
Categorical Range Reporting with Frequencies
Arnab Ganguly
Dept. of Computer Science, University of Wisconsin, Whitewater, USA
gangulya@uww.edu

J. Ian Munro
Cheriton School of Computer Science, University of Waterloo, Canada
imunro@uwaterloo.ca

Yakov Nekrich
Cheriton School of Computer Science, University of Waterloo, Canada
yakov.nekrich@googlemail.com

Rahul Shah
Dept. of Computer Science, Baton Rouge, USA
rahul@csc.lsu.edu

Sharma V. Thankachan
Dept. of Computer Science, University of Central Florida
sharma.thankachan@ucf.edu

Abstract
In this paper, we consider a variant of the color range reporting problem called color reporting with
frequencies. Our goal is to pre-process a set of colored points into a data structure, so that given a
query range Q, we can report all colors that appear in Q, along with their respective frequencies.
In other words, for each reported color, we also output the number of times it occurs in Q. We
describe an external-memory data structure that uses O(N(1 + log2 D/ logN)) words and answers
one-dimensional queries in O(1 +K/B) I/Os, where N is the total number of points in the data
structure, D is the total number of colors in the data structure, K is the number of reported colors,
and B is the block size.

Next we turn to an approximate version of this problem: report all colors σ that appear in the
query range; for every reported color, we provide a constant-factor approximation on its frequency.
We consider color reporting with approximate frequencies in two dimensions. Our data structure
uses O(N) space and answers two-dimensional queries in O(logB N + log∗B +K/B) I/Os in the
special case when the query range is bounded on two sides. As a corollary, we can also answer
one-dimensional approximate queries within the same time and space bounds.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Data Structures, Range Reporting, Range Counting, Categorical Range
Reporting, Orthogonal Range Query

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.9

1 Introduction

Orthogonal range query is a fundamental problem in computational geometry and data
structures, with a large number of applications in database theory, information retrieval, and
text mining. In this problem, we want to pre-process a set of points so that later, given a
query rectangle Q, we can report some desired information about the points contained in Q.
Typical examples of this information are: the maximum (or minimum) value of a point in
the range (in this case we associate a numeric value to each point), the most-frequent value
in the range (or mode), the median value, the number of points in the range, etc.

© Arnab Ganguly, J. Ian Munro, Yakov Nekrich, Rahul Shah, and Sharma V. Thankachan;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 9; pp. 9:1–9:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gangulya@uww.edu
mailto:imunro@uwaterloo.ca
mailto:yakov.nekrich@googlemail.com
mailto:rahul@csc.lsu.edu
mailto:sharma.thankachan@ucf.edu
https://doi.org/10.4230/LIPIcs.ICDT.2019.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Categorical Range Reporting with Frequencies

In the colored (or categorical) orthogonal range reporting problem, every point is assigned
a color (category). Given a query range Q, we must report distinct categories of points in the
query range. Typically, we want to avoid reporting the same category many times. For this
reason, colored variants of the range reporting problem are considered to be more difficult.
In the orthogonal range counting problem, we keep the set of points in a data structure so
that, given a query range Q, we can count the number of points in Q.

In this paper, we consider a variant of color range reporting queries that combines color
reporting with counting: given a query range Q, we report all colors that appear in Q;
additionally, for each color within Q, we also report the number of its occurrences in Q.
Henceforth, such queries are called color reporting with frequencies. We also consider an
approximate variant: all colors in a query range Q are reported; for each color σ, which
appears Kσ times in Q, we find a constant factor approximation for Kσ.

We describe two data structures – one for color reporting with exact frequencies in one
dimension and the other for color reporting with approximate frequencies in two dimensions,
which are the first of their kind in the external memory model.

1.1 Applications to Databases
Situations where we need to report distinct categories of objects in a query range arise
frequently in database applications. Suppose we have a database of employees, and we want
to identify all employees whose salary lies in the range $40,000 – $80,000. This problem
corresponds to one-dimensional point reporting queries. Now suppose that we want to report
different job positions, such that at least one employee holding this position earns between
$40,000 and $80,000. This problem corresponds to one-dimensional color reporting queries.
In many cases, we may be interested in a more involved query: group all employees who earn
between $40,000 and $80,000 according to their job positions, then list all groups and the
number of employees in each group. This problem can be modeled by (one-dimensional) color
reporting queries with frequencies. Furthermore we may be satisfied if we obtain approximate
numbers of employees for every group. In this case, it is sufficient to answer the approximate
variant of the color reporting query with frequencies.

Another prominent application of color range queries is in databases containing a collection
of texts (documents). Given a query pattern Q, we want to report all documents that contain
Q at least once; for each such document, we want to estimate how many occurrences of Q it
contains. Such a query can be reduced to a color reporting query with frequencies.

1.2 Model of Computation
We study the color reporting with (approximate) frequencies problems in the external memory
model. Here, the storage is divided into a main (or internal) memory of limited size and
a large (potentially unbounded) external disk. We can perform arithmetic operations on
data that is stored in the main memory. The data structure, however, does not fit into
main memory and must be stored on the external disk. Using one I/O operation, we can
read a contiguous block of B words from disk into the main memory or write a block of B
words from main memory into the external disk. The main memory is much faster than the
external memory; hence, all main memory operations are considered free and the algorithm
complexity is measured in the number of I/O operations.

We remark that when we answer a reporting query in the external memory model, it is
preferable to report Θ(B) objects (points, colors) with one I/O operation. Design of methods
that fully exploit this property of the external memory model poses an additional challenge.

A. Ganguly, J. I. Munro, Y. Nekrich, R. Shah, and S. V. Thankachan 9:3

1.3 Notation
Throughout this paper, N is the total number of points, where each point is associated with
a color. We denote by D the number of distinct colors. The number of colors in the answer
to a query is denoted by K. The number of points with color σ in the answer to a query
(or the frequency of σ) is denoted by Kσ. We assume that a word consists of Θ(logN) bits.
Unless specified otherwise, the space usage is measured in words of Θ(logN) bits.

1.4 Previous and Related Work
Due to its importance, both in theory and in practice, the problem of reporting distinct colors
of points in a range has received considerable attention. Both one-dimensional and multi-
dimensional color (or categorical) range reporting were considered in the literature [13, 7, 11,
12, 8, 18, 19, 14, 23]. Other variants of this problem, such as top-k color reporting [14, 20],
color maxima queries [25], color stabbing queries [10] were also studied.

Gupta et al. [11] present a main memory data structure that uses linear-space (i.e.,
O(N)-word) and answers one-dimensional colored range reporting queries in O(logN +K)
time. Muthukrishnan [18] showed that the query time can be improved to O(1 +K) if points
are in the rank space, i.e., point coordinates are integers 1, 2, . . . , N . Later, Nekrich and
Vitter [24] removed the rank space assumption, without any penalty in space or time.

