such a notion would be
too strong, however. Indeed, requiring that e(AG) = e(AH) for arbitrary expressions e(X)
would imply that AG = AH and hence G = H.

In the following sections we consider graph equivalence for various fragments, starting
from simple fragments only supporting a couple of operations, up to the full MATLANG
matrix query language.

5 Expressive Power of the Matrix Query Language ML( · , tr)

The smallest fragment we consider is ML( · , tr). This is a very restrictive fragment since the
only sentences that one can express are of the form (i) #cwalkk(X) := tr(Xk), where Xk

stands for the kth power of X, i.e., X multiplied k times with itself, and (ii) products of
such sentences. We note that, when evaluated on an adjacency matrix AG, #cwalkk(AG)
counts the number of closed walks of length k in G.

Indeed, the entries of the powers AkG of adjacency matrix AG are known to correspond to
the number of walks of length k in G. Recall that a walk of length k in a graph G = (V,E)
is a sequence (v0, v1, . . . , vk) of vertices of G such that consecutive vertices are adjacent in
G, i.e., {vi−1, vi} ∈ E for all i = 1, . . . , k. Furthermore, a closed walk is a walk that starts in
and ends at the same vertex. Hence, #cwalkk(AG) =

∑
i(AkG)ii indeed counts closed walks

of length k in G. Closed walks of length 0 correspond, as usual, to vertices in G.
The following characterisations are known to hold.

I Proposition 5.1 ([10, 16]). Let G and H be two graphs of the same order. The following
are equivalent:

G and H have the same total number of closed walks of length k, for all k ≥ 0,
tr(AkG) = tr(AkH) for all k ≥ 0,
G and H are co-spectral, and
there exists a real orthogonal matrix O such that AG ·O = O ·AH .

I Example 5.2. The graphs G1 ( ) and H1 ( ) are the smallest pair (in terms of number of
vertices) of non-isomorphic co-spectral graphs of the same order [13]. Note that the isolated
vertex in G1 ensures that G1 and H1 have the same number of vertices (and thus the same
number of closed walks of length 0).
A characterisation of ML( · , tr)-equivalence now easily follows.

I Proposition 5.3. For two graphs G and H of the same order, G ≡ML( · , tr) H if and only
if there exists a real orthogonal matrix O such that AG ·O = O ·AH if and only if G and H
have the same number of closed walks of any length.

Proof. By definition, if G ≡ML( · , tr) H, then e(AG) = e(AH) for any sentence e(X) in
ML( · , tr). This holds in particular for the sentences #cwalkk(X) := tr(Xk) in ML( · , tr), for

ICDT 2019



7:6 On the Expressive Power of Linear Algebra on Graphs

k ≥ 1. That is, G ≡ML( · , tr) H implies that tr(AkG) = tr(AkH) for all k ≥ 1. Since G and H
are of the same order and A0

G = A0
H = I (by convention), tr(A0

G) = tr(A0
H) = tr(I) = n.

From the previous proposition it then follows that there exists an orthogonal matrix O such
that AG ·O = O ·AH .

For the converse, assume that AG ·O = O ·AH for some orthogonal matrix O. We already
remarked that sentences in ML( · , tr) are products of sentences of the form #cwalkk(X) :=
tr(Xk). It now suffices to observe that tr(P ·A ·P−1) = tr(A) for any matrix A and any
invertible matrix P . In particular, tr(AkG) = tr(Ot ·AkG ·O) = tr(Ot ·O ·AkH) = tr(AkH). J

From an expressiveness point of view, it tells that ML( · , tr)-equivalence of two graphs
implies that their adjacency matrices share the same rank, characteristic polynomial, determ-
inant, eigenvalues, and their algebraic multiplicities, geometric multiplicities of eigenvalues,
just to name a few.

Given that the trace operation is a linear mapping, i.e., tr(cA+ dB) = ctr(A) + dtr(B) for
matrices A and B and complex numbers c and d, one would expect that matrix addition (+)
and scalar multiplication (×) can be added to ML( · , tr) without an increase in expressiveness.
Indeed, one can rewrite sentences in ML( · , tr,+,×) as a linear combination of sentences in
ML( · , tr). Combined with the linearity of tr( ·), Proposition 5.3 can be extended as follows.

I Corollary 5.4. For two graphs G and H of the same order, we have that G ≡ML( · , tr) H if
and only if G ≡ML( · , tr,+,×) H.

We can further strengthen Corollary 5.4 by allowing the application of any function
f : Cp → C in Ω, provided that apply[f ](e1, . . . , ep) is only allowed when each ei is a sentence.
That is, we only allow pointwise function applications on “scalars”. The restriction of such
function applications is denoted by applys[f ], for f ∈ Ω. Indeed, G ≡ML( · , tr,+,×) H implies
that e(AG) = e(AH) for any sentence e(X) in ML( · , tr,+,×). Clearly, when ei(AG) = ei(AH)
for all i = 1, . . . , p, applys[f ](e1(AG), . . . , ep(AG)) = applys[f ](e1(AH), . . . , ep(AH)).

I Corollary 5.5. For two graphs G and H of the same order, G ≡ML( · , tr,+,×) H if and only
if G ≡ML( · , tr,+,×,applys[f ],f∈Ω) H.

