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Abstract
While all relational database systems are based on the bag data model, much of theoretical research
still views relations as sets. Recent attempts to provide theoretical foundations for modern data
management problems under the bag semantics concentrated on applications that need to deal
with incomplete relations, i.e., relations populated by constants and nulls. Our goal is to provide a
complete characterization of the complexity of query answering over such relations in fragments of
bag relational algebra.

The main challenges that we face are twofold. First, bag relational algebra has more operations
than its set analog (e.g., additive union, max-union, min-intersection, duplicate elimination) and
the relationship between various fragments is not fully known. Thus we first fill this gap. Second,
we look at query answering over incomplete data, which again is more complex than in the set
case: rather than certainty and possibility of answers, we now have numerical information about
occurrences of tuples. We then fully classify the complexity of finding this information in all the
fragments of bag relational algebra.
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1 Introduction

While all relational database management systems (DBMSs) use bags as the basis of their
data model, much of relational database theory uses a model based on sets, thus disallowing
repetitions of tuples. The presence of duplicates in real-life databases is a very important
consideration that is reflected in practically all aspects of data management, such as querying,
storing, and accessing data [15, 30]. Theoretical research has raised this issue several times.
By the early 1990s there was agreement on what the standard collection of bag relational
algebra operations is [4], and in the mid 1990s their expressiveness and complexity were
thoroughly studied [18, 26], albeit in the context of the model of nested relations, or complex
objects, which was the research focus back then [9, 10]. Around the same time it was noticed
that the well developed theory of query optimization, especially for conjunctive queries, does
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not apply to bag semantics [11], and despite many attempts and partial results [23, 12], the
key problem of the decidability of such optimizations remains unsolved [24]. Other languages,
in particular those with aggregates and fixpoints in the spirit of Datalog, have been studied
under bag semantics as well [7, 13, 26].

More recently, bag semantics has been considered in modern data management applications
that combine traditional databases and reasoning tasks. In [20], fundamental problems of
data integration and data exchange are studied under bag semantics and are shown to differ
rather drastically from their set semantics counterparts. In [28], a similar program is carried
out for ontology based data access (OBDA), where an ontology supplements information
provided by a relational database in which duplicates are allowed. What is common to these
applications is that in both of them one needs to query incomplete data, that is, databases
with null values. The standard approach to querying such databases, which is used in data
integration, data exchange, and OBDA applications, is based on the classical notion of certain
answers [22].

However, when it comes to bags, the notion of certain answers becomes more complex
than under set semantics. In general, an incomplete database D represents a collection JDK
= {D1, D2, . . .} of complete databases, obtained by interpreting incomplete data in D. A
tuple ā is a certain answer to a query q if it is in q(D′) for every D′ ∈ JDK; see [1, 22]. Under
bag semantics, we have more information: for each tuple, we know the number #

(
ā, q(D′)

)
of occurrences of ā in q(D′). Thus, as D′ ranges over JDK, we have a range of numbers that
define an interval between

min(ā, q,D) = min
D′∈JDK

#
(
ā, q(D′)

)
and max(ā, q,D) = max

D′∈JDK
#
(
ā, q(D′)

)
Under set semantics, min(D, q, ā) = 1 means that ā is a certain answer to q on D, and

max(D, q, ā) = 1 means that ā is a possible answer. On sets, these can be easily checked for
positive relational algebra, but it is hard (coNP-complete and NP-complete, respectively)
for full relational algebra [2]. This tells us that, in terms of relational algebra operations,
selection, projection, Cartesian product and union are easy, but difference makes things hard.
Our goal is to paint a similar picture for bags. The problems that we face are:
1. there are more operations that are included in bag relational algebra, and we have less

understanding of them;
2. even for basic operations, there is very little knowledge of the complexity of answering

queries over incomplete data.
We now explain these points in more detail.

Bag algebra fragments

Under set semantics, we have well understood fragments of relational algebra: SPC (select-
project-Cartesian product) queries, positive relational algebra RA+ that adds union, and
full relational algebra RA that adds difference. Moreover, intersection is expressible as the
natural join of two relations over the same attributes. Under bag semantics, however, the
situation is different:

SPC queries follow their set-theoretic analogs except that they keep duplicates.
For union, there are several options: either the additive union, that adds up multiplicities
(and corresponds to UNION ALL in SQL), or the set theoretic union (SQL’s UNION), or the
max-union which takes the maximum number of occurrences of a tuple.
There are two standard notions of intersection: the set-theoretic one (SQL’s INTERSECT),
or the one taking the minimum number of occurrences of a tuple (SQL’s INTERSECT ALL).
Neither of them is the join of two relations any more.
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RA+ = SPC{]}

RA+{∪}

RA+{∩}

RA+{∪,∩} RA+{−}SPC

SPC{∩}

SPC{∪}

Figure 1 Summary of the results. An edge indicates a more expressive fragment. Adding duplicate
elimination makes every fragment more expressive, and incomparable with RA+{−}. Extending
RA+{−} with duplicate elimination results in a fragment that has the expressive power of full RA.
The shaded area includes the fragments for which computing the minimum occurrences of certain
answers is tractable, while this is intractable whenever duplicate elimination is added. Computing
the maximum number of occurrences is intractable for all fragments.

There are also two versions of the difference operator, corresponding to SQL’s EXCEPT
and EXCEPT ALL: the former removes duplicates, and the latter keeps them.
Finally, there is the duplicate elimination operation, that corresponds to SQL’s DISTINCT.