In the external memory model, one-dimensional color reporting is usually solved by
reducing it to three-sided point reporting (i.e., to a special case of two-dimensional point
reporting when the query range is bounded on three sides). Arge et al. [3] described a
linear-space solution that supports queries in O(logB N +K/B) I/Os. Nekrich [21] described
an O(N)-word data structure that supports queries in O(log logB U +K/B) I/Os when point
coordinates are bounded by U . If point coordinates are bounded by N , another O(N)-space
data structure from [21] supports queries in O(log(h)

2 N +K/B) I/Os, where h is a positive
constant and log(h)N denotes the logarithm function iterated h times.1 Larsen and Pagh [15]
showed that one-dimensional queries can be answered in O(1 + K/B) I/Os using O(N)
words if point coordinates are bounded by N . They also studied the related problem of
reporting the top-k colors, where each color is associated with a static weight and the k
highest weighted colors within the query range have to be reported. Nekrich and Vitter [24]
demonstrated that one-dimensional color reporting queries can be answered in O(1 +K/B)
I/Os even if point coordinates are arbitrary integers. Patil et al. [25] considered another
variant of color reporting in one-dimension, called colored range maxima queries; here, one
has to report the points corresponding to k distinct colors within the query range having
the highest y-coordinate values. They presented multiple data structures with different
space-and-time trade-offs, such as an O(N)-word data structure with O(log∗N + k/B) query
time2 and an O(N log∗N)-word data structure with optimal O(1 + k/B) query time.

Although this problem has been studied extensively and optimal results for many colored
range reporting problems were achieved, limited progress has been made for the color range
reporting with frequencies problem. Gupta, Janardan, and Smid [11] presented an internal
memory data structure that answers a query in O(logN + K) time and uses O(N logN)
space; see the type-2 counting problem in [11]. If we combine a result of Muthukrishnan [18]
with an idea of Sadakane [29], we can obtain an O(N)-word data structure for reporting
colored points and their frequencies in the rank space in O(1 +K) time. However, this result

1 log(h) N = log(log(h−1) N) for h > 1 and log(1) N = logN
2 log∗N is the smallest number i such that log(i) N ≤ 2

ICDT 2019

9:4 Categorical Range Reporting with Frequencies

Table 1 Our Results.

Query Type Space Time

1D/2D Two-sided with Constant Appx O(N) words O(log∗B + logB N +K/B) I/Os

1D One-sided Exact O(N) words O(1 +K/B) I/Os

1D Two-sided Exact O(N(1 + log2 D/ logN)) words O(1 +K/B) I/Os

is not efficient in the external memory model, where the desired dependency on the output
size is O(f(N) +K/B) for some small function f(N). To the best of our knowledge, there is
no previous solution that exploits the properties of the external memory model. In contrast,
the standard color reporting (without frequencies) can be solved in optimal O(1 + K/B)
time and O(N) space in external memory [15, 24]. In this paper, we bridge this gap.

In the related approximate range counting problem, we must approximate the number of
point within the query range. Chan and Wilkinson [9] presented an O(N log logN)-word
data structure that answers approximate two-dimensional queries in O(log logN) time. The
previous paper by Nekrich [22] achieved a better approximation factor, compared to [9], at
the cost of higher space usage. In another paper, Nekrich [23] presented an O(N)-space data
structure that supports approximate point counting queries on an N ×N grid in O(1) I/Os,
when the query range is bounded on three sides.

The second problem that we study combines color reporting with approximate point
counting problem: we report all colors within the query range and provide a constant factor
approximation for the frequency of each color. We primarily study the problem from the
perspective of dominance reporting in two-dimensions, i.e., the query range is bounded on
two sides; see e.g., [1] for a catalog on dominance queries. Straightforward reductions from
this two-dimensional dominance problem can be used to answer a (two-sided) color reporting
query with approximate frequencies in one dimension.

1.5 Our Results

Unless specified otherwise, we assume that points are in the rank space, i.e., point coordinates
are integers 1, 2, . . . , N . More general scenarios can be reduced to this special case at the
cost of increasing the query time by a small additive factor: if points are integers 1, . . . , U
for a parameter U , then the query cost increases by O(log2 logB U); if point coordinates can
assume arbitrary values, the query cost increases by O(logB N).

We first consider the problem of reporting colors and their frequencies for a two-sided
query in 2D, which is commonly referred to as dominance query [1] in 2D. We present a
linear-space data structure that answers a constant-factor 2-sided approximate-frequency
query: given a query range [−∞, α]× [−∞, β], we report all colors in the query range, and
for every reported color σ, we also provide an estimate kσ on the number of its occurrences
in the range. Let δ > 1 be a constant that is fixed at the construction time and can be
arbitrarily close to 1. For every color σ in the range, we obtain an integer index i, such that
δi ≤ kσ ≤ δi+1. The total cost of a query is O(log2(N/B)+K/B) I/Os. Our data structure is
based on a reduction to the problem of identifying all two-dimensional rectangles that contain
a query point [4, 27] (rectangle stabbing problem), and uses O(N) space. Then, we improve
the time to O(logB N + log∗B +K/B) I/Os, still using linear space. As a straightforward
corollary, we answer one-dimensional 2-sided queries with the same space-time trade-offs.

A. Ganguly, J. I. Munro, Y. Nekrich, R. Shah, and S. V. Thankachan 9:5

Additionally, we present an O(Nd log2 D
logN e)-word data structure that answers 1-dimensional

2-sided color reporting queries with exact frequencies in optimal O(1+K/B) I/Os. We remark
that the space is O(N) words if the number of colors is not too large, i.e., when D ≤ 2

√
logN .

This result is based on an O(N)-space data structure that answers 1-dimensional 1-sided
color reporting queries with exact frequencies in optimal O(1 +K/B) I/Os.

Our results are presented in Table 1.

1.6 Map
We begin in Section 2 by reducing 2-sided approximate-frequency queries in 2D to rectangle
stabbing queries (also known as orthogonal point enclosure). This leads to a simple linear
space data structure. In Section 3, we improve this result to achieve our claimed I/O
complexity without increasing the space usage. Section 4 explains how to use this data
structure for answering approximate-frequency queries in one dimension. In Section 5, we
present our data structure for reporting colors with exact frequencies in one dimension.
Finally, we conclude in Section 6 with a couple of unanswered problems.

2 2D Color Dominance with Approximate Frequencies

In this section, we focus on answering two-dimensional colored dominance queries with
approximate frequencies. Specifically, we consider the following:

I Definition 1. Given a collection of two-dimensional colored points, we define FREQ(α, β, σ)
to be the number of 2d points pi = (xi, yi) satisfying xi ≤ α, yi ≤ β, and the color of pi is σ.

I Problem 2. Given N colored points in 2d, answer an APPX2D(α, β) query: report all
distinct colors σ1, σ2, . . . , σK with values f1, f2, . . . , fK such that for each reported color σi,

FREQ(α, β, σi) 6= 0, and
FREQ(α, β, σi) ≤ fi ≤ δ · FREQ(α, β, σi)

We prove the following theorem in this section.

I Theorem 3. There exists an O(N)-word data structure that answers APPX2D(α, β) queries
in O(log2 N

B +K/B) I/Os.

2.1 Shallow Cutting
We heavily rely on the concept of shallow cutting that has been used extensively in range
reporting problems [1, 2, 17, 27, 28]. Consider a color σ and let Nσ be the total number of
points of color σ. We call a point a σ-point if it is of color σ.

An h-shallow cutting for a parameter h can be constructed as follows. We start sweeping
a vertical line V from x = −∞ until we reach a σ-point such that the total number of
σ-points encountered so far is δh. Now start sweeping a horizontal line H from y =∞ until
we reach the highest σ-point among these δh σ-points. Let c1 be the point of intersection of
the sweeping lines at this point. Let Rh1 be the region bounded by the sweeping lines; note
that Rh1 is two-sided and has δh number of σ-points.