Finally, we can also add conjugate transposition (∗) without increasing the expressive
power, provided that we mildly restrict the class Ω of pointwise functions. More precisely, we
assume that Ω is closed under complex conjugation in the sense that for every f ∈ Ω also the
composition ∗ and f is in Ω. This assumption, together with standard properties of complex
conjugation and conjugate transposition (in particular, (A ·B)∗ = B∗ ·A∗, (A∗)∗ = A and
linearity) and using the fact that adjacency matrices of undirected graphs are symmetric,
allows one to rewrite expressions in ML( · , ∗, tr,+,×, applys[f ], f ∈ Ω) such that ∗ is only
applied on scalars. As a consequence, any expression in ML( · , ∗, tr,+,×, applys[f ], f ∈ Ω) is
equivalent to an expression in ML( · , tr,+,×, applys[f ], f ∈ Ω).

I Corollary 5.6. Let Ω be a class of pointwise functions that is closed under complex
conjugation. Then, for two graphs G and H of the same order, G ≡ML( · , tr,+,×,applys[f ],f∈Ω) H

if and only if G ≡ML( · ,∗, tr,+,×,applys[f ],f∈Ω) H.

As a consequence, the graphs G1 ( ) and H1 ( ) from Example 5.2 cannot be distinguished
by sentences in ML( · , ∗, tr,+,×, applys[f ], f ∈ Ω).

As we will see later, including any other operation from Table 1, such as 1( ·), diag( ·) or
pointwise function applications on vector or matrices, requires additional constraints on the
orthogonal matrix O linking AG with AH .
I Remark 5.7. Corollaries 5.4, 5.5 and 5.6 hold for any fragment that we will consider.
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6 The Impact of the 1( ·) Operation

The 1( ·) operation, which returns the all-ones vector 11, allows to extract other information
from graphs than just the number of closed walks. Indeed, consider the sentences

#walkk(X) := (1(X))∗ ·Xk ·1(X) and #walk′k(X) := tr(Xk ·1(X)),

in ML( · , ∗,1) and ML( · , tr,1), respectively. When applied on adjacency matrix AG of a graph
G, #walkk(AG) (and also #walk′k(AG)) returns the number of (not necessarily closed) walks
in G of length k. In relation to the previous section, co-spectral graphs do not necessarily
have the same number of walks of any length. Similarly, graphs with the same number of
walks of any length are not necessarily co-spectral.

I Example 6.1. It can be verified that the co-spectral graphs G1 ( ) and H1 ( ) of
Example 5.2 have 16 versus 20 walks of length 2, respectively. As a consequence, ML( · , ∗,1)
and ML( · , tr,1) can distinguish G1 from H1 by means of the sentences #walk2(X) and
#walk′2(X), respectively. By contrast, the graphs G2 ( ) and H2 ( ) are not co-
spectral, yet have the same number of walks of any length. It is easy to see that G2 and H2
are not co-spectral (apart from verifying that their spectra are different): H2 has 12 closed
walks of length 3 (because of the triangles), whereas G2 has none. We argue below why they
have the same number of walks. As a consequence, ML( · , tr) (and thus also ML( · , tr,1)) can
distinguish G2 and H2. It follows from Proposition 6.6 below that these graphs cannot be
distinguished by ML( · , ∗,1).

Graphs sharing the same number of walks of any length have been investigated before
in spectral graph theory [14, 15, 32, 49]. To state a spectral characterisation, the so-called
main spectrum of a graph needs to be considered. The main spectrum of a graph is the set
of eigenvalues whose eigenspace is not orthogonal to the 1 vector. More formally, for an
eigenvalue λ and corresponding eigenspace, represented by a matrix V whose columns are
eigenvectors of λ that span its eigenspace, the main angle βλ of λ’s eigenspace is 1√

n
‖V t ·1‖2,

where ‖·‖2 is the Euclidean norm. Hence, main eigenvalues are those with a non-zero main
angle. Two graphs are said to be co-main if they have the same set of main eigenvalues and
corresponding main angles. Intuitively, the importance of the orthogonal projection on 1
stems from the observation that #walkk(AG) can be expressed as

∑
i λ

k
i β

2
λi

where the λi’s
are eigenvalues of AG. Clearly, only those eigenvalues λi for which βλi

> 0 matter when
computing #walkk(AG). This results in the following characterisation.

I Proposition 6.2 (Theorem 1.3.5 in Cvetković et al. [16]). Two graphs G and H of the same
order are co-main if and only if they have the same total number of walks of length k, for
every k ≥ 0.

Furthermore, the following proposition follows implicitly from the proof of Theorem 3 in
van Dam et al. [56] (and is also shown in Theorem 1.2 in Dell et al. [21] in the context of
distinguishing graphs by means of homomorphism vectors).

I Proposition 6.3. Two graphs G and H of the same order have the same total number of
walks of length k, for every k ≥ 0, if and only if there is a doubly quasi-stochastic matrix Q
such that AG ·Q = Q ·AH , i.e., such that AG ·Q = Q ·AH , Q ·1 = 1 and Qt ·1 = 1 hold.

1 We use 1 to denote the all ones vector (of appropriate dimension) and use 1( ·) (with brackets) for the
corresponding all ones operator.
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I Example 6.4 (Continuation of Example 6.1). Consider the subgraph G3 ( ) of G2 and

the subgraph H3 ( ) of H2. We have that AG3 ·Q = Q ·AH3 for

AG3 =



0 0 1 0 0 1
0 0 0 1 1 0
1 0 0 0 1 0
0 1 0 0 0 1
0 1 1 0 0 0
1 0 0 1 0 0


, AH3 =



0 0 1 0 0 1
0 0 0 1 1 0
1 0 0 0 1 0
0 1 0 0 0 1
0 1 1 0 0 0
1 0 0 1 0 0


, Q =



0 0 1
2 0 0 1

2
0 0 0 1

2
1
2 0

1
2 0 0 0 1

2 0
0 1

2 0 0 0 1
2

0 1
2

1
2 0 0 0

1
2 0 0 1

2 0 0


,

and hence by Proposition 6.3, G3 and H3 have the same number of walks on any length.