The language RA of bag relational algebra then has the following operations [4, 18, 26]:
multiplicity-preserving versions of selection, projection and Cartesian product, which form
the class of SPC queries;
additive union ] that adds up multiplicities of tuples; together with SPC queries it forms
the positive relational algebra RA+;
max-union ∪ that keeps the maximum number of occurrences of a tuple;
min-intersection ∩ that keeps the minimum number of occurrences of a tuple;
difference − that subtracts the number of occurrences of a tuple up to zero, i.e., #(ā, R−
R′) = max

(
#(ā, R)−#(ā, R′), 0

)
;

duplicate elimination ε that turns a bag into a set.

To understand how query answering behaves in these fragments, we first need to under-
stand their relative expressiveness. It might appear that these questions have already been
answered in [17, 26]. However, this was done in the context of nested relations, and the results
used the power of nesting in an essential way. For the usual bag algebra with non-nested
relations, as implemented in all DBMSs, these basic results are surprisingly lacking. Thus, as
our first task, we shall produce a full picture of the expressiveness of bag relational algebra
fragments (which will indeed be different from the known results in the nested case).

Incomplete information and bags

There is a much bigger variety of relational algebra fragments for bags, but little is known
about finding min(ā, q,D) and max(ā, q,D) for queries in those fragments. We know that min
is easy to compute for RA+ queries and that for full RA the problem is computationally hard:
checking whether min(ā, q,D) ≥ n is NP-complete [2, 14]. Checking whether max(ā, q,D) ≥
n is NP-complete even for SPC queries [14]. The complexity of actually computing min and
max (or, in terms of a decision problem, checking whether min(D, q,D) = n, and likewise
for max) is still open.

Outline of the results

Our main results are summarized in Figure 1.

ICDT 2019
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Expressiveness. We characterize the relative expressive power of RA fragments, as shown
in the diagram. Furthermore, adding duplicate elimination to a fragment that does not
have it results in a language that is strictly more expressive (than the original fragment),
and incomparable with RA+{−}. The relative expressiveness of bag operations is indeed
different from what was known in the nested relational case [17, 18, 26]. For example, over
nested relations, adding min-intersection to the analog of RA+ suffices to express max-
union, but in the usual relational algebra over bags these two operations are incomparable
in their expressiveness.

Complexity of min. For fragments in the shaded area, computing min(D, q, ā) is tractable,
and it can be done by evaluating the query naively on the incomplete database. For all
fragments outside the shaded area, and all fragments with duplicate elimination (from
SPC{ε} to the full RA), the complexity is intractable: checking whether min(ā, q,D) θ n
is NP-complete when θ is ≤, coNP-complete when θ is ≥, and DP-complete when θ is
=. Recall that DP is the class of problems that are the intersection of an NP problem
and a coNP problem [29].

Complexity of max. For all the fragments, inside and outside the shaded area, and with or
without duplicate elimination, computing max is intractable: checking max(D, q, ā) θ n is
NP-complete when θ is ≥, coNP-complete when θ is ≤, and DP-complete when θ is =.

Organization

Bag relational algebra is defined in Section 2, and the relative expressive power of its fragments
is studied in Section 3. Query answering over bags with nulls is discussed in Section 4, and
its complexity is classified in Section 5. Concluding remarks are given in Section 6.

2 Bag Relational Algebra

We now describe the standard operations of bag relational algebra and provide their semantics
[4, 17, 18, 26]. A bag is a collection of elements with associated multiplicities (numbers of
occurrences); if an element b occurs n times in a bag B, we write #(b, B) = n. If #(b, B) = 0,
it means that b does not occur in B. Sets are just a special case when #(b, B) ∈ {0, 1}.

In a database D, each k-ary relation name R of the schema is associated with a bag RD
of k-tuples; we will omit the superscript D whenever it is clear from the context. We assume
that the attributes of a k-ary relation are 1, . . . , k, i.e., we adopt the unnamed perspective [1].

Syntax

The syntax of relational algebra (RA) expressions is defined as follows:

e, e′ ::= R (base relations)
| σi=j(e) (selection)
| πα(e) (projection)
| e× e′ (Cartesian product)
| e ] e′ (additive union)
| e ∪ e′ (max-union)
| e ∩ e′ (intersection)
| e− e′ (difference)
| ε(e) (duplicate elimination)
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where i and j in σi=j(e) are positive integers, and α in πα(e) is a possibly empty tuple of
positive integers.

The arity of RA expressions is defined as follows: for base relations, it is given by the
schema; for σi=j(e) and ε(e), it is the arity of e; for πα(e), it is the arity of α; for e× e′, it is
the sum of the arities of e and e′; for e ? e′ with ? ∈ {∪,],∩,−}, it is the arity of e.

We then say that an RA expression is well-formed w.r.t. a schema if: it mentions only
relation names from the schema; i and j in σi=j(e) are less than or equal to the arity of e;
the elements of α in πα(e) are less than or equal to the arity of e; the expressions e and e′

in e ? e′, with ? ∈ {∪,],∩,−}, have the same arity. In the rest of the paper, we implicitly
assume that we are always working with well-formed RA expressions.

Semantics

We give the semantics of (well-formed) RA expressions e by inductively defining the quantity
#(ā, e,D), which is the number of occurrences of a tuple ā (of appropriate arity) in the result
of applying e to a database D. This is done as follows:

#(ā, R, D) = #
(
ā, RD

)
#(ā, σi=j(e), D) =

{
#(ā, e,D) if ā.i = ā.j

0 otherwise

#(ā, πα(e), D) =
∑

ā′ : πα(ā′)=ā

#(ā′, e,D)

#
(
āā′, e× e′, D

)
= #

(
ā, e,D

)
· #
(
ā′, e′, D

)
#(ā, e ] e′, D) = #(ā, e,D) + #(ā, e′, D)
#(ā, e ∪ e′, D) = max

{
#(ā, e,D), #(ā, e′, D)

}
#(ā, e ∩ e′, D) = min

{
#(ā, e,D), #(ā, e′, D)

}
#(ā, e− e′, D) = max

{
#(ā, e,D)−#(ā, e′, D), 0

}
#(ā, ε(e), D) = min

{
#(ā, e,D), 1

}
where ā.i denotes the i-th element of ā, πi1,...,in(ā) is the tuple (ā.i1, . . . , ā.in), and the tuples
ā and ā′ in the rule for e× e′ have the same arity as e and e′, respectively.