Now again start sweeping V to the right, until the region, say Rh′

1 , bounded by V and H
contains δh+1 points. Let c′1 be the point of intersection of the sweeping lines at this point.
Start sweeping H downwards until the region, say Rh2 , bounded by V and H again contains

ICDT 2019

9:6 Categorical Range Reporting with Frequencies

H
V

Rh
1

H
V

Rh′

1

V

H
Rh

2

δh

δh

δh

δh

δh

δh+1

δh+1

δh+1

δh+1

c′1c1

c′2c2

c3 c′3

c4

c5

c′4

δh+1 σ-pointsδh σ-points

δh σ-points

Figure 1 Illustration of Shallow Cutting and the resultant staircase structure.

δh−1

δh

δh+1

δh

red-rectangle
A type-h

δh+1

δh+1

(a,b)

Any point stabbing this rectangle
dominates ≥ δh and ≤ δh+2

number of red-points

δh+2

Figure 2 Illustration of Rectangular Tessellation.

δh points. Let c2 be the new point of intersection of V and H. We repeat this process until
V reaches the rightmost σ-point within the region bounded by V and H, following which H
is swept down so that the last two-sided region contains δh many σ-points.

We denote by Rh1 ,Rh2 , . . . , type-h σ-regions; likewise, type-h regions refers to the collection
of type-h σ-regions over all possible colors σ. The points c1, c′1, c2, c′2, . . . are referred to as
the corner points of this “staircase structure”. We also refer to this staircase structure as the
skyline of the regions. See Figure 1.

The following lemma will play a crucial role in proving our space bounds.

I Lemma 4. The number of type-h regions is O(N/δh).

Proof. Refer to Figure 1. It is easy to see that every time a new region Rhi is created from
Rhi−1, we read δh+1 − δh many new σ-points. Hence, we create at most Nσ

(δh+1−δh) = Nσ
(δ−1)δh

σ-regions, which is O(Nσ/δh). Thus, the number of type-h σ-regions is O(Nσ/δh). The
lemma follows trivially. J

2.2 Tessellation Using Rectangles
Let us consider the shallow cutting outlined in the previous section. For each color σ, we
carry out the shallow cutting for every h ∈

[
1, dlogδ Ne

]
, thereby breaking the xy-plane into

various σ-regions – type-1 σ-regions, type-2 σ-regions, · · · , type-(logδ N) σ-regions.
We now present the following important lemma (see Figure 3).

I Lemma 5. A type-h σ-region is contained within a type-(h+ 1) σ-region.

Proof. Refer to Figure 3. It shows the situation when a type-h σ-region is not contained in
a type-(h+ 1) σ-region. Since the number of σ-points dominated by both B and D is δh+1,
there are no σ-points either to the left of the segment AD, or below the segment CD, or
within the rectangle ABCD. But then our construction is incorrect and the points D and C
must have coincided with A and B respectively. The claim follows by contradiction. J

A. Ganguly, J. I. Munro, Y. Nekrich, R. Shah, and S. V. Thankachan 9:7

D

A B

C

δh+1

points

empty

empty

empty

δh+1

δh+1

δh+2

δh+1

δh+1

δh+2

δh

δh A B

CD

Figure 3 Illustration of Lemma 5. A type-h region is contained withing a type-(h+ 1) region.

Based on the above lemma, the “staircase structure” of the (h+ 1)-shallow cutting lies to
the right and above of the staircase structure for the h-shallow cutting.

Let us consider a point p in the plane such that it is contained in a type-(h+ 1) σ-region
but not contained in a type-h σ-region. This, as we shall see in more details in the next
subsection, gives an estimate of the number of σ-points that are dominated by p. Our
main idea is to associate such a point p with an approximate count of the σ-points that are
dominated by it. Obviously, we cannot associate each point separately; hence, we break the
xy-plane between a type-h and a type-(h+ 1) region into several (yet appropriately bounded)
rectangles. Specifically, consider the corner points of a type-h σ-region. We draw vertical
lines from these points onto the skyline of the type-(h−1) and type-(h+1) σ-regions, thereby
breaking the plane into several rectangles. See Figure 2.

We call each rectangle a type-h σ-rectangle if it is contained in a type-(h+ 1) σ-region
but not within a type-(h) σ-region. As before, type-h rectangles refers to the collection of
type-h σ-rectangles over all possible colors σ. Using Lemma 4, we can show that the number
of type-h rectangles for a fixed h is O(N/δh). The following lemma is obtained by summing
over h = 1, 2, . . . , dlogδ Ne.

I Lemma 6. The total number of rectangles is O(N).

2.3 Rectangle Stabbing
A rectangle is said to be stabbed by a point if it contains the point within its boundaries.
The rectangle tessellation structure described in the previous section immediately leads to
the following important lemma.

I Lemma 7. If a type-h σ-rectangle is stabbed by (α, β), then the following inequality holds:

δh ≤ FREQ(α, β, σ) ≤ δh+2

Proof. Consider the shallow cutting in Figure 2. Since the point (α, β) stabs a type-h
σ-rectangle, it is contained within a type-(h + 1) σ-region. Thus, the number of σ-points
dominated by any point on the skyline of a type-(h+ 1) σ-region is at most δh+2. Hence,
FREQ(α, β, σ) ≤ δh+2. To prove the other inequality, we observe in Figure 2 that any point
within a type-(h+ 1) σ-region dominates at most δh σ-points of a type-h σ-region. Hence,
FREQ(α, β, σ) ≥ δh, as required. J

ICDT 2019

9:8 Categorical Range Reporting with Frequencies

Intuitively, looking at the lemma above, it follows that in order to answer an APPX2D(α, β)
query, it suffices to report all the type-h σ-rectangles that are stabbed by (α, β) for all possible
choices of σ and appropriate choices of h in each case. This is because if a type-h σ-rectangle
is stabbed by a point (α, β), we have the following:

there exists a σ-point dominated by (α, β), which follows simply from the way in which
the rectangles are constructed, and
δh ≤ FREQ(α, β, σ) ≤ δh+2, using Lemma 7

We notice that for each particular color there is at most one stabbed rectangle of that
color. Therefore for each color, our task is to find the rectangle of that color (if any) that is
stabbed by (α, β); for each stabbed rectangle, report its color and an appropriate real value
which gives an approximation of FREQ(α, β, σ).

To this end, we collect all the rectangles of all possible colors and store them in the
following external-memory rectangle-stabbing data structure in [4].

I Fact 8 (Theorem 4, [4]). Given M rectangles, there exists an O(M) space data structure
that can report all rectangles stabbed by an input point in O(log2(M/B)+occ/B) I/Os, where
occ is the output size.

With each type-h σ-rectangle, say Rhσ, we store its corresponding color σ, and the value
COUNT(Rhσ) = δh+2.

Using Fact 8 and Lemma 6, the total space is O(N) words.

2.4 Wrapping Up
To answer APPX2D(α, β), we query the data structure of Fact 8 and report all the stabbed
rectangles along with their color and COUNT(·) values. The query time is O(log2(N/B) +
K/B), as desired.

Note that each color is reported exactly once, because only one rectangle of a particular
color is stabbed; hence, we are left to show that for a reported type-h σ-rectangle Rhσ,
COUNT(Rhσ) gives us a desired approximation of FREQ(α, β, σ).

First we note that COUNT(Rhσ) ≥ FREQ(α, β, σ)
Revisiting Lemma 7, we see that

FREQ(α, β, σ) ≥ δh = COUNT(Rhσ)
δ2 =⇒ COUNT(Rhσ) ≤ δ2 · FREQ(α, β, σ)

By choosing
√
δ (instead of δ) during construction, we obtain

COUNT(Rhσ) ≤ δ · FREQ(α, β, σ)

which leads to our desired approximation ratio. (Note that space and time bounds are
only affected by a constant factor.) This completes the proof of Theorem 3.