As it turns out, the values of the sentences #walkk(AG) mentioned earlier, that count the
number of walks of length k in G, fully determine the value of any sentence in ML( · , ∗,1).

I Lemma 6.5. Let G and H be two graphs of the same order. Then, G ≡ML( · ,∗,1) H if and
only if #walkk(AG) = #walkk(AH) for all k ≥ 1.

The proof involves an analysis of expressions in ML( · , ∗,1). We may thus conclude from
Proposition 6.3 and Lemma 6.5 that:

I Proposition 6.6. For two graphs G and H of the same order, G ≡ML( · ,∗,1) H if and only
if there exists a doubly quasi-stochastic matrix Q such that AG ·Q = Q ·AH if and only if G
and H have the same number of walks of any length.

When it comes to ML( · , tr,1), we know from Propositions 5.1 and 5.3 that G ≡ML( · , tr,1) H

implies that G and H are co-spectral. Combined with Proposition 6.2 and the fact that the
sentence #walk′k(X) counts the number of walks of length k, we have that G ≡ML( · , tr,1) H

implies that G and H are co-spectral and co-main. The following is known about such
graphs.

I Proposition 6.7 ([38, 56]). Two co-spectral graphs G and H of the same order are co-main
if and only if there exists an orthogonal matrix O such that AG ·O = O ·AH and O ·1 = 1.

In other words, G ≡ML( · , tr,1) H implies the existence of an orthogonal matrix O such
that O ·1 = 1 (i.e., O is also doubly quasi-stochastic) and AG ·O = O ·AH . An analysis of
expressions in ML( · , tr,1) shows that the converse also holds.

I Proposition 6.8. For two graphs G and H of the same order, G ≡ML( · , tr,1) H if and only
if there exists an orthogonal matrix O such that AG ·O = O ·AH and O ·1 = 1 if and only if
G and H have the same number of closed walks and the same number of walks of any length.

An alternative characterisation (also in van Dam et al. [56]) is that G and H are co-
spectral and co-main if and only if both G and H and their complement graphs Ḡ and H̄
are co-spectral. Here, the complement graph Ḡ of G is the graph with adjacency matrix
given by J −AG − I, where J is the all ones matrix, and similarly for H̄.

I Example 6.9 (Continuation of Example 6.1). Consider the subgraph G4 ( ) of G2 and the

subgraph H4 ( ) of H2. These are known to be the smallest non-isomorphic co-spectral
graphs with co-spectral complements [31]. From Proposition 6.8 it then follows that G4 and
H4 have the same number of walks of any length. Combined with our earlier observation in
Example 6.4 that also G3 and H3 have this property, we may conclude that G2 = G3 ∪G4

( ) and H2 = H3 ∪ H4 ( ) have the same number of walks of any length, as
anticipated in Example 6.1.
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We remark that as a consequence of Propositions 6.6 and 6.8, G ≡ML( · , tr,1) H implies
that G ≡ML( · ,∗,1) H. We already mentioned in Example 6.1 that the graphs G2 ( ) and

H2 ( ) show that the converse does not hold.
As before, we observe that addition, scalar multiplication, conjugate transposition and

pointwise function application on scalars can be included at no increase in expressiveness.

I Corollary 6.10. Let G and H be two graphs of the same order. Then,
G ≡ML( · ,∗,1,+,×,applys[f ],f∈Ω) H if and only if G ≡ML( · ,∗,1) H, and
G ≡ML( · , ∗, tr,1,+,×,applys[f ],f∈Ω) H if and only if G ≡ML( · , tr,1) H,

where Ω is assumed to be closed under complex conjugation.

7 The Impact of the diag( ·) Operation

We next consider the operation diag( ·) which takes a vector as input and returns a diagonal
matrix with the input vector on its diagonal. The smallest fragments in which vectors
(and sentences) can be defined are ML( · , tr,1) and ML( · , ∗,1). Therefore, in this section we
consider equivalence with regards to ML( · , tr,1, diag) and ML( · , ∗,1, diag).

Using diag( ·) we can again extract new information from graphs.

I Example 7.1. Consider graphs G4 ( ) and H4 ( ). In G4 we have vertices of degrees
0 and 2, and in H4 vertices of degrees 1, 2 and 3. We will count the number of vertices of
degree 3. To this aim consider the sentence #3degr(X) given by(

1
6

)
× 1(X)∗ ·

(
diag(X ·1(X)) · diag(X ·1(X)− 1(X)) · diag(X ·1(X)− 2× 1(X))

)
·1(X),

in which we, for convenience, allow addition and scalar multiplications. Each of the subex-
pressions diag(X ·1(X)− d× 1(X)), for d = 0, 1 and 2, sets the diagonal entry corresponding
to vertex v to 0 when v has degree d. By taking the product of these diagonal matrices,
entries that are set to 0 will remain zero in the resulting diagonal matrix. This implies
that the only non-zero diagonal entries are those corresponding to vertices of degree dif-
ferent from 0, 1 and 2. In other words, only for vertices of degree 3 the diagonal entries
carry a non-zero value, i.e., value 3(3− 1)(3− 2). By appropriately rescaling by the factor
1
6 = 1

3(3−1)(3−2) , the diagonal entries for the degree three vertices are set to 1, and then
summed up. Hence, #3degr(X) indeed counts the number vertices of degree three in G4 and
H4. Since #3degr(AG4) = [0] 6= [1] = #3degr(AH4) we can distinguish these graphs.