Then, for an expression e and a database D, we define e(D) as the bag of tuples ā of the
same arity as e so that #

(
ā, e(D)

)
= #(ā, e,D).

Fragments

The two main fragments of RA we consider are SPC, consisting of selection (σ), projection
(π) and Cartesian product (×), and RA+, which is SPC extended with additive union (]).
Given a fragment L of RA, we write L{op1, . . . , opn} to denote the fragment obtained by
adding the RA operations op1, . . . , opn to L. Thus, for instance, RA+ is SPC{]}.

A query is a mapping q from databases to bags of tuples. We always assume that queries
are generic, that is, invariant under permutations of the domain [1]. A query q is expressible
in a fragment L of RA if there is an expression e in that fragment so that e(D) = q(D) for
every database D.

Then, given two fragments L and L′, we say that L′ is at least as expressive as L, and
write L ⊆ L′, if every query expressible in L is also expressible in L′. We say that L′ is more
expressive than L, and write L ( L′, if L′ is at least as expressive as L and there is a query
that is expressible in L′ but not in L. Notice that if L′ has all the operations of L, then L′

is at least as expressive as L.

ICDT 2019
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3 Expressive Power of Bag Relational Algebra Fragments

In this section, we study the relative expressiveness of RA fragments. We present the results
that justify the edges in Figure 1, along with additional results that are not explicitly captured
in that diagram.

We start by showing that extending positive relational algebra with max-union or inter-
section results in a more expressive fragment.

I Proposition 1. RA+ ( RA+{?} for ? ∈ {∪,∩}.

Proof sketch. We only need to show that there exists a query that is expressible in RA+{?}
but not in RA+. To this end, consider a schema consisting of two nullary (i.e., of arity 0)
relation symbols R and S, and suppose that R ? S is expressible in RA+, i.e., there exists an
RA+ expression e equivalent to R ? S. For a database D, let m = |RD| and n = |SD|; then,
|e(D)| = f?(m,n), where f∪ = max and f∩ = min, and it is expressible by a polynomial
pe ∈ N[m,n], because e ∈ RA+ [16]. For n0 ∈ N, define the polynomial p ∈ N[m] such that
p(m) = pe(m,n0). When ? = ∪, we choose n0 = deg(pe) to derive a contradiction of the fact
that p̃(m) = d is the unique polynomial of degree at most d that interpolates the d+ 1 data
points (0, d), . . . , (d, d). When ? = ∩, we choose n0 > 0 to derive a contradiction of the fact
that p is strictly increasing in the interval [0,+∞), since its coefficients are in N. J

The proof of Proposition 1 also applies to show the following.

I Corollary 2. SPC ( SPC{?} for ? ∈ {∪,∩}.

We now show that additive union increases the expressive power of SPC{∩} and SPC{∪}.

I Proposition 3. SPC{?} ( RA+{?} for ? ∈ {∪,∩}.

Proof sketch. On databases with nullary relations of size 1, every SPC{?} expression with
? ∈ {∩,∪} can only yield a (nullary) relation of size 1, while there are RA+ expressions (e.g.,
R ]R where R is a base relation) whose results size on such databases is greater than 1. J

In particular, the proof of Proposition 3 also applies to show the following.

I Corollary 4. SPC ( RA+.

Next, we show that ∪ increases the expressive power of RA+{∩}, and ∩ increases the
expressive power of RA+{∪}. In turn, this implies that ∪ and ∩ are incomparable operations.

I Proposition 5. RA+{?} ( RA+{∪,∩} for ? ∈ {∪,∩}.

Proof sketch.
RA+{∪} ( RA+{∩,∪}

We show that, on a schema consisting of two nullary relation symbols R and S, e = R∩S
is not expressible in RA+{∪}. To this end, let e′ be an RA+{∪} expression over R and S.
Then, |e′(D)| is given by a function in the variables m = |RD| and n = |SD| consisting of
sum, product and max. When e′ mentions R, for all databases D where m > n we have
that |e′(D)| ≥ m > n = |e(D)|. When e′ mentions S, for all databases D where m < n

we have that |e′(D)| ≥ n > m = |e(D)|. Therefore e′ cannot be equivalent to e.
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RA+{∩} ( RA+{∩,∪}

We show that, on a schema consisting of two nullary relation symbols R and S, e = R∪S
is not expressible in RA+{∩}. To this end, let e′ be an RA+{∩} expression over R and S.
It can be shown that e′ can be equivalently rewritten to e1∩· · ·∩ek where each ei is an RA+

expression. Note that this applies only for nullary relations, which suffices for our purposes,
but it does not hold in general. Then, for every database D with m = |RD| and n = |SD|,
we have that |e(D)| = max(m,n) = min(p1, . . . , pk) = |e′(D)|, where pi ∈ N+[m,n]. Now,
let n0 be an integer greater than 1; then, max(m,n0) = min(p′

1, . . . , p
′
k) where each p′

i is
a polynomial in N+[m] such that p′

i(m) = pi(m,n0). One of these polynomials must be
the straight line p(m) = m, which leads to a contradiction for m < n0. J

I Corollary 6. L{∪} and L{∩} are incomparable, for L ∈ {SPC,RA+}.