3 Improvement via Bootstrapping

In this section, we set out to improve the query time of Theorem 3, still using linear space.
More specifically, we prove the following theorem.

I Theorem 9. There exists an O(N)-word data structure that answers APPX2D(α, β) queries
in O(logB N + log∗B +K/B) I/Os.

A. Ganguly, J. I. Munro, Y. Nekrich, R. Shah, and S. V. Thankachan 9:9

boundary boundary boundary boundary
h-slabh-slab(h− 1)-slab (h− 1)-slab

level-h rectangle ∈ S ′′
h

level-h rectangle ∈ S ′′′
h

level-h rectangle ∈ S ′
h

Figure 4 Illustration of type-h rectangles and the sets S ′h, S ′′h , and S′′′h .

3.1 Framework and Overview
In order to prove Theorem 9, we need to improve the log2(N/B) factor in the I/O complexity
of Theorem 3. Unfortunately, as shown by Arge, Samoladas, and Yi [4], it is not possible to
achieve o(log2(N/B)) query complexity for the rectangle stabbing problem in two dimensions
if the data structure uses linear space. However, in our case, we are able to circumvent the
lower bound of [4] because rectangles have some additional special properties. Our approach
is based on a hierarchical subdivison of the plane into vertical slabs. The subdivision is based
on two parameters:

∆h = B(log(h)(N/B))4 and Kh = B(log(h)(N/B))2

A slab boundary is a vertical line through x = i + 0.5 for some integer i ∈ [1, N] and
slab is the region between two slab-boundaries. The entire xy-plane is a level-0 slab. For
h = 1, 2, 3, . . . , log∗N , we divide each level-(h− 1) slab into level h-slabs, so that

the number of level-h slabs within any level-(h− 1) slab is O(∆h−1/∆h)
the number of rectangles completely covered by any level-h slab is O(∆h).

A rectangle is a level-h rectangle if it crosses at least one boundary of a level-h slab, but
is completely contained within a level-(h− 1) slab. See Figure 4.

Throughout this section we will denote by Si the i-slab that contains the query point (α, β)
for i = 1, 2, . . . , log∗ n. Consider a particular h. Suppose that a point (α, β) stabsK rectangles,
where K ≥ Kh. All the level-h rectangles are contained in the (h−1)-slab Sh−1. If we keep all
level-h rectangles contained in Sh−1 in the data structure of Fact 8, then all level-h rectangles
stabbed by (α, β) are reported in O(log2(∆h−1/B) +K/B) = O(Kh/B +K/B) = O(K/B)
I/Os. This case is considered in detail in Section 3.2.

The main difficulty is in reporting level-h rectangles for values of h, such that K < Kh.
In this case, described in Section 3.3, we follow a different strategy. We keep all level-h
rectangles that span the slab Sh (i.e., rectangles that intersect Sh but have all four corners
outside of Sh) in a separate data structure and use it to report all level-h rectangles that
are stabbed by (α, β). Since (α, β) is within Sh, we only need to look for rectangles whose
y-projection contains β. In the general case, this approach would require too much space: a

ICDT 2019

9:10 Categorical Range Reporting with Frequencies

level-h rectangle can span a large number of h-slabs and we would have to keep it in a data
structure for every slab. Fortunately in our case, rectangles satisfy a so-called monotonic
property, defined in Observation 15. Due to this property, we only need to store o(∆h) “lowest”
spanning rectangles for every h-slab. Any point above those “lowest” rectangles is guaranteed
to stab at least Kh rectangles. Additionally, we also need to classify rectangles into heavy
and light ones, according to the frequencies of regions represented by these rectangles. A
detailed description is provided in Section 3.3.2. We consider separately the case of the
level-h rectangles that intersect but do not span Sh. Queries on such rectangles can be
reduced to three-dimensional dominance queries; see Section 3.3.1.

In the description above, we assumed that the value of K is known. Computing the
value of K is rather straightforward – simply report the colors of all points dominated by
(α, β). Using the result of Patil et al. [25], we can report all colors (and compute K) in
O(log∗N +K/B) I/Os using an O(N) space data structure.

3.2 Handling Case 1: K ≥ Kh

For h = 1, 2, 3, . . . and for each level-(h− 1) slab D, we create a rectangle stabbing structure
of Fact 8 over all level-h rectangles that are completely within D. By our choice of parameters,
the number of such rectangles is O(∆h−1). By definition of level-h rectangles, every rectangle
is stored in one data structure; hence, the total space is O(N) words.

To report all level-h rectangles stabbed by (α, β), we first identify the level-(h− 1) slab
Dh−1 that is stabbed by the point (α, β) using the following lemma.

I Lemma 10. For any h ∈ [1, log∗N], we can identify the level-(h− 1) slab that is stabbed
by a point in O(1) I/Os by using an O(N) space data structure.

Proof. For each h, maintain a bit vector Bh[1, N], such that Bh[i] = 1 iff i+ 0.5 is a level-h
slab boundary. Additionally, associate an o(N)-bit structure for constant rank/select support
on Bh [26]. Clearly, the level-h slab stabbed by (α, β) is the one that starts at t+ 0.5, where
t is the rightmost position ≤ β, such that Bh[t] = 1. The number of I/Os required is O(1).
The total space is O(N log∗N) bits, which is O(N) words. J

Now, we consider a query over the rectangle stabbing structure associated with Dh−1.
Suppose the number of rectangles reported is occh−1. Then, the number of I/Os required is

O(log2(∆h−1/B) + occh−1/B) i.e., O((Kh + occh−1)/B)

Therefore the total number of I/Os over all values of h, where K ≥ Kh, is

O

(1
B

∑
h,K≥Kh

(Kh + occh−1)
)

i.e., O(log∗N +K/B)

In summary, we have the following lemma.

I Lemma 11. If Kh ≤ K, then all level-h rectangles that are stabbed by a point (α, β) can
be retrieved in O(log∗N +K/B) I/Os by using an O(N) space data structure.

3.3 Handling Case 2: K < Kh

Let Sh be the set of all level-h rectangles intersecting with a level-h slab, say Dh. Note
that by definition, they all are completely within a level-(h − 1) slab, say Dh−1, hence
|Sh| = O(∆h−1). We divide Sh into three disjoint sets, Sh = S ′h ∪S ′′h ∪S ′′′h , defined as follows.

A. Ganguly, J. I. Munro, Y. Nekrich, R. Shah, and S. V. Thankachan 9:11

1. S ′h: rectangles in Sh with both right corners inside Dh and both left corners outside Dh.
2. S ′′h : rectangles in Sh with both left corners inside Dh and both right corners outside Dh.
3. S ′′′h : rectangles in Sh with all 4 corners outside Dh.

See Figure 4. We will answer stabbing queries for every subset of Sh separately.

3.3.1 Handling S ′h and S ′′h
We show how to find the rectangles that belong to S ′h and are stabbed by (α, β); the rectangles
in S ′′h can be found in a symmetric way.

Observe that since the right corners of any rectangle in S ′h are within the slab, a rectangle
[xl, xr]× [yb, yt] is stabbed when α ≤ xr and yb ≤ β ≤ yt. Based on this intuition, we recall
the following three-dimensional dominance reporting structure of Afshani [1].

I Fact 12. Given M three-dimensional points, there exists an O(M) space data structure
that can report all the occ points dominated by a query point q in O(logBM + occ/B) I/Os.

Using the above result, we prove the following lemma.

