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—— Abstract

We present a tool for the specification and verification of reconfigurable systems. The foundation

of the tool is provided by a generic method, called hybridisation of institutions, of extending an
arbitrary base institution with features characteristic to hybrid logic, both at the syntactic and the
semantic level. Automated proof support for hybridised institutions is obtained via a generic lifting
of encodings to first-order logic from the base institution to the hybridised institution. We describe
how hybridisation and lifting of encodings to first-order logic are implemented in an extension of the
Heterogeneous Tool Set in their full generality. We illustrate the formalism thus obtained with the
specification and verification of an autonomous car driving system for highways.
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1 Introduction

A reconfigurable system is one with different modes of operation, called configurations, and
with the ability to commute between them during its execution along transitions between
these modes, called reconfigurations. Such systems appear naturally in many domains,
including automobile industry, robotics and medical devices. An overview can be found in
[9]. We present H [3], a tool for the formal specification and verification of reconfigurable
systems that supports their correct and efficient development.

The mathematical foundation underlying the tool is provided by a generic construction
on institutions (8], called hybridisation, explained briefly in Sec. 2. It has the modalisation
of institutions [7] as its source; part of that work was extended to hybrid logics in [10] in
a simple form, and it took a rather complete shape in [5]. Hybridisation is done using a
two-layered approach: the base layer represents a specific logic for expressing requirements
at the configuration (static) level, in other words at the data level. This layer is treated
abstractly as an institution that can be instantiated to concrete logical formalisms that
are most adequate for the specification of the data part of particular problems. On top
of this base layer the characteristic syntactic and semantics features of hybrid logic are
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developed, notably a flexible choice of quantifications on nominals and/or symbols from the
base institution and various semantic constraints on the accessibility relations and on the
interpretation of symbols in possible worlds of a Kripke model of the hybridised institution
(also see [5]). While the base layer deals with the data level, the upper layer deals with
the dynamics of the configurations. The choice of hybrid logic for expressing the latter
comes naturally as it is a prominent kind of modal logic that provides adequate syntactic
capabilities — names of possible worlds, formulas that hold at named states.

The specification part of our tool is complemented by a verification part, whose foundation
is given by a general encoding of hybridised institutions into first-order logic. This encoding
follows the two-layered structure of the hybridised institutions. If a translation of the logic
used at the base level to first-order logic already exists, it is lifted to a translation of the
hybridised institution to first-order logic via a generic construction, introduced in [6]. At
this level, the semantic constraints give rise to first-order formulas. As a result, we obtain a
verification-by-translation method where a problem in a hybridised institution is translated
to first-order logic and solved there using automated first-order theorem provers.

The H tool was implemented as an extension of the Heterogeneous Tool Set (HETS) [13],
a tool for the heterogeneous multi-logic specification and modeling of software systems and
for ontology development. In all these fields, there is a large number of logics and languages
in use, each better suited for a different task or providing better support for a different aspect
of a complex system. Instead of trying to integrate the features of all these logics into a single
formalism, the paradigm of heterogeneous multi-logic specification is to integrate all logics by
means of a so-called Grothendieck construction over a graph of logics and their translations
[12, 4]. Thus, for each logic we can make use of its dedicated syntax(es) and proof tools.
The specifier has the freedom to choose the logic that suits best the problem to be solved,
offers best tool support and is most familiar with. HETS provides an implementation of this
paradigm, and also supports the verification-by-translation method. HETS has been designed
as a flexible tool: adding a new logic or a new logic translation can be done by instantiating
a class and adding the new instance to the list of known logics and translations. First-order
logic and several state-of-the-art automated provers for it are already supported by HETS.

A HETS implementation of the hybridisation method was presented in [14]. It was realized
in two directions: an implementation of the hybridisation of an extension of CASL logic with
rigid symbols (enabling user-defined sharing, when only the symbols explicitly marked as rigid
are subject to semantic constraints in the models of the hybridised institution), together with
a translation from this hybridisation to first-order logic, and a generic construction, similar
to a Grothendieck one, that appears as a single logic in HETS, used to hybridise a number of
HETS logics. No translation from this logic to first-order logic is available, and no choice
can be made on the kind of quantification and the semantic constraints that a hybridised
institution should have. In contrast, our implementation supports all variations and is fully
generic: the parameters of the hybridisation method can be specified in a declarative way
and new instances of the main Logic class of HETS are generated for each new definition
of a hybridised institution. Generating different institutions for different hybridisations is
crucial for defining comorphisms from them to first-order logic, which is also implemented in
our tool as a generic method, thus enabling proof support for each newly added hybridised
institution.