Finally, we show that with additive union and difference one can express both intersection
and max-union, therefore RA+{−} is the most expressive fragment of RA without duplicate
elimination.

I Proposition 7. RA+{∩,∪} ( RA+{−}.

Proof sketch. To show that every e ∈ RA+{∩,∪} can be expressed in RA+{−}, we proceed
by induction: the base case is when e is an RA+ expression, which is trivially in RA+{−};
in the inductive step, we use the fact that, for every x, y ∈ N, min(x, y) = x´ (y ´ x) and
max(x, y) = x+ (y´x), where x´ y = max(x− y, 0) is the monus operation. That RA+{−}
is more expressive than RA+{∩,∪} then follows from the fact that every query expressible
in RA+{∩,∪} is monotone, while in RA+{−} one can express non-monotone queries. J

Then, obviously, we immediately get the following.

I Corollary 8. RA+{−, ε} and RA have the same expressive power.

We conclude this section by showing that adding duplicate elimination to a fragment
that does not already have it increases its expressive power.

I Proposition 9. L ( L{ε} for every fragment L of RA without duplicate elimination.

Proof sketch. On databases with non-empty nullary relations of even size, every L expression
can only yield a (nullary) relation of even size, whereas duplication elimination allows one to
obtain, from such databases, relations of size 1. J

4 Certain Answers under Bag Semantics

Dealing with incomplete information is a recurring topic in many different areas of logic and
computer science. In database theory, the main way to deal with the lack of information is
via incomplete databases. Intuitively, an incomplete database D is a compact representation
of a possibly infinite collection JDK of complete databases, which define the semantics of D.

In this paper, we use incomplete databases with marked (or labeled) nulls. This model
of incompleteness is very common in the database literature [1, 22] and naturally occurs in
many different scenarios, e.g., in data exchange and integration (cf. [6, 8, 25]). In this model
databases are populated by constants and nulls, coming from two disjoint and countably
infinite sets denoted by Const and Null, respectively. More formally, a k-ary relation is a finite
bag of k-ary tuples over Const ∪ Null. A database D then maps each k-ary relation symbol
R in the schema to a k-ary bag relation RD. Given a database D = {RD1 , . . . , RDn }, we write

ICDT 2019



8:8 Fragments of Bag Relational Algebra: Expressiveness and Certain Answers

Const(D) and Null(D) for the set of constants and nulls occurring in the RDi s, respectively.
The active domain of D is the set Const(D) ∪Null(D), denoted by adom(D). We say that D
is complete if Null(D) = ∅.

The semantics JDK of a database D is defined by means of valuations. A valuation v is
a map v : Null(D)→ Const, and the result of applying v to D is the complete database vD
obtained by replacing each null ⊥ ∈ Null(D) with v(⊥). Observe that applying v to each
relation RD in D preserves multiplicities, i.e., for each relation name R in the schema and
each tuple c̄ ∈ RvD the following equality holds: #

(
c̄, RvD

)
=
∑

ā : vā=c̄
#
(
ā, RD

)
. The set JDK is

defined as JDK = {vD | v is a valuation}.
When relations are sets, the standard way to answer a query q on an incomplete database

D is to compute certain answers, i.e., tuples that are in q(D) for every D′ ∈ JDK, and possible
answers, i.e., tuples that are in q(D) for some D′ ∈ JDK. When relations are bags, however,
one must also take multiplicities into account. In what follows, this is done by computing the
minimum and maximum number of occurrences of a tuple in the answers across all databases
in JDK (cf. [14]). Let D be a database, let q be a relational algebra expression of arity n,
and let ā ∈ Const(D)n be a tuple of constants, we define min(ā, q,D) and max(ā, q,D) as
follows:

min(ā, q,D) = min
vD∈JDK

#
(
ā, q(vD)

)
; max(ā, q,D) = max

vD∈JDK
#
(
ā, q(vD)

)
(1)

Intuitively, min(ā, q,D) and max(ā, q,D) are extensions of certain and possible answers
to bag databases. Indeed, min(ā, q,D) ≥ 1 if and only if ā is in q(D′) for every D′ ∈ JDK
(and thus it is a certain answer), and max(ā, q,D) ≥ 1 if ā is in q(D′) for some D′ ∈ JDK
(and thus it is a possible answer).

Thus, from now on we assume min(ā, q,D) and max(ā, q,D) as our standard notion of
query answers and study their complexity. More specifically, we will focus on data complexity,
that is, computing min(ā, q,D) and max(ā, q,D) for a fixed query q. Depending on the type
of comparison we use, several decision problems arise from the computation of min and max.
These decision problems are defined as follows.

Problem: MINθ[q], for θ ∈ {>,=, <}
and a query q of arity n.

Inputs: an incomplete database D,
a tuple ā ∈ Const(D)n,
a non-negative integer k.

Question: is min(ā, q,D) θ k?

Problem: MAXθ[q], for θ ∈ {>,=, <}
and a query q of arity n.

Inputs: an incomplete database D,
a tuple ā ∈ Const(D)n,
a non-negative integer k.

Question: is max(ā, q,D) θ k?

Whether the number k is represented in unary or binary form does not matter: the results
will be the same regardless. All tractability results are shown assuming binary representation,
and all matching hardness results will be proved for the case when k is represented in unary.
The choice of inequalities, i.e, < vs ≤ or > vs ≥, is not important: since k is an integer, ≤ k
is the same condition as < k + 1.