I Lemma 13. We can report all rectangles from sets S ′h and S ′′h , 1 ≤ h ≤ log∗N , stabbed by
a query point (α, β) in O(log∗N + logB N +K/B) I/Os using an O(N) space data structure.

Proof. Based on the data structure in Fact 12, we represent a rectangle R = [xl, xr]× [yb, yt]
in S ′h as a three-dimensional point (−xr, yb,−yt). The rectangle is stabbed by (α, β) iff
(−α, β,−β) dominates (−xr, yb,−yt). For each h ∈ [1, log∗N], we maintain two dominance
structures – one for the rectangles in S ′h and another for the rectangles in S ′′h . The total
space over all levels is O(N). Since |S ′h ∪ S ′′h | = O(∆h), if the number of rectangles reported
at level h is occh, the number of I/Os is

O

(
logB(∆h) + occh

B

)
i.e., O

(
1 + logB(log(h)N) + occh

B

)
The total number of I/Os for h = 1, 2, . . . , log∗N is O(log∗N + logB N + K

B). J

3.3.2 Handling S ′′′h

What remains is to show how to obtain the rectangles in S ′′′h stabbed by the query. The idea
is to divide S ′′′h into two carefully selected subsets:

a set Hh of heavy rectangles
a set Lh of light rectangles

Heavy Rectangles. The set Hh contains all rectangles R in S ′′′h with COUNT(R) ≥
∆h−1

B
,

where COUNT(R) is the frequency associated with R. We have the following lemma.

I Lemma 14. For any h ∈ [1, log∗N], the number of heavy rectangles in Hh is O(B).

Proof. Consider a level-h σ-rectangle R = [x′, x′′]× [y′, y′′]. Let COUNT(R) = f . Then, the
number of σ-points in [x′, x′′] is Θ(f), which follows from our shallow cutting construction.
Therefore within a level-(h − 1) slab D, the number of points is ∆h−1 and the number of
level-h heavy rectangles completely within D is bounded by ∆h−1/f = O(B). J

ICDT 2019

9:12 Categorical Range Reporting with Frequencies

`

Dh

1

2

3

45

6

Figure 5 Example of Lh for Kh = 3. Rectangles spanning Dh with bottom segment below `

(i.e., 1, 2, 3, and 4) are included in Lh. Every point within Dh and above ` stabs at least Kh many
rectangles.

We can store these rectangles in space
∑
h

(
N
∆h
·B
)

= O(N). When a query is answered,

we load all the rectangles in Hh into the internal memory using O(1) I/Os, and then examine
them in the internal memory to find the ones stabbed by (α, β). Hence, the total number of
I/Os over all h is bounded by O(log∗N).

Light Rectangles. To create the set Lh ⊆ S′′′h of light rectangles, we sweep a horizontal
line ` from −∞ in the positive y-direction. Every time when ` crosses the bottom line of a
rectangle from S′′′h , we add its color to the set of colors, say Ch. We stop when Ch contains
Kh distinct colors (or when ` reaches the highest rectangle in S′′′h). See Figure 5. Then
Lh is the set of all rectangles R in S ′′′h with color c ∈ Ch and the COUNT(R) < ∆h−1/B.
Recall that COUNT(R) is the frequency associated with a rectangle R, and they are of
the form δ, δ2, Therefore, the number of rectangles having a color from Ch, which
is associated with a particular COUNT(·) is dlogδ(∆h−1/B)e. Hence, the size of Lh is
|Lh| = Kh · logδ(∆h−1/B) = O(B(log(h) n)3).

Since every rectangle in Lh spans Dh, for our purposes they can be represented by their
projections on the y-axis, i.e., x-coordinates can be ignored. To check whether a rectangle
[xl, xr]× [yb, yt] in Lh is stabbed by (α, β), it suffices to check whether yb ≤ β ≤ yt. We can
find all [yb, yt] stabbed by β in O(logB |Lh|) I/Os [5].

Hence, all rectangles in Lh that are stabbed by (α, β) can be obtained in

O

(
logB |Lh|+

occh
B

)
= O

(
1 + logB(log(h) n) + occh

B

)
I/Os, where occh is the number of such rectangles. Therefore the total number of I/Os
summed over h ∈ [1, log∗N] is O(log∗N + logB N +K/B) as desired.

The total space needed to store all sets Lh is

O

(∑
h

nKh

∆h
· log ∆h−1

B

)
= O

(∑
h

N

log(h) N
B

)
= O(N)

Now we will show that it is sufficient to examine rectangles in Lh if K < Kh.

I Observation 15 (Monotonic Stabbing). If a point (x, y) stabs a rectangle with color c, then
any point (x, y′), where y′ > y, stabs a rectangle with color c. Hence, the output (colors) of a
stabbing query (x, y) is a subset of the output of a stabbing query (x, y′) for y′ > y.

A. Ganguly, J. I. Munro, Y. Nekrich, R. Shah, and S. V. Thankachan 9:13

Let yh denote the final y-coordinate of ` (i.e., the position of ` when Ch contains Kh

colors, see Fig. 5). If a rectangle R ∈ S′′′h stabs a point (x, y) ∈ Dh and y ≤ yh, then R ∈ Lh.
Consider an arbitrary point (x, y) ∈ Dh with y ≥ yh. For every color in c ∈ Ch, there is
a point (x, y′) ∈ Dh such that y′ ≤ yh and (x, y′) stabs a rectangle of color c. Hence, by
Observation 15, (x, y) also stabs a rectangle of color c. Therefore any point (x, y) ∈ Dh, such
that y ≥ yh, stabs at least Kh different rectangles. We obtain the following lemma.

I Lemma 16. We can report all rectangles from sets S′′′h , 1 ≤ h ≤ log∗N , that are stabbed by
a query point (α, β) in O(log∗N + logB N +K/B) I/Os using an O(N) space data structure.

3.4 Wrapping Up
Combining Lemmas 11, 13 and 16, the total space is O(N) words and the total number
of I/Os needed is O(log∗N + logB N +K/B), which is O(log∗B + logB N +K/B).3 This
completes the proof of Theorem 9.

4 1D Approximate Color Reporting

We now consider the following query: reporting colors in one dimension with their approximate
frequencies, i.e., we report all the colors within the query range [α, β]; however, instead of
reporting the exact frequency fexact for a color σ that lies in the query range, we report a real
value fσ such that fexact ≤ fσ ≤ δ · fexact, where δ > 1 is an arbitrary small constant. We
reduce these queries to APPX2D(α, β) queries in 2D discussed in Sections 2 and 3: represent a
1D point x as (−x, x) in 2D; an approximate color frequency query in one dimension, denoted
by APPX1D(α, β), is answered using the query APPX2D(−α, β). Hence, the following is an
immediate consequence of Theorem 9.

I Theorem 17. Given N one-dimensional colored points, we can answer an APPX1D(α, β)
query in O(log∗B + logB N +K/B) I/Os using an O(N) space data structure.

5 1D Exact Color Reporting

In this section, we answer one-dimensional color reporting queries with exact frequencies.

I Problem 18. Given N one-dimensional colored points, answer an EXACT1D(α, β) query
defined as: report all distinct colors σ1, σ2, . . . , σK , with associated values FREQ(α, β, σ1),
FREQ(α, β, σ2), . . ., FREQ(α, β, σK), such that for each σi, there exists a σi-point xi satisfying
α ≤ xi ≤ β. Here, FREQ(α, β, σi) is the number of σi-points in [α, β].