2 Institutions and their hybridisation

Institutions [8] provide a model-theoretic formalization of the concept of logical system. The
basic components of an institution are: a notion of signature, defining the non-logical symbols
in the language, a notion of logical sentence over a signature, a notion of model giving the
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interpretation of the symbols in a signature in some semantic domain and a satisfaction
relation between the models and the sentences of a signature. This is complemented by a
dynamic view on the language: instead of working over an arbitrary but fixed (and implicit)
signature, different signatures are related by signature morphisms, which induce translations
of sentences and reduction of models. These must be consistent with one another, which means
that no change of notation induced by a signature morphism can alter the satisfaction of
sentences. This is expressed formally by the so-called satisfaction condition. Institutions are
a formalization of the above using category theory, thus achieving a high level of abstraction
and not making unnecessary assumptions about the components of a logical system.

The hybridisation method [5] was introduced at this abstract level. Given an arbitrary base
institution Z as a first parameter, it constructs a hybridised institution HZ whose signatures
extend the signatures of Z with nominals (for reconfigurable systems, these correspond to
names of configurations) and modalities (names of events causing reconfigurations). Signature

morphisms in Z pair signature morphisms in Z with mappings of nominals and of modalities.

For a signature in Z, the sentences can be Z-sentences over the base signature, nominals,
modal box- and diamond-sentences over modalities, retrieve sentences (meant to hold at a

given state), combinations of sentences using Boolean connectors, or quantified sentences.

The latter sentences depend on a class D of signature morphisms of HZ that defines the kind
of variables that can be quantified, nominals and/or symbols from Z, and forms the second
parameter of hybridisation. Models of a HZ signature are Kripke structures such that each
possible world is assigned a Z-model of the base signature, each nominal is interpreted as one

of the possible worlds and each modality as an accessibility relation between these worlds.

The third parameter of hybridisation is a set of logic-specific semantic constraints on the
accessibility relations and on the interpretation of symbols in possible worlds. For example,
the accessibility relation may be reflexive and transitive, as in the modal logic S4, or the
interpretation of all symbols of a certain kind may be the same in all possible worlds.

Institution comorphisms [11] capture the intuition that an institution is included or
encoded into another one. A comorphism from an institution Z; to an institution I maps
7, -signatures to Zp-signatures along a functor ®, Y-sentences in Z; to ®(X)-sentences in
T, for a Z-signature ¥ and Zy-models of ®(X) to Z;-models of ¥. Again, a satisfaction

condition must hold, stating that satisfaction of sentences is not altered by change of logic.

Sometimes the cost of encoding an institution Z; into another one 7, is that Z;-signatures

are mapped to Zs-theories, i.e. not just signatures, but also a set of sentences over them.

These theories grow in size with the number of symbols in the original signature.

Given an institution comorphism from an institution Z to the institution of multi-sorted
first-order logic FOL™?, [6] introduces a generic method of lifting it to a comorphism from a
hybridisation HZ of Z to FOL™®. A hybrid signature A get translated to a FOL™*-theory
(X, E) as follows: first the base signature is translated along the base comorphism, and we
obtain a first-order theory. This theory is extended with a new sort for states, its predicates
and function symbols get a new argument of sort state, and the sentences of the theory are
universally quantified over a variable of sort state that is introduced in all predications and
all terms. Domain predicates are introduced for each sort and state, giving the interpretation
of that sort in each world. Nominals are constants of sort state and modalities are predicates
on states. Moreover, semantic constraints get translated to sentences over this extended
signature. The reduction of a (3, E)-model to a A-model is done by taking as the set of
worlds the interpretation of the sort for states, and by keeping the interpretation of nominals
and modalities as in the first-order model. The local models are obtained for each world w by
taking the reduct along the base comorphism of the first-order model obtained by interpreting
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each sort as its domain in w and each function/predicate symbol as the restriction of its
interpretation in (X, E) when the extra state argument is always w. Sentence translation is
done by adding an universal quantification on a variable w of sort state and then inductively
on the structure of the formula, with the base cases of nominals ¢ being translated to i = w
and base formulas e being first translated along the base comorphism and then adding w
in the resulting first-order sentences as the extra argument of sort state. Details of the
interesting cases of box- and diamond formulas and quantification can be found in [6].

3 Hybridisation in HETS

The parameters of the generic hybridisation method are:

(1) the base institution being hybridised, using the name of a known logic in HETS or even
of one of its sublogics, written in HETS syntax as LogicName.SublogicName,

(2) the kind of symbols allowed to appear in a quantification, which can be nominal or a
kind of symbols of the base institution, referred to by its HETS name,

(3) the constraints made on the models of the hybridised institution, which can be of two
kinds: on the accessibility relations between possible worlds (reflexive, transitive etc.) or
on the interpretation of symbols of a certain kind (universes, nominals, or a kind from
the base institution) in the possible worlds.