As for the case of certain and possible answers, the complexity of the above problems
depends on the fragment of RA in which the query q is expressed. While for some of these
fragments the problems can be proved to be intractable, there are fragments of RA for which
computing min(ā, q,D) is tractable and can actually be done via naive evaluation. The naive
evaluation of a query q of arity n on a bag database D is defined as the bag obtained by
assuming that each null value in Null(D) is a distinct constant and evaluating q directly
over D. In what follows, we will denote by naive(ā, q,D) the number of occurrences of a
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tuple ā ∈ Const(D)n in the result of the naive evaluation of an RA query q on an incomplete
database D. It is well known that naive(ā, q,D) can be computed in DLogSpace in data
complexity [18, 26].

5 Complexity of Certain Answers

We now turn our attention to the complexity of evaluating bag relational algebra expressions
on incomplete databases, that is, solving the problems MINθ[q] and MAXθ[q] for queries in
various fragments of RA. As already explained, these problems are natural bag analogs of
the notions of certainty and possibility over set databases.

In Section 5.1, we first provide upper and lower bounds for full RA. When the relation θ is
< or >, the results are easily derivable from the results for the set case in [2]; we complement
them with the exact complexity for equality.

Then, in Section 5.2, we focus on the problem MINθ[q] and prove the exact tractability
boundary shown in Figure 1. We start by showing that in all of the fragments up to RA+{∩},
the value of min can be computed by naive evaluation of queries, which extends a result in [14].
We then show that outside this fragment the problem is intractable, namely NP-complete for
<, coNP-complete for >, and DP-complete for =. In particular, we show that the problem
is intractable for all fragments containing SPC{∪}, and all fragments containing SPC{ε}.

Next, in Section 5.3, we look at MAXθ[q]. It was shown in [14] that for > the problem
is NP-complete, even for very simple queries. Here, we complete the picture and settle the
case for =, even when q is a query that simply returns a relation from the database.

Finally, in Section 5.4, we discuss what happens with more complex selection conditions
in queries.

5.1 Upper and lower bounds for full RA
Before delving into the complexity of the different fragments of RA, we briefly look at the
complexity of evaluating general expressions. First, observe that RA queries are generic, i.e.,
invariant under permutations of the domain. In the bag case, this is stated as follows.

I Proposition 10. Let D and D′ be complete databases, let ρ be a bijection between adom(D)
and adom(D′) such that D′ = ρ(D), and let q ∈ RA be a query of arity n. Then, #(ā, q,D) =
#(ρā, q,D′) for every tuple ā ∈ adom(D)n.

Intuitively, this tells us that we need to take into account only finitely many valuations in order
to compute the values in (1). Upper bounds of NP, coNP, and DP follow straightforwardly.

I Proposition 11. Let q be an expression in RA. Then:
MIN<[q] and MAX>[q] are in NP;
MIN>[q] and MAX<[q] are in coNP;
MIN=[q] and MAX=[q] are in DP.

Proof sketch. Due to Proposition 10, in order to compute min and max we need to take into
account only a limited number of valuations. Like in the set case [2], for a given database D
we need to take into account only those valuations whose range consists of Const(D) and a
new distinct constant for each null in Null(D). Moreover, evaluating RA expressions over
complete bag semantics databases is in DLogSpace in data complexity. J

For general RA expressions, all of these problems are complete in their respective classes.
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I Proposition 12. Let q be an expression in RA. Then:
MIN<[q] and MAX>[q] are NP-hard;
MIN>[q] and MAX<[q] are coNP-hard;
MIN=[q] and MAX=[q] are DP-hard.

Proof sketch. The results for < and > follows directly from the fact that set databases can
be simulated by bag databases. Hence, the hardness results presented in [2] apply. For =, we
can show a reductions from a very well known DP-complete problem (see, e.g., Theorem 20
for the case of MIN=[q] and Theorem 25 for the case of MAX=[q]). J

Despite these high bounds, one may expect that some fragments of RA will behave better;
this is what we investigate next.

5.2 Computing min

We now look at computing certain answers to bag queries, that is, values min(ā, q,D). The
usual naive evaluation works for queries in the RA+{∩} fragment. Outside it, the decision
version of the problem, MIN<[q], is intractable for every fragment, and for each such fragment
the complexity is exactly the same. We now prove these facts.

5.2.1 Naive evaluation for RA+{∩}

While computing min is hard in the general case, there exists a large fragment of RA for
which min can be computed via naive evaluation. In the set case this fragment is well known
to be positive relational algebra [22] consisting of selection, projection, Cartesian product,
and union. Notice that over sets the intersection of two relations is expressible by join, but
over bags this is no longer the case. It turns out that the good behavior of join with respect
to certain answers extends to bags, when we add intersection explicitly. Indeed, for RA+{∩},
one can compute min simply by using naive evaluation.

I Theorem 13. Let q be an RA+{∩} expression of arity n, let D be a database, and let
ā ∈ Const(D)n. Then, min(ā, q,D) = naive(ā, q,D).

Proof sketch. One can show that for every valuation v of Null(D) we have∑
b̄ : vb̄=vā

naive(b̄, q,D) ≤ #(vā, q, vD) .

Since the number of occurrences of a tuple ā in a relation is always a non-negative integer,
we have naive(ā, q,D) ≤ #(ā, q, vD). The claim then follows from the fact that whenever
naive(ā, q,D) = k there exists a valuation v of Null(D) such that #(ā, q, vD) = k. J

From the fact that bag relational algebra queries are in DLogSpace with respect to data
complexity [18, 26], we then immediately get the following.

I Corollary 14. For expressions q ∈ RA+{∩}, the problems MIN<[q], MIN>[q] and MIN=[q]
are all in DLogSpace.
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5.2.2 Hardness for SPC{∪} and fragments with duplicate elimination

We now show that RA+{∩} is the best fragment for which we can compute certain answers
efficiently under bag semantics. From the diagram in Figure 1, it suffices to prove that the
problem is intractable for SPC{∪}, as well as for all fragments with duplicate elimination.
This is what we do here; in fact we shall see that in all of these fragments, the intractable
complexity will be exactly the same, namely NP-complete, coNP-complete, or DP-complete,
when θ is <, or >, or =.