First, we describe a data structure for storing partially persistent lists, which will be
heavily used for answering these queries. Then, we present a data structure that answers
one-sided queries, i.e., either α = 1 or β = N . This result is based on storing selected points
and their colors in a persistent list; we achieve optimal space usage and query cost for this
special case. Then, we show how the same data structure can be used to answer general
queries; however the query cost is proportional to the total number of colors. Next, we
show how the optimal query cost for two-sided queries can be achieved by a data structure
that needs O(N logD) space. We then show how to reduce the space usage by presenting
an O(Nd log2 D

logN e)-space data structure that answers an EXACT1D(α, β) query in optimal
O(1 +K/B) I/Os; see Theorem 23.

3 If logN > B, then log N
log B > log N

log log N > log∗N > log∗B. If logN < B, then log∗N = O(log∗B).

ICDT 2019

9:14 Categorical Range Reporting with Frequencies

1 1 1

1

1 1 1

3 2 1

2

1 1 1

3

1 1 1

3 3 2

4

1 1 1

2 4 1

3 3 2

5

1 1 1

2 4 1

3 3 2

4 5 1

6

Figure 6 An example of a persistent list L for a set of five points such that color(1) = 1,
color(2) = 3, color(3) = 3, color(4) = 2, and color(5) = 4. Each version of the list is shown separately.
Every entry of L contains a color σ, a point x, and its rank rank(x) (in this order). Versions
1, 2, 4, 5, 6 correspond to points 1, 2, 3, 4, 5. We remark that the total space used by L is 6 · const.

5.1 Partially Persistent Lists
Our solution makes use of the data structure for offline partially persistent linked list problem.
In this problem, we maintain a linked list L under insertions and deletions: an arbitrary
list entry can be deleted and a new entry can be inserted at any position of the list. We
assume that L is originally empty and the sequence of updates is known in advance. The
t-th update creates a new version of the list with timestamp t.

We can traverse the list (or a prefix of the list) for any timestamp t: given t, we can
report all list entries that were in the list at time t. Also, given t and a value a, we can
report all list entries that are smaller than a and that were in the list at time t. Such queries
can be supported in O(1 + K/B) I/Os, where K is the number of reported entries. The
space needed to store a persistent list is O(r) words or O(r log r) bits, where r is the total
number of updates. The persistent list can be implemented using e.g., the partially persistent
B-tree [6]; we refer to [16], Section 4, for a more detailed description.

5.2 1-sided Queries
A one-sided query is of the form [1, β] or [α,N]. Define the rank of a point p as the number
of points that are smaller than or equal to p and have the same color:

rank(p) = |{p′ | p′ ≤ p and color(p′) = color(p) }|

We use a persistent list L in order to answer one-sided queries. (See Figure 6.) Every
entry of L stores a color and entries are sorted by their colors in increasing order. An entry
of L also contains some point p and its rank, rank(p). The list L is organized as follows.
Originally L is empty. All points from a set X are traversed in the left-to-right order. When
a point x is reached, we update the list L as follows. If L already contains an entry e

for color(x), we remove e from L. Then we insert a new entry e′ of color color(x) into an
appropriate position (i.e., in sorted order) in L. The entry e′ contains the point x and
rank(x). Thus, the list L is updated one or two times for every point in X and the total
number of entries in L is O(N). In addition to L, we keep a table V [1 . . . N]; its i-th entry
V [i] contains the index of the version of L after the point i was inserted.

Suppose that we want to report all colors that occur in a range [1, α] and output the
number of occurrences for each color. We traverse the j-th version Lj of L where j = V [α].
For every entry e of Lj , we report its color and the rank of the point p stored in e.

A. Ganguly, J. I. Munro, Y. Nekrich, R. Shah, and S. V. Thankachan 9:15

This brings us to the following result.

I Theorem 19. There exists an O(N) space data structure, using which we can answer
EXACT1D(1, β) in O(1 + K

B) I/Os.

We can use the same persistent list L in order to answer two-sided queries. Unfortunately
the query cost is significantly higher.

I Lemma 20. There exists an O(N)-space data structure, using which we can answer
EXACT1D(α, β) in O(1 +D/B) I/Os.

Proof. We use the persistent list L and the array V defined earlier. Suppose we want to
answer a query on a range [α, β]. We identify the versions f and l of L that correspond to
α− 1 and β, i.e., f = V [α− 1] and l = V [β]. By definition, both Lf and Ll contain exactly
one entry for every color σ that occurs in [1, α − 1] and [1, β] respectively. Let ef and el
denote entries of color σ in Lf and Ll respectively. If ef and el contain the same point x,
then x < α and σ does not occur in [α, β]. If ef and el contain two different points, pf and pl
respectively, then σ occurs rank(pl)− rank(pf) times in [α, β]. Finally if there is no entry ef
in Lf , then the leftmost occurrence of σ lies in [α, β]. In this case, σ occurs rank(pl) times.

The values of rank(pl) and rank(pf) for all relevant colors can be computed as follows. We
simultaneously generate versions Lf and Ll of L and merge them into a new (non-persistent)
list T . Entries of T are sorted by color and T contains at most two entries of the same color.
When T is available, we can retrieve values of pl and pf (resp. the value of pl is ef does not
exist) for at least B/2 colors σ with one I/O operation. Hence, we can compute the number
of occurrences for at least B/2 colors with O(1) I/Os. The total cost of our procedure is
O(q/B), where q denotes the number of entries in T . Since q ≤ D, our algorithm answers an
EXACT1D(α, β) query in O(1 +D/B) I/Os. J

5.3 Answering in Optimal I/Os
We use the data structure of Lemma 20 as a building block. For i = 1, 2, . . . , log(D/B), we
divide the set of points into i-chunks so that each chunk, except the last one, contains B · 2i
distinct colors. The last chunk contains at least B · 2i and at most B · 2i+1 distinct colors.
For any particular i, we use Ci,j to denote the jth i-chunk. For every i-chunk, we keep the
data structure of Lemma 20 that answers queries in O(2i) I/Os. We also store the data
structure of Lemma 20 for every two consecutive i-chunks Ci,j ∪ Ci,j+1.

Consider a query [α, β]. We find the smallest i such that there is no i-chunk Ci,j that
is entirely contained in [α, β]. Then, the interval [α, β] intersects at most two i-chunks.
Suppose that [α, β] is contained in one chunk Ci,j . Then we report all colors in [α, β] and
the number of their occurrences in O((B · 2i)/B) I/Os using the result of Lemma 20. If
i = 1, the query cost is O((B · 2)/B) = O(1) I/Os. If i > 1, the interval [α, β] contains at
least one (i − 1)-chunk and the number of distinct colors in [α, β] is K ≥ B · 2i−1. Hence
the query cost is O(2i) = O(K/B) I/Os. Now suppose that [α, β] intersects two chunks,
Ci,j and Ci,j+1. In this case, we answer a query using the data structure for the chunk pair
Ci,j ∪ Ci,j+1. By the same argument as above, the total query cost is O(K/B) I/Os.

It remains to show how we can find the desired minimum i and the chunks Ci,j and
Ci,j+1. For i = 1, 2, . . . , log∗ n, we keep boundaries of i-chunks in a bit vector of size O(n).
Using Bi and the data structure from [26], we can find the i-chunks that contain α and β
in O(1) time. In order to find, Ci,j and Ci,j+1 we proceed as follows. Using Br we find
r-chunks Cr,fr and Cr,lr that contain α and β respectively for r = 1, 2, . . . , i; we stop when
fi = li or fi + 1 = li. The total cost of finding the chunks is O(i) = O(K/B + 1).

ICDT 2019

9:16 Categorical Range Reporting with Frequencies

We get the following result.