The use of the diagonal matrices and their products as in our example sentence #3degr(X)
can be generalised to obtain information about so-called iterated degrees of vertices in graphs,
e.g., to identify and/or count vertices that have a number of neighbours each of which have
neighbours of specific degrees. Such iterated degree information is closely related to equitable
partitions of graphs (see e.g., Scheinerman et al. [50]). We phrase our results in terms of
such partitions instead of iterated degree sequences.

7.1 Equitable Partitions
Formally, an equitable partition V = {V1, . . . , V`} of G is partition of the vertex set of G
such that for all i, j = 1, . . . , ` and v, v′ ∈ Vi, deg(v, Vj) = deg(v′, Vj). Here, deg(v, Vj) is the
number of vertices in Vj that are adjacent to v. In other words, an equitable partition is such
that the graph is regular within each part, and is bi-regular between any two different parts.
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A graph always has a trivial equitable partition: simply treat each vertex as a part by its
own. Most interesting is the coarsest equitable partition of a graph, i.e., the unique equitable
partition for which any other equitable partition of the graph is a refinement thereof [50].
Two graphs G and H are said to have a common equitable partition if there exists an
equitable partition V = {V1, . . . , V`} of G and an equitable partition W = {W1, . . . ,W`}
of H such that (a) the sizes of the parts agree, i.e., |Vi| = |Wi| for each i = 1, . . . , `,
and (b) deg(v, Vj) = deg(w,Wj) for any v ∈ Vi and w ∈ Wi and any i, j = 1, . . . , `. We
note that, due to condition (b) the trivial partitions of graphs do not always result in a
common equitable partition. In other words, not every two graphs (of the same order) have
a common equitable partition. Proposition 7.2 below characterises when they do have a
common partition. Equitable partitions naturally arise as the result of the colour refinement
procedure [6, 28, 57], also known as the 1-dimensional Weisfeiler-Lehman algorithm, used as
a subroutine in graph isomorphism solvers. Furthermore, there is a close connection to the
study of fractional isomorphisms of graphs [50, 53], already mentioned in the introduction.
We recall: two graphs G and H are said to be fractional isomorphic if there exists a doubly
stochastic matrix S such that AG ·S = S ·AH . Furthermore, a logical characterisation of
graphs with a common equitable partition exists.

I Proposition 7.2 ([53], [36]). Let G and H be two graphs of the same order. Then, G and
H are fractional isomorphic if and only if G and H have a common equitable partition if
and only if G ≡C2 H.

I Example 7.3. The matrix linking the adjacency matrices of G3 ( ) and H3 ( ) in
Example 6.4 is in fact a doubly stochastic matrix (all its entries are either 0 or 1

2 ). Hence,
G3 and H3 have a common equitable partition, which in this case consists of a single part
consisting of all vertices. This generally holds for graphs that are k-regular (meaning, each
vertex is adjacent to k vertices) for the same k [48, 50]. By contrast, graphs G2 ( ) and

H2 ( ) do not have a common equitable partition. Indeed, fractional isomorphic graphs
must have the same degree sequence [50], which does not hold for G2 and H2. For the same
reason, G1 ( ) and H1 ( ), and G4 ( ) and H4 ( ) are not fractional isomorphic.

To related equitable partitions to ML( · , tr,1, diag)- and ML( · , ∗,1, diag)-equivalence, we
show that the presence of diag( ·) allows to formulate a number of expressions, denoted by
eqparti(X), for i = 1, . . . , `, that together extract the coarsest equitable partition from a
given graph.

In the following, L can be either {· , tr,1, diag} or {· , ∗,1, diag}. Furthermore, we denote by
L+ the extension of L with linear combinations (i.e., + and ×), pointwise function applications
on scalars (i.e., applys[f ], f ∈ Ω) and conjugate transposition (∗). The corresponding matrix
query languages are denoted by ML(L) and ML(L+), respectively.

We start by reducing the problem of ML(L+)-equivalence to ML(L)-equivalence.

I Lemma 7.4. Let G and H be two graphs of the same order. Then, G ≡ML(L) H if and
only if G ≡ML(L+) H.

This lemma is verified by showing that expressions in ML(L+) can be seen as linear combin-
ations of expressions in ML(L), in an analogous way as in the proof of Corollary 6.10. For
example, it is clear that #3degr(X) can be written as such a linear combination.

We next relate G ≡ML(L+) H and common equitable partitions of G and H.

I Proposition 7.5. Let G and H be two graphs of the same order. Then, G ≡ML(L+) H

implies that G and H have a common equitable partition.
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Proof. We show that the algorithm cgcr(AG), described in Kersting et al. [39], which
computes the coarsest equitable partition of a graph can be simulated by expressions in
ML(L+). To describe a partition V = {V1, . . . , V`} of the vertex set of G we use indicator
vectors. More precisely, we define 1Vi as the n× 1-vector which has a “1” for those entries
corresponding to vertices in Vi and has all its other entries set to “0”. It is clear that we
can also recover partitions from indicator vectors. The simulation of cgcr(AG) results in a
number of expressions, denoted by eqparti(X) for i = 1, . . . , `, in ML(L+) that depend on G
and such that the set {eqparti(AG)} consists of indicator vectors of the coarsest equitable
partition of G. Since the algorithm cgcr(AG) is phrased in linear algebra terms [39], its
simulation follows easily. Underlying this simulation is the use of products of diagonal
matrices as a means of taking conjunctions of indicator vectors, similar to the propagation of
zeroes used in #3degr(X).