Technical tools

To prove these results, we use reductions from two well-known decision problems: satisfiability
(SAT) and satisfiability-unsatisfiability (SAT-UNSAT) of propositional formulae in conjunctive
normal form (CNF). Recall that a k-CNF formula φ is the conjunction of clauses, where each
clause is a disjunction of at most k literals, i.e., variables or their negations. In what follows,
we assume k-CNF formulae with exactly k distinct literals in each clause. In our scenario,
this can be done without loss of generality. We write Var(φ) for the set of variables of φ, and
|φ| for the number of clauses of φ. The formula φ is satisfiable if there exists an assignment
for Var(φ) that satisfies all the clauses of φ. We let k-SAT refer to the problem of checking
whether a CNF formula is satisfiable; this problem is well known to be NP-complete for
k ≥ 3. Given two k-CNF formulae φ and ψ, SAT-UNSAT is the problem of checking whether
φ is satisfiable while ψ is not. For two given formulae φ, ψ ∈ k-CNF, for k ≥ 3, checking
whether φ is satisfiable and ψ is not satisfiable is DP-complete [29].

For our reductions, we will use two additional technical tools: an encoding of k-CNF
formulae as relations and a CNF formula with specific properties. Let φ be a propositional
k-CNF formula whose clauses are c1, . . . , cn. Assume an injection ρ from Var(φ) to Null, for
each x ∈ Var(φ), the tuples ūtx and ūfx are defined respectively as (0, ρ(x)) and (ρ(x), 1).

We next associate a relation Ri with each clause ci, for i ∈ {1, . . . , n}. To this end, we
assume a linear ordering over Var(φ). Consider a truth assignment τ for the variables of
ci, i.e., a mapping from the k variables used in ci to true and false that makes ci true. For
each such assignment τ , we add to the relation Ri a single occurrence of the tuple (ū1 . . . ūk),
where each ūj is equal to ūtxj if τ(xj) = true and to ūfxj if τ(xj) = false, and the variables
are considered in the ordering we assumed on Var(φ). Finally, we define Rφ as

⊎n
i=1Ri.

Observe that the number of tuples in each Ri is exactly 2k, hence the total number of
tuples in Rφ is at most |φ| · 2k. When k is fixed, the size of Rφ is polynomial with respect to
the size of φ. Relations Rφ enjoy the following property that will be central in our proofs.

I Lemma 15. Let φ be a k-CNF formula. There exists a truth assignment of Var(φ) that
satisfies exactly m clauses of φ if and only if there exits a valuation v of Null(Rφ) such that
range(v) ⊆ {0, 1} and #

(
(0, 1)k, vRφ

)
= m.

Proof sketch. First, one can show that for each clause ci of φ and for every valuation v

of Null(Ri) there is at most one occurrence of (0, 1)k in vRi. Observe now that, for each
ū ∈ Ri, vū = (0, 1)k means that either v

(
ρ(x)

)
= 1 for a positive literal x appearing in ci, or

v
(
ρ(x)

)
= 0 for a negative literal ¬x appearing in ci. If there exists a valuation v of Null(Rφ)

such that range(v) ⊆ {0, 1} and #
(
(0, 1)k, vRφ

)
= m, the following truth assignment satisfies

m clauses of φ: τ(x) = true if v(ρ(x)) = 1, and τ(x) = false otherwise. Suppose now that a
truth assignment τ for Var(φ) that satisfies m clauses of φ exists. The valuation v for Null(D)
is such that #

(
(0, 1)k, vRφ

)
= m: v

(
ρ(x)

)
= 1 if τ(x) = true, and v

(
ρ(x)

)
= 0 otherwise. J
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8:12 Fragments of Bag Relational Algebra: Expressiveness and Certain Answers

Our second technical tool is a formula h(f, g) derived from two k-CNF formulae

f =
n∧
i=1

(
f1
i ∨ · · · ∨ fki

)
and g =

m∧
i=1

(
g1
i ∨ · · · ∨ gki

)
where each f ji and gji is a literal. Let x and y be two propositional variables not appearing
in Var(f) ∪ Var(g); then, h(f, g) is the following (k + 1)-CNF formula:

n∧
i=1

(
f1
i ∨ · · · ∨ fki ∨ x

)
∧

m∧
i=1

(
g1
i ∨ · · · ∨ gki ∨ ¬x

)
∧

m∧
i=1

(
g1
i ∨ · · · ∨ gki ∨ ¬y

)
∧ (x)∧ (¬x∨ y)

The formula h(f, g) can be used to check whether f is satisfiable while g is not, due to
the following property.

I Lemma 16. Let f and g be two k-CNF formulae. Then f is satisfiable and g is unsatisfiable
if and only if the maximum number of clauses of h(f, g) that can be satisfied by a single truth
assignment is exactly |h(f, g)| − 1.

The SPC{∪} case

We now look at the complexity of handling the max-union operator ∪. Somewhat unexpec-
tedly, adding ∪ to SPC gives rise to a substantial increase in the complexity of computing
min; recall that in the set case, adding union is harmless and preserves the property that
certain answers can be found by naive evaluation. To prove this claim, we will use reductions
from SAT and SAT-UNSAT.

Let φ be a k-CNF formula, and let Dφ denote the database {DR, DT } where DR is Rφ
(i.e., the encoding of CNF formulae presented earlier) and DT contains an occurrence of
(0, 1)k for each clause in φ, that is, #

(
(0, 1)k, DT

)
= |φ|.