I Theorem 21. There exists an O(N logD)-space data structure that answers a query
EXACT1D(α, β) in optimal O(1 +K/B) I/Os.

5.4 Reducing Space Usage
I Lemma 22. Consider a subset of the input points containing d distinct colors. If α and β
lie within the boundaries of this subset, by using an O

(
N(logD + logN

D)
)
-bit data structure,

we can answer an EXACT1D(α, β) query in O(1 + d/B) I/Os.

Proof. Let P ′ be the subset of the set of points. We divide the set of points into sub-chunks
Ci of size D2 each (except for the last sub-chunk that can contain up to 2D2 points). If P ′
contain less than 2D2 points, all points are in the same sub-chunk. For every sub-chunk we
keep the data structure of Lemma 20. Since each sub-chunk contains D2 points and the color
of every point can be specified with logD bits, the space usage of a sub-chunk data structure
is O(D2 logD) bits. If there is more than one sub-chunk, we keep a global data structure
G that contains O(N/D) elements. We implement G as a persistent list that is similar to
the structure of Lemma 20. However our modified list contains at most D elements for each
sub-chunk. We traverse sub-chunks of P ′ in the left-to-right order. For each sub-chunk Ci,
we perform O(D) updates on G. For every color σ that occurred in Ci, the following updates
are performed. If G already contains an entry eo of color σ we remove eo from G. Then, we
insert a new entry e of color σ into G; e contains the rightmost point xσ of color σ in Ci and
the rank of xσ, rank(xσ).

Consider a query [α′, β′] such that α′ and β′ are boundaries of sub-chunks Cf and Cl.
Let iα = Vg[f − 1] and iβ = Vg[l] denote the versions of G that correspond to sub-chunks
Cf−1 and Cl respectively. We can answer a query on [α′, β′] by essentially the same method
that is used in Lemma 20. We generate versions Giα and Gi∵ and merge them into a list
TG. Since Giα contain at most one entry of every color, TG contains at most two entries of
the same color. Let pf (σ) denote the rightmost occurrence of σ in [1, α′ − 1] (i.e., pf (σ) is
the rightmost occurrence of σ in the sub-chunk Cf−1 or in some sub-chunk to the left of
Cf−1) and pl(σ) denotes the rightmost occurrence of σ in [1, β′] (i.e., pl(σ) is the rightmost
occurrence of σ in sub-chunks C1, C2, . . . , Cl). The color σ occurs rank(pl(σ))− rank(pf (σ))
times in [α′, β′] (or rank(pl(σ)) times if pf (σ) does not exist). We can retrieve at least B/2
values of rank(pf (σ)) and rank(pl(σ)) with one I/O operation. The total cost of a query is
O(1 + d/B) because the list TG contains at most 2d entries.

Now we consider an EXACT1D(α, β) query restricted to the boundaries of P ′. Suppose
that α ∈ Cf and β ∈ Cl. If α and β are in the same sub-chunk, we use the data structure for
that sub-chunk to answer the query. Otherwise we decompose [α, β] into at most three parts,
[α, β] = [α, α′ − 1] ∪ [α′, β′] ∪ [β′ + 1, β] so that [α′, β′] = ∪l−1

i=f+1Ci. The intervals [α, α′ − 1]
and [β′+ 1, β] are in sub-chunks Cf and Cl respectively. We answer extended color reporting
queries on [α, α′ − 1], [α′, β′], and [β′ + 1, β]. An answer to each query is stored in a list of
colors Ti, 1 ≤ i ≤ 3. The entries of Ti are sorted by color in increasing order. For an entry of
color σ in a list Ti, we store the frequency of σ in the corresponding interval. We merge lists
Ti into a global list T in O(1 + d/B) I/Os. Then we traverse the resulting list and obtain
the frequencies of all colors in [α, β] in O(1 + d/B) I/Os.

The persistent list G uses O(Nd logN
D e) bits of space. All chunk data structures require

O(N logD) bits. Hence the total space is O
(
N(logD + logN

D)
)
bits. J

A. Ganguly, J. I. Munro, Y. Nekrich, R. Shah, and S. V. Thankachan 9:17

I Theorem 23. There exists an O(Nd log2 D
logN e)-space data structure that answers an

EXACT1D(α, β) query in optimal O(1 +K/B) I/Os.

Proof. We divide the set of points into chunks as described in Theorem 21, and then use
Lemma 22 for each chunk. Since each point is contained in logD chunks, the total space
occupied is O(N(logD+ d logN

D e) logD) = O(N(log2D+ logN)) bits or O(Nd log2 D
logN e) words.

A query is answered in O(1 +K/B) I/Os as explained in the proof of Theorem 21. J

6 Conclusion

We leave the following questions unanswered. First, can we obtain a data structure that
answers one-dimensional color reporting queries with approximate frequencies in optimal
O(1 +K/B) I/Os? Although such a data structure with O(N log∗N) space seems feasible,
techniques do not seem to generalize to the more general case of two-dimensional dominance
queries. Second, an interesting question is whether the approximation factor δ can be
provided during query time, as opposed to the current approach of having to provide it
during construction time. Additionally, we leave the question of reporting colors with exact
frequency in case of 2D dominance unanswered. Finally, it would be interesting if one could
generalize 2D dominance to the more general 3-sided/4-sided queries.

References
1 Peyman Afshani. On Dominance Reporting in 3D. In ESA, pages 41–51, 2008.
2 Pankaj K. Agarwal, Alon Efrat, and Micha Sharir. Vertical Decomposition of Shallow Levels

in 3-Dimensional Arrangements and Its Applications. SIAM J. Comput., 29(3):912–953, 1999.
doi:10.1137/S0097539795295936.

3 Lars Arge, Vasilis Samoladas, and Jeffrey Scott Vitter. On Two-Dimensional Indexability and
Optimal Range Search Indexing. In Proc. 18th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS), pages 346–357, 1999. doi:10.1145/303976.
304010.

4 Lars Arge, Vasilis Samoladas, and Ke Yi. Optimal External Memory Planar Point Enclosure.
Algorithmica, 54(3):337–352, 2009. doi:10.1007/s00453-007-9126-2.

5 Lars Arge and Jeffrey Scott Vitter. Optimal External Memory Interval Management. SIAM
J. Comput., 32(6):1488–1508, 2003. doi:10.1137/S009753970240481X.

6 Bruno Becker, Stephan Gschwind, Thomas Ohler, Bernhard Seeger, and Peter Widmayer. An
Asymptotically Optimal Multiversion B-Tree. VLDB J., 5(4):264–275, 1996. doi:10.1007/
s007780050028.

7 Panayiotis Bozanis, Nectarios Kitsios, Christos Makris, and Athanasios K. Tsakalidis. New
Upper Bounds for Generalized Intersection Searching Problems. In Proc. 22nd International
Colloquium on Automata, Languages and Programming (ICALP), pages 464–474, 1995. doi:
10.1007/3-540-60084-1_97.

8 Panayiotis Bozanis, Nectarios Kitsios, Christos Makris, and Athanasios K. Tsakalidis. New
Results on Intersection Query Problems. Comput. J., 40(1):22–29, 1997. doi:10.1093/comjnl/
40.1.22.

9 Timothy M. Chan and Bryan T. Wilkinson. Adaptive and Approximate Orthogonal Range
Counting. In Proc. 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 241–251, 2013. doi:10.1137/1.9781611973105.18.

10 Arnab Ganguly, Wing-Kai Hon, and Rahul Shah. Stabbing Colors in One Dimension. In
2017 Data Compression Conference, DCC 2017, Snowbird, UT, USA, April 4-7, 2017, pages
280–289, 2017. doi:10.1109/DCC.2017.44.