The expressions eqparti(X) are constructed based on G. Next, using our assumption
G ≡ML(L+) H, we show that the vectors eqparti(AH), for i = 1, . . . , `, also correspond to the
coarsest equitable partition of H. This is done in a number of steps:
1. We verify that each eqparti(AH) is also an indicator vector containing the same number

of 1’s as eqparti(AG).
2. We verify that any distinct pair of indicator vectors in {eqparti(AH)} have no common

entry holding value “1”. This implies that the set {eqparti(AH)} also represents a partition.
3. Finally, we verify that the set {eqparti(AH)} corresponds to an equitable partition of H

which, together with the partition corresponding to {eqparti(AG)}, witnesses that G and
H have a common equitable partition. Since {eqparti(AG)} is an equitable partition,

diag(eqparti(AG)) ·AG · diag(eqpartj(AG)) = deg(v, Vj)× diag(eqparti(AG)),

for some v ∈ Vi. Here,V = {V1, . . . , V`} denotes the equitable partition corresponding to in-
dicator vectors {eqparti(AG)}. Then, G ≡ML(L+) H implies that diag(eqparti(AH)) ·AH ·
diag(eqpartj(AH)) is the diagonal matrix deg(v, Vj)× diag(eqparti(AH)). Hence, we have
that deg(w,Wj) = deg(w′,Wj), for any w,w′ ∈ Wi, and furthermore, deg(v, Vj) =
deg(w,Wj). Here, we denote by W = {W1, . . . ,W`} the partition corresponding to
{eqparti(AH)}.

All combined, we may conclude that G and H have indeed a common equitable partition. J

7.2 Characterisations
For ML( · , ∗,1, diag,+,×, applys[f ], f ∈ Ω) we also have the converse.

I Proposition 7.6. Let G and H be two graphs of the same order. If G and H have a common
equitable partition, then e(AG) = e(AH) for any sentence e(X) in ML( · ,∗ ,1, diag,+,×,
applys[f ], f ∈ Ω).

Proof. Let V = {V1, . . . , V`} and W = {W1, . . . ,W`} be the common coarsest equitable
partitions of G and H, respectively. Denote by {1Vi

} and {1Wi
}, for i = 1, . . . , `, the

corresponding indicator vectors. We know from Proposition 7.2 that there exists a doubly
stochastic matrix S such that AG ·S = S ·AH . In fact, S can be assumed to have a block
structure in which the only non-zero blocks are those relating 1Vi and 1Wi [50]. As a
consequence, 1Vi

= S ·1Wi
and 1t

Vi
·S = 1t

Wi
for i = 1, . . . , `. The key insight in the proof

is that when e(AG) is an n × 1-vector, it can be written as a linear combination of 1Vi ’s,
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7:12 On the Expressive Power of Linear Algebra on Graphs

say
∑
ai × 1Vi . Moreover, also e(AH) =

∑
ai × 1Wi . As a consequence, e(AG) = S ·e(AH)

meaning that e(AG) is just a permutation of e(AH). For this to hold, it is essential that we
work with equitable partitions common to G and H. For example, if e(X) := X ·1(X) then

e(AG) = AG ·1 =
∑̀
i=1

AG ·1Vi =
∑̀
i,j=1

deg(vi, Vj)× 1Vi

=
∑̀
i,j=1

deg(wi,Wj)× (S ·1Wi
) = S ·e(AH),

for some vi ∈ Vi and wi ∈Wi. The challenging case in the proof is when e(X) := diag(e′(X)).
Based on the decomposition of n× 1-vectors and the block structure of S, we have

diag(e′(AG)) ·S =
∑̀
i=1

ai × diag(1Vi
) ·S =

∑̀
i=1

ai × (S · diag(1Wi
)) = S · diag(e′(AH)),

which allows to prove that AG ·S = S ·AH implies that e(AG) = e(AH) for all sentences in
our fragment. J

All combined, we obtain the following characterisation.

I Theorem 7.7. Let G and H be two graphs of the same order. Then, G ≡ML( · ,∗,1,diag) H

if and only if G ≡ML( · ,∗,1,diag,+,×,applys[f ],f∈Ω) H if and only if there is a doubly stochastic
matrix S such that AG ·S = S ·AH if and only if G ≡C2 H.

As a consequence, following Example 7.3, sentences in ML( · ,∗ ,1, diag) can distinguish
G1 ( ) and H1 ( ), G2 ( ) and H2 ( ), G4 ( ) and H4 ( ), but cannot

distinguish G3 ( ) and H3 ( ).
We next turn our attention to ML( · , tr,1, diag)- and ML( · , ∗, tr,1, diag,+,×, applys[f ], f ∈

Ω)-equivalence. Theorem 5.3 implies that G and H are co-spectral and we thus need to
combine the existence of a common equitable partition with the existence of an orthogonal
matrix O such that AG ·O = O ·AH . We remark that we cannot simply require O to be
doubly stochastic as this would imply that O is a permutation matrix2, which in turn would
imply that G and H are isomorphic, contradicting that our fragments cannot go beyond
C3-equivalence, as we see later.