For reductions, we use the query q = π∅(R∪T ). Note that we project onto the empty set
of attributes, so the only possible answers for q are either the empty bag, or bags containing
one or more occurrences of the empty tuple ().

To prove our claims, we first need to prove the following result.

I Proposition 17. For every k-CNF formula φ, the database Dφ has the following properties:
1. There exists a truth assignment for Var(φ) that satisfies exactly m clauses of φ if and only

if there exits a valuation v for Null(Dφ) such that range(v) ⊆ {0, 1} and #
(
(), q, vDφ

)
=(

(2k + 1) · |φ|
)
−m.

2. For every valuation v of Null(Dφ) there exists a valuation v′ for Null(Dφ) such that
range(v′) ⊆ {0, 1} and #

(
(), q, vDφ

)
≥ #

(
(), q, v′Dφ

)
.

Proof sketch. The first property can be proved using Lemma 15. For the second, observe
that #

(
(), q, vDφ

)
depends on the number of occurrences of (0, 1)k in vRφ. J

With these notions in place, we are now ready to present the main results of this section.
We start by proving that MIN<[q] is NP-hard.

I Theorem 18. The problem MIN<[q] is NP-hard for q = π∅(R ∪ T ).

Proof sketch. To prove the claim, we show a reduction from SAT. Let φ be a 3-CNF formula.
From Proposition 17, we get min

(
(), q,Dφ

)
= 9|φ| −m, where m is the maximum number of

clauses of φ that can be satisfied by the same truth assignment. To obtain the reduction,
simply observe that satisfiability of φ means that all the |φ| clauses of φ can be satisfied with
the same truth assignment. In light of this, we can conclude that φ is satisfiable if and only
if min

(
(), q,Dφ

)
< 9|φ| − |φ|+ 1 = 8|φ|+ 1. In turn, this gives the desired reduction. J
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The complexity of MIN>[q] follows directly from Theorem 18, being MIN<[q] the comple-
ment of MIN>[q].

I Corollary 19. There exists a query q ∈ SPC{∪} such that MIN>[q] is coNP-hard.

We now turn our attention to MIN=[q] and show that this problem is hard for q ∈ SPC{∪}.

I Theorem 20. The problem MIN=[q] is DP-hard for q = π∅(R ∪ T ).

Proof sketch. To prove the claim we discuss a reduction from SAT-UNSAT. Let f and g be
two 3-CNF formulae, let h(f, g) be the formula defined earlier, and let Dh be the encoding
of h(f, g) defined above. Using Proposition 17, one can prove that exactly |h(f, g)| − 1
clauses of h(f, g) can be satisfied by the same truth assignment if and only if there exists a
valuation v of Null(Dh) such that #

(
(), q, vDh

)
= 16|h(f, g)|+1 and there exists no valuation

v′ of Null(Dh) such that #(v′Dh, q, ()) ≤ 16|h(f, g)|. By Lemma 16, this implies that f is
satisfiable and g is unsatisfiable if and only if min

(
(), q,Dh

)
= 16|h(f, g)|+ 1, proving the

claim. J

Handling duplicate elimination

In terms of tractability, no fragment survives the addition of duplicate elimination. In this
section, we will show that the decision problems for all fragments from SPC{ε} to the full
relational algebra are NP-complete, coNP-complete, and DP-complete for <, > and =,
respectively. To prove this, we will use reductions from SAT and SAT-UNSAT.

Let φ be a k-CNF formula, and let Dφ = {DS} be the database where the relation DS is
defined as follows. Let Ri be the relation encoding the i-th clause of φ, as described at the
beginning of this section; then define the relation R′

i = ({i} ×Ri) ] {
(
i, (0, 1)k

)
}, where {i}

and {
(
i, (0, 1)k

)
} are bags containing one occurrence of the tuples (i) and (i, 0, 1, . . . , 0, 1︸ ︷︷ ︸

2k

),

respectively. We define DS =
⊎
iR

′
i. Notice that the size of DS is at most (2k + 1) · |φ|.

In the proofs we use the very simple SPC{ε} query q = π∅
(
ε(S)

)
, whose output is either

the empty set or the set {()} containing the empty tuple.
To prove our complexity results we need the following proposition.

I Proposition 21. For every k-CNF formula φ, the database Dφ has the following properties:
1. There exists an assignment for Var(φ) that satisfies m clauses of φ if and only if there

exists a valuation v of Null(Dφ) such that range(v) ⊆ {0, 1} and #
(
(), q, vDφ

)
=
(
(2k +

1) · |φ|
)
−m.

2. For every valuation v of Null(Dφ) there is a valuation v′ of Null(Dφ) such that range(v′) ⊆
{0, 1} and #

(
(), q, vDφ

)
≥ #

(
(), q, v′Dφ

)
.

Proof sketch. The first property can be proved using Lemma 15. For the second, observe
that #

(
(), q, vDφ

)
depends on the number of occurrences of (0, 1)k in vRφ. J

Using Proposition 21 we can prove the main results of this section. We start with the
complexity of MIN<[q].

I Theorem 22. The problem MIN<[q] is NP-hard for q = π∅(ε(S)).

Proof sketch. To prove the claim we show a reduction from SAT. Let φ be a 3-CNF formula
and let Dφ be the database encoding φ defined above. Using Proposition 21, we can prove
that min

(
(), q,Dφ

)
= 9|φ| −m, where m is the maximum number of clauses of φ that can

be satisfied by the same truth assignment. To obtain the reduction, observe that if φ is
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satisfiable then |φ| of its clauses can be satisfied by the same truth assignment. In turn,
this proves that φ is satisfiable if and only if min

(
(), q,Dφ

)
< 9|φ| − |φ|+ 1 = 8|φ|+ 1. The

desired reduction follows. J

The complexity of MIN>[q] follows directly from Theorem 22.