ICDT 2019

http://dx.doi.org/10.1137/S0097539795295936
http://dx.doi.org/10.1145/303976.304010
http://dx.doi.org/10.1145/303976.304010
http://dx.doi.org/10.1007/s00453-007-9126-2
http://dx.doi.org/10.1137/S009753970240481X
http://dx.doi.org/10.1007/s007780050028
http://dx.doi.org/10.1007/s007780050028
http://dx.doi.org/10.1007/3-540-60084-1_97
http://dx.doi.org/10.1007/3-540-60084-1_97
http://dx.doi.org/10.1093/comjnl/40.1.22
http://dx.doi.org/10.1093/comjnl/40.1.22
http://dx.doi.org/10.1137/1.9781611973105.18
http://dx.doi.org/10.1109/DCC.2017.44

9:18 Categorical Range Reporting with Frequencies

11 Prosenjit Gupta, Ravi Janardan, and Michiel H. M. Smid. Further Results on Generalized In-
tersection Searching Problems: counting, Reporting, and Dynamization. Journal of Algorithms,
19(2):282–317, 1995. doi:10.1006/jagm.1995.1038.

12 Prosenjit Gupta, Ravi Janardan, and Michiel H. M. Smid. Algorithms for Generalized Halfspace
Range Searching and Other Intersection Searching Problems. Comput. Geom., 6:1–19, 1996.
doi:10.1016/0925-7721(95)00012-7.

13 Ravi Janardan and Mario A. Lopez. Generalized intersection searching problems. International
Journal of Computational Geometry and Applications, 3(1):39–69, 1993.

14 Marek Karpinski and Yakov Nekrich. Top-K Color Queries for Document Retrieval. In Proc.
22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 401–411, 2011.
URL: http://www.siam.org/proceedings/soda/2011/SODA11_032_karpinskim.pdf.

15 Kasper Green Larsen and Rasmus Pagh. I/O-efficient data structures for colored range and
prefix reporting. In Proc. 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 583–592, 2012. URL: http://portal.acm.org/citation.cfm?id=2095165{&}CFID=
63838676{&}CFTOKEN=79617016.

16 Kasper Green Larsen and Freek van Walderveen. Near-Optimal Range Reporting Structures
for Categorical Data. In Proc. 24th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 256–276, 2013.

17 Jiří Matoušek. Reporting Points in Halfspaces. In Proc. 32nd Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 207–215, 1991. doi:10.1109/SFCS.1991.185370.

18 S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proc. 13th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 657–666, 2002. doi:
10.1145/545381.545469.

19 Alexandros Nanopoulos and Panayiotis Bozanis. Categorical Range Queires in Large Databases.
In Proc. 8th International Symposium on Advances in Spatial and Temporal Databases, (SSTD),
pages 122–139, 2003. doi:10.1007/978-3-540-45072-6_8.

20 Gonzalo Navarro and Yakov Nekrich. Top-k document retrieval in optimal time and lin-
ear space. In Proc. 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1066–1077, 2012. URL: http://portal.acm.org/citation.cfm?id=2095200{&}CFID=
63838676{&}CFTOKEN=79617016.

21 Yakov Nekrich. External Memory Range Reporting on a Grid. In Proc. 18th International
Symposium on Algorithms and Computation (ISAAC), pages 525–535, 2007. doi:10.1007/
978-3-540-77120-3_46.

22 Yakov Nekrich. Data Structures for Approximate Orthogonal Range Counting. In Proc. 20th
International Symposium on Algorithms and Computation (ISAAC), pages 183–192, 2009.
doi:10.1007/978-3-642-10631-6_20.

23 Yakov Nekrich. Efficient range searching for categorical and plain data. ACM Trans. Database
Syst., 39(1):9, 2014. doi:10.1145/2543924.

24 Yakov Nekrich and Jeffrey Scott Vitter. Optimal Color Range Reporting in One Dimension.
In Proc. 21st Annual European Symposium Algorithms (ESA), pages 743–754, 2013. doi:
10.1007/978-3-642-40450-4_63.

25 Manish Patil, Sharma V. Thankachan, Rahul Shah, Yakov Nekrich, and Jeffrey Scott Vitter.
Categorical range maxima queries. In Proc. 33rd ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (PODS), pages 266–277, 2014. doi:10.1145/2594538.
2594557.

26 Mihai Patrascu. Succincter. In Proc. 49th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 305–313, 2008. doi:10.1109/FOCS.2008.83.

27 Saladi Rahul. Improved Bounds for Orthogonal Point Enclosure Query and Point Location
in Orthogonal Subdivisions in R3. In Proc.26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 200–211, 2015. doi:10.1137/1.9781611973730.15.

http://dx.doi.org/10.1006/jagm.1995.1038
http://dx.doi.org/10.1016/0925-7721(95)00012-7
http://www.siam.org/proceedings/soda/2011/SODA11_032_karpinskim.pdf
http://portal.acm.org/citation.cfm?id=2095165{&}CFID=63838676{&}CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095165{&}CFID=63838676{&}CFTOKEN=79617016
http://dx.doi.org/10.1109/SFCS.1991.185370
http://dx.doi.org/10.1145/545381.545469
http://dx.doi.org/10.1145/545381.545469
http://dx.doi.org/10.1007/978-3-540-45072-6_8
http://portal.acm.org/citation.cfm?id=2095200{&}CFID=63838676{&}CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095200{&}CFID=63838676{&}CFTOKEN=79617016
http://dx.doi.org/10.1007/978-3-540-77120-3_46
http://dx.doi.org/10.1007/978-3-540-77120-3_46
http://dx.doi.org/10.1007/978-3-642-10631-6_20
http://dx.doi.org/10.1145/2543924
http://dx.doi.org/10.1007/978-3-642-40450-4_63
http://dx.doi.org/10.1007/978-3-642-40450-4_63
http://dx.doi.org/10.1145/2594538.2594557
http://dx.doi.org/10.1145/2594538.2594557
http://dx.doi.org/10.1109/FOCS.2008.83
http://dx.doi.org/10.1137/1.9781611973730.15

A. Ganguly, J. I. Munro, Y. Nekrich, R. Shah, and S. V. Thankachan 9:19

28 Saladi Rahul. Approximate Range Counting Revisited. In Proc. 33rd International Symposium
on Computational Geometry (SoCG), pages 55:1–55:15, 2017. doi:10.4230/LIPIcs.SoCG.
2017.55.

29 Kunihiko Sadakane. Succinct data structures for flexible text retrieval systems. J. Discrete
Algorithms, 5(1):12–22, 2007. doi:10.1016/j.jda.2006.03.011.

ICDT 2019

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.55
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.55
http://dx.doi.org/10.1016/j.jda.2006.03.011

	Introduction
	Applications to Databases
	Model of Computation
	Notation
	Previous and Related Work
	Our Results
	Map

	2D Color Dominance with Approximate Frequencies
	Shallow Cutting
	Tessellation Using Rectangles
	Rectangle Stabbing
	Wrapping Up

	Improvement via Bootstrapping
	Framework and Overview
	Handling Case 1: K >= K_h
	Handling Case 2: K < K_h
	Handling S_h' and S_h''
	Handling S_h'''

	Wrapping Up

	1D Approximate Color Reporting
	1D Exact Color Reporting
	Partially Persistent Lists
	1-sided Queries
	Answering in Optimal I/Os
	Reducing Space Usage

	Conclusion