A characterisation is obtained inspired by a characterisation of simultaneous equivalence
of the so-called 1-dimensional Weisfeiler-Lehman closure of adjacency matrices [52]. Let
V = {V1, . . . , V`} and W = {W1, . . . ,W`} be common equitable partitions of G and H.
Following Thüne [52], we say that an orthogonal matrix O such that AG ·O = O ·AH is
compatible with V and W if O can be block partitioned into ` orthogonal matrices Oi of size
|Vi| such that 1Vi

= O ·1Wi
, for all i = 1, . . . , `. Given this notion, we have the following

characterisation.

I Theorem 7.8. Let G and H be graphs of the same order. Then the following holds:
G ≡ML( · , tr,1,diag) H if and only if G ≡ML( · ,∗, tr,1,diag,+,×,applys[f ],f∈Ω) H if and only if G and
H have a common equitable partition, say V and W, and furthermore AG ·O = O ·AH for
some orthogonal matrix O that is compatible with V and W.

2 This is an immediate consequence of the Birkhoff-von Neumann Theorem which states that any doubly
stochastic matrix lies in the convex hull of permutation matrices [45].
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Proof. If G ≡ML( · ,∗, tr,1,diag,+,×,applys[f ],f∈Ω) H, then for any k, tr(e(AG)k) = tr(e(AH)k)
for any expression e(X) such that e(AG) (and thus also e(AH)) is an n × n-matrix. As
argued in Thüne [52] this implies the existence of a single orthogonal matrix O such that
AG ·O = O ·AH and e(AG) ·O = O ·e(AH). (The proof relies on Specht’s Theorem which
relates the existence of an orthogonal matrix simultaneously linking sets of matrices to trace
equality conditions [37].) In particular, diag(eqparti(AG)) ·O = O · diag(eqparti(AH)), for
i = 1, . . . , `, where eqparti(X) are the expressions computing the equitable partition given in
the proof of Proposition 7.5. Lemma 6 in Thüne [52] shows that O must be compatible with
the common equitable partitions represented by eqparti(AG) and eqparti(AH).

For the converse, we argue as in Proposition 7.6, using orthogonal matrices (which
preserve the trace operation) instead of doubly stochastic matrices. J

Note that G ≡ML( · ,tr,1,diag) H implies G ≡ML( · ,∗,1,diag) H. The converse does not hold.

I Example 7.9. Consider G3 ( ) and H3 ( ). These graphs are fractional isomorphic
but are not co-spectral. Hence, G3 6≡ML( · , tr,1,diag) H3 since ML( · , tr,1, diag)-equivalence
implies co-spectrality. On the other hand, G5 ( ) and H5 ( ) are co-spectral regular
graphs [55], with co-spectral complements, which cannot be distinguished by ML( · , tr,1, diag).

A close inspection of the proofs of Proposition 7.6 and Theorem 7.8, shows that G ≡ML(L+)
H implies that for any expression e(X) in ML(L+) such that e(AG) (and thus also e(AH))
is an n× 1-vector, e(AG) is a permutation of e(AH). Indeed, both can be written as linear
combinations of indicator vectors, e(AG) in terms of 1Vi

’s and e(AH) in terms of 1Wi
’s, using

the same coefficients. This implies that we can allow pointwise function applications on
vectors and scalars, denoted by applyv[f ], f ∈ Ω, at no increase in expressiveness.

I Corollary 7.10. Let G and H be two graphs of the same order. We have that G ≡ML(L) H

if and only if G ≡ML(L+∪{applyv[f ],f∈Ω}) H.

I Remark 7.11. An equitable partition can be defined without the diag( ·) operation, provided
that function applications on vectors are allowed. Hence, the same story holds when first
adding pointwise function applications on vectors to ML( · , ∗,1) and ML( · , tr,1), rather than
first adding diag( ·) like we did in this section.

8 The Impact of Pointwise Functions on Matrices

We conclude by considering pointwise function applications on matrices, the only operation
from Table 1 that we did not consider yet. As we will see shortly, pointwise multiplication
of matrices, also known as the Schur-Hadamard product, is what results in an increase in
expressive power. We denote the Schur-Hadamard product by the binary operator ◦, i.e.,
(A ◦B)ij = AijBij for matrices A and B.

I Example 8.1. We recall that in expression #3degr(X) in Example 7.1, products of diagonal
matrices resulted in the ability to zoom in on vertices that carry specific degree information.
When diagonal matrices are concerned, the product of matrices coincides with pointwise
multiplication of the vectors on the diagonals. Allowing pointwise multiplication on matrices
has the same effect, but now on edges in graphs. As an example, suppose that we want to
count the number of “triangle paths” in G, i.e., paths (v0, . . . , vk) of length k in G such that
each edge (vi−1, vi) on the path is part of a triangle. This can be done by expression

#∆pathsk(X) := 1(X)∗ ·((apply[f>0](X2 ◦X))k ·1(X),
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where f>0(x) = 1 if x 6= 0 and f>0(x) = 0 otherwise 3. Indeed, when evaluated on adjacency
matrix AG, A2

G ◦AG extracts from A2
G only those entries corresponding to paths (u, v, w) of

length 2 such that (u,w) is an edge as well, i.e., it identifies edges involved in triangles. Then,
apply[f>0](A2

G◦AG) sets all non-zero entries to 1. By considering the kth power of this matrix
and summing up all its entries, the number of triangle paths is obtained. It can be verified that
for graphs G5 ( ) and H5 ( ), #∆paths2(AG5) = [160] 6= [132] = #∆paths2(AH5)
and hence, they can be distinguished when the Schur-Hadamard product is available. Recall
that all previous fragments could not distinguish between these two graphs.