I Corollary 23. There exists a query q ∈ SPC{ε} such that MIN>[q] is coNP-hard.

We now look at MIN=[q] and prove the desired lower bound for q ∈ SPC{ε}.

I Theorem 24. The problem MIN=[q] is DP-hard for q = π∅(ε(S)).

Proof sketch. To prove the claim, we argue that there exists a reduction from SAT-UNSAT
to MIN=[q] when q = π∅(ε(S)). Let f and g be two 3-CNF formulae, let h(f, g) be the
formula defined in the previous sections, and let Dh be the encoding of h(f, g) as relation
defined above. Using Proposition 21, one can prove that |h(f, g)| − 1 clauses of h(f, g) can
be satisfied by the same truth assignment if and only if there exists a valuation v of Null(Dh)
such that #

(
(), q, vDh

)
= 16|h(f, g)|+ 1 and there exists no valuation v′ of Null(Dh) such

that #
(
(), q, v′Dh

)
≤ 16|h(f, g)|. Due to Lemma 16, this implies that f is satisfiable and g is

not satisfiable if and only if min((), q,Dh) = 16|h(f, g)|+ 1. In turn, this proves the desired
reduction. J

5.3 Computing max: hardness for simple queries
Computing max is hard already for very simple queries: in fact, MAX>[q] is NP-complete
for queries that simply return a base relation in the database [14]. Here we complete the
picture and prove that solving MAX=[q] for the same queries is complete for DP. To this
end, we will show a reduction from SAT-UNSAT to MAX=[q].

Let φ be a k-CNF formula, and let Dφ be the database consisting of the single relation
DR = Rφ, which is the encoding of φ defined earlier. Using this simple construction we can
prove the following.

I Theorem 25. The problem MAX=[q] is DP-hard even for a query q that returns a base
relation in the database.

Proof sketch. To prove the claim, we discuss a reduction from SAT-UNSAT. Let f and g
be two 3-CNF formulae, and let h(f, g) be the 4-CNF formula defined earlier. Consider the
database Dh defined above and assume that the query q returns R. First, one can prove that
for every valuation v of Null(Dh) there exists a valuation v′ such that range(v′) ⊆ {0, 1} and
#
(
(0, 1)k, R, vDh

)
≤ #

(
(0, 1)k, R, v′Dh

)
. From this considerations and Lemma 15, one can

prove that exactly |h(f, g)|−1 clauses of h(f, g) can be satisfied by the same truth assignment
if and only if there exists a valuation v of Null(Dh) such that #

(
(0, 1)4, R, vDh

)
= |h(f, g)|−1

and there exists no valuation v′ of Null(Dh) such that #
(
(0, 1)4, R, v′Dh

)
≥ |h(f, g)|. Due

to Lemma 16, f is satisfiable and g is unsatisfiable if and only if max((0, 1)k, R,Dh

)
=

|h(f, g)| − 1. In turn, this proves the desired reduction. J

5.4 Complex selection conditions
In our definition of relational algebra, we assumed that selection conditions are equalities
i = j. More generally, one can define these conditions by the grammar

c := (i = j) | c ∧ c | c ∨ c | ¬c
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allowing arbitrary Boolean combinations. We briefly describe how more complex conditions
affect our results.

If we simply add conjunction, that is, selection conditions are conjunctions of equalities,
nothing changes at all. This is because the cascade of selections rule, σc∧c′(e) = σc

(
σc′(e)

)
,

applies under bag semantics as well.
If disjunction is added, it might appear at first that this is the same as adding max-union,

because σc∨c′(e) = σc(e)∪σc′(e). As far as finding certain answers is concerned, the fragment
SPC{∪} is intractable, so it appears that adding disjunction to selection conditions, under
bag semantics, might lead to intractability. However, this is not the case: adding disjunction
to selections is weaker than adding max-union, and preserves tractability.

I Proposition 26. Let q be a query in RA+ or arity n where selection conditions are
positive Boolean combinations of equalities. Then, MIN<[q] and MIN>[q] can be solved in
DLogSpace. More precisely, for every database D and every tuple ā ∈ Const(D)n, the value
min(ā, q,D) can be computed by naive evaluation: min(D, q, ā) = naive(D, q, ā).

For conditions that are unrestricted Boolean combinations of equalities, the problem
becomes intractable, even when these are added to the positive fragment.

I Proposition 27. In the extension of RA+ that allows arbitrary Boolean combinations of
equalities as selection conditions, there exist queries q such that MIN<[q] is NP-complete,
MIN>[q] is coNP-complete, and MIN=[q] is DP-complete.

6 Conclusions

We have provided two complete classifications: of the expressive power of fragments of bag
relational algebra, and of the complexity of computing certain and possible answers in those
fragments. For the complexity of certain answers, we have a dichotomy: either they can be
computed efficiently by naive evaluation, or their complexity is intractable, which means
NP-complete, or coNP-complete, or DP-complete (depending on how the problem is turned
into a decision problem).

Directions for future work are motivated by the recent work on bag semantics in data
management applications where incompleteness naturally occurs, such as data exchange [20]
and OBDA [28]. Notice that we have primarily concentrated on the closed-world semantics,
which as of late has been actively studied in those contexts; see, e.g., [3, 5, 19, 21, 27]. Thus
we believe our results could be relevant to understanding the complexity of these applications
under the closed-world assumption. As another direction for future work, we would like to
study the complexity of finding certain and possible answers in the fragments of bag relational
algebra under the open-world assumption. The general case is of course undecidable, but the
picture for the fragments studied here is not clear. Finally, we would like to use our results
as the starting point for the study of answering queries with grouping and aggregation over
incomplete data, as such queries rely on bag semantics.
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