In fact, in ML( · , ∗, tr,1, diag,+,×, ◦) we can compute the coarsest stable edge colouring
of a graph G = (V,E) which arises as the result of applying the edge colouring algorithm
by Weisfeiler-Lehman [6, 11, 47, 57]. Initially, an edge colouring χ0 : V × V → {0, 1, 2} is
defined such that χ0(v, v) = 2, χ0(v, w) = 1 if {v, w} ∈ E, and χ0(v, w) = 0 for v 6= w and
{v, w} 6∈ E. Such a colouring naturally induces a partitioning Πχ0 of V × V . A colouring
χ : V × V → C for some set of colours C is called stable if and only if for any two pairs
(v1, v2) and (v′1, v′2) in V × V ,

χ(v1, v2) = χ(v′1, v′2)⇔ L2(v1, v2) = L2(v′1, v′2),

where for a pair (v, v′) ∈ V × V and pairs (c, d) of colours in C,

L2(v, v′) := {(c, d, pc,dv,v′) | p
c,d
v,v′ 6= 0} and pc,dv,v′ := |{v′′ ∈ V | χ(v, v′′) = c, χ(v′′, v′) = d}|.

In other words, L2(v, v′) lists the number of triangles (v, v′, v′′) in which (v, v′′) has colour c
and (v′′, v) has colour d, for each pair of colours. Such a stable edge colouring χ is called
coarsest when the corresponding edge partition Πχ is the coarsest stable edge partition. That
is, Πχ refines Πχ0 , χ is stable and any other colouring satisfying these conditions results in a
finer partition than Πχ.

Two graphs G = (V,E) and H = (W,F ) are said to be indistinguishable by edge
colouring, denoted by G ≡2WL H, if the following holds. Let ΠχG

= {E1, . . . , E`} and
ΠχH

= {F1, . . . , F`} be the edge partitions corresponding to stable edge colourings χG and
χH of H. Then, G ≡2WL H if there is a bijection ı : ΠχG

→ ΠχH
such that Ei and Fı(i) have

the same colour and the same number of entries carrying value 1.
In the seminal paper by Cai, Fürer and Immerman [11], the following was shown.

I Theorem 8.2. Let G and H be two graphs of the same order. Then, G ≡2WL H if and
only if G ≡C3 H.

We have the following characterisation of ML( · , ∗, tr,1, diag,+,×, ◦)-equivalence.

I Theorem 8.3. Let G and H be two graphs of the same order, then G ≡ML( · ,∗, tr,1,diag,+,×,◦)
H if and only if G ≡C3 H.

Proof. We only have space here to sketch the proof. The proof is not that different from
the one used in the context of equitable partitions. Let G = (V,E) and H = (W,F ) be
two graphs. First, we simulate algorithm 2-stab(AG) [6], that computes the coarsest stable
edge colouring, by expressions stabcoli(X), for i = 1, . . . , `, in ML( · , ∗, tr,1, diag,+,×, ◦).
Each stabcoli(AG) is an indicator matrix representing the part of the partition Π of V × V

3 The use of apply[f>0]( ·) is just for convenience and can be simulated when evaluated on given instances
using · , +, × and ◦.
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corresponding to a specific colour. Based on well-known properties of these indicator matrices
(they form standard basis of the cellular or coherent algebra associated with G [33]), we
show that G ≡ML( · ,∗, tr,1,diag,+,×,◦) H implies that {stabcoli(AH)} also represent a partition
of W × W corresponding to the coarsest stable colouring of H. Finally, G and H are
shown to be indistinguishable by edge colouring, based on the partitions {stabcoli(AG)} and
{stabcoli(AH)}. Hence, by Theorem 8.2, G ≡ML( · ,∗, tr,1,diag,+,×,◦) H implies G ≡C3 H.

For the converse, we use that G ≡2WL H implies that there exists an orthogonal matrix O
such that AG ·O = O ·AH and furthermore, the mapping Y 7→ O ·Y ·Ot is an isomorphism
between the cellular algebras of G and H. In particular, it commutes with the Schur-
Hadamard product [23]. This is crucial to show that e(AG) = e(AH) for all sentences
e(X) ∈ ML( · , ∗, tr,1, diag,+,×, ◦). J

I Remark 8.4. We can do some simplification in ML( · , ∗, tr,1, diag,+,×, ◦). Indeed, the
trace operator can be simulated by tr(e(X)) = 1(X)∗ ·(e(X) ◦ diag(1(X))) ·1(X) and can
hence be omitted. Moreover, diag( ·) can be replaced by a simpler operator, denoted
by Id, which returns the identity matrix of the same dimensions as the input. Indeed,
diag(e(X)) = (e(X) ·1(X)∗) ◦ Id(X). We can thus work with ML( · , ∗,1, Id,+,×, ◦) instead.
I Remark 8.5. Similar to Corollary 7.10, we can allow any pointwise function application on
matrices. This follows from the proof of Theorem 8.3 in which it is shown that for expressions
ei(X), for i = 1, . . . , p, such that each ei(AG) (and thus also each ei(AH)) is an n×n-matrix,
ei(AG) =

∑
a

(i)
j ×stabcolj(AG) and e(AH) =

∑
a

(i)
j ×stabcoli(AH), for scalars a(i)

j ∈ C. This
implies that apply[f ]

(
e1(AG), . . . , ep(AG)

)
=
∑
f(a(1)

j , . . . , a
(p)
j ) × stabcolj(AG), and simil-

arly, apply[f ]
(
e1(AH), . . . , ep(AH)

)
=
∑
f(a(1)

j , . . . , a
(p)
j )× stabcolj(AH) As a consequence,

apply[f ]
(
e1(AG), . . . , ep(AG)

)
·O = O · apply[f ]

(
e1(AH), . . . , ep(AH)

)
for the orthogonal mat-

rix O in the proof of Theorem 8.3. This suffices to show that e(AG) = e(AH) for any
sentence e(X) in ML( · , ∗, tr,1, diag,+,×, apply[f ], f ∈ Ω), or in other words, for any sentence
in MATLANG.
I Remark 8.6. The orthogonal matrix O in the proof of Theorem 8.3 can be taken to be
compatible with the common equitable partitions of G and H, just as in Theorem 7.8. This
follows from the fact that the diagonal indicator matrices diag(eqparti(AG)) are part of the
indicator matrices that constitute the basis of the cellular algebra of G [6].
I Remark 8.7. An almost direct consequence of Theorem 8.3 is that G ≡2WL H implies that
G and H have the same number of (simple) cycles of length 7. This was known to hold
for cycles of length ` = 1, 2, . . . , 6, and known not to hold for cycles of length greater than
7 [25]. The case ` = 7 was left open in Fürer [25]. In view of Theorem 8.3 it suffices to show
that we can count cycles of length ` = 1, 2, . . . , 7 in MATLANG. This, however, is a direct
consequence of the formulas for counting cycles given in Noga et al. [1]. Indeed, a close
inspection of these formulas reveals that only limited linear algebra functionality is required
and hence they can be formulated in MATLANG. Although formulas exist for counting cycles
of length greater than 7, they require to count the number of 4-cliques, which is not possible
in MATLANG.

9 Concluding Remarks

We have characterised ML(L)-equivalence for undirected graphs and clearly identified what
additional distinguishing power each of the operations has. That natural characterisations
can be obtained once more attests that MATLANG is an adequate matrix language. Although
motivated by the increased interest in integrating linear algebra functionality in database
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management systems, the presented results are primarily of theoretical interest. As such,
they do not directly translate into effective procedures for evaluating or optimising linear
algebra inside database systems.

We conclude with some avenues for further investigation. Although some of the results
generalise to directed graphs (with asymmetric adjacency matrices), an extension to the case
when queries can have multiple inputs seems challenging. The generalisation beyond graphs,
i.e., for arbitrary matrices, is wide open. Of interest may also be to connect ML(L)-equivalence
to fragments of first-order logic (without counting). A possible line of attack could be to work
over the boolean semiring instead of over the complex numbers (see Grohe and Otto [29] for
a similar approach). More general semirings could open the way for modelling and querying
labeled graphs using matrix query languages.

We also note that MATLANG was extended in Brijder et al. [9] with an operator inv
that computes the inverse of a matrix, if it exists, and returns the zero matrix otherwise.
The extension, MATLANG + inv, was shown to be more expressive than MATLANG. For
example, connectedness of graphs can be checked by a single sentence in MATLANG + inv.
Of course, we here consider equivalence of graphs. Even when considering a “classical”
logic like FO3, the three-variable fragment of first-order logic, G ≡FO3 H implies that G is
connected if and only if H is connected. Translated to our setting, for any fragment ML(L)
in which G ≡ML(L) H implies that the Laplacian diag(AG ·1)−AG of G is co-spectral with
the Laplacian of diag(AH ·1)−AH of H, G ≡ML(L) H implies that G is connected if and only
if H is connected. It even implies that G and H must have the same number of connected
components, as this is determined by the multiplicity of the eigenvalue 0 of the Laplacian [10].
Nevertheless, we can also consider equivalence of graphs relative to MATLANG + inv. We
observe, however, that the inverse of a matrix can be computed using + and ×, by the
Cayley-Hamilton Theorem [4], given the coefficients of the characteristic polynomial of the
adjacency matrix. These coefficients can be computed using +, × and tr. For fragments
supporting · , +, × and tr, the operator inv thus does not add distinguishing power. It is
unclear what the impact is of inv for smaller fragments such as ML( · , ,1) and ML( · , ∗,1, diag).

To relate our notion of equivalence more closely to the expressiveness questions studied in
Brijder et al. [9], it may be interesting to investigate notions of locality of ML(L) expressions,
as this underlies the inexpressibility of connectivity of MATLANG [42]. It would be nice if
this can be achieved in purely algebraic terms, without relying on locality notions in logic.

To conclude, MATLANG was also extended with an eigen operator which returns a matrix
whose columns consist of eigenvectors spanning the eigenspaces [9]. Since the choice of
eigenvectors is not unique, this results in a non-deterministic semantics. We leave it for
future work to study the equivalence of graphs relative to deterministic fragments support-
ing the eigen operator, i.e., such that the result of expressions does not depend on the
eigenvectors returned. As a starting point one could, for example, force determinism by
considering a certain answer semantics. That is, if e(X) is an expression using eigen(X),
one can define cert(e(AG)) :=

⋂
V e(AG, V ), where V ranges over all bases of the eigen-

spaces. Distinguishability with regards to such a certain answer semantics demands further
investigation.
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