Listing 1 shows how the hybridisation of the extension of the CASL logic with rigid symbols,

that will be used in the example in Sec. 4, is specified!: first we define HRigidCASL as the

hybridisation of RigidCASL with quantification on rigid constants and nominals. After this
definition is analyzed by HETS, it is recorded for further extensions: HRigidCASLC adds the
constraints that rigid sorts, rigid predicates and rigid total functions share the interpretation
and rigid partial functions share the domain of definition in each possible world of a model.

HETS generates for each of these two definitions a new instance of the class Logic, which

will become available for specification in HETS once the newly generated code is compiled.

The resulting logic will inherit the syntax of the base institution for declarations of base

symbols and for base sentences, and will use generic syntax for declarations of nominals and

modalities, and for hybrid sentences. Full details of the syntax are available at [2].

Listing 1 Hybridisation of RigidCASL.

newhlogic HRigidCASL =

base: RigidCASL

quant: rigid const, nominal

end
newhlogic HRigidCASLC =

hlogic: HRigidCASL

constr: Samelnterpretation(rigid sort), SameInterpretation(rigid op),

SameInterpretation(rigid pred), SameDomain(rigid partial)
end

The process of lifting a comorphism to first-order logic from a base institution to its
hybridisation has only two parameters: the HETS name of the comorphism being lifted
and the name of the hybridisation of the base institution that will be the source of the
lifted comorphism. The latter is needed because a base institution admits more than one
hybridisation. Again, HETS analyses this definition and generates source code that must be
compiled to make the comorphism available for translation and proofs by translation.

L More examples can be found at https://ontohub.org/forver.
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Figure 1 The modes and reconfigurations of the highway pilot.
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Listing 2 Lifting the translation to first-order logic of RigidCASL to HRigidCASLC.

newhcomorphism HRigid2CASL =
basecomorphism: Rigid2CASL
sourcehlogic: HRigidCASLC
end

4 Case Study: specification and verification of a highway pilot

We now discuss the example of an autonomous driving system for passenger cars and heavy
trucks, called highway pilot (HP). The problem description is adapted from [16]. HP can only
be activated when driving on a highway. After activation, the electronic system will keep
driving the car on the highway, relying on information from radar and camera sensors. These
sensors may exhibit faults or may fail to give a correct interpretation of the surroundings,
depending on weather, traffic and road conditions. Unlike bad conditions, faults will not
disappear after some time unless the sensors are physically repaired. Faults and bad conditions
may be undetected for some time. If a fault or bad conditions are detected when HP is
on, the system will enter a so-called degraded driving mode, where a safer driving style
is adopted, typically including driving slower, and the driver is alerted that he/she should
take over driving. If the driver does not deactivate HP mode within a time limit after being
alerted, an emergency stop will be performed. If the bad conditions disappear (all unreliable
sensors become reliable) before the time limit for HP deactivation is reached and there are
no faulty sensors, the system will return to HP mode and stop alerting the driver.

The modes of the systems and the events causing changes of modes are depicted in Fig. 1.
In Listing 3 we show how they are specified, together with axioms stating that there are
no other modes, that the system can change from the manual to HP and degraded modes
and that the only transitions from the modes HP and degraded along the reconfiguration
deactivateHP are to the manual mode.

Listing 3 Modes.

nominals manual, hp, degraded, emergency
modalities activateHP, deactivateHP, problemDetected,
noDriverResponse, badSensorsRecovered : 2

manual \/ hp \/ degraded \/ emergency %(no_other_states)’
@ manual : <activateHP> (hp \/ degraded) %(manual_to_hp_or_degraded)}
not (manual \/ emergency)

=> <deactivateHP> manual /\ [deactivateHP] manual % (back_to_manual)i

CALCO 2019
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We also keep track of the current state of the HP system, using a different transition
system than the one between modes. The system states are loosely specified with the help
of observers for the current speed, the current status of the sensors (working, detected bad
conditions, detected fault, undetected bad conditions, undetected faults), flags for checking
whether the driver alert is on or off and if the driver has turned the HP off and a time
counter for checking the time limit in the degraded mode. The transitions between states
are given by a non-rigid predicate step. In each mode, transitions are possible only from
the states that are valid in that mode, as defined by a non-rigid predicate isValid. Recall
that non-rigid symbols admit different interpretations in different possible worlds. Listing 4
shows the definition of valid states for the mode hp: those reached after HP was activated
from manual mode, those reached after bad sensors recovered in degraded mode and those
that are reached from a valid state in the hp mode and do not satisfy the conditions for
reconfigurations.?

Listing 4 Highway pilot mode.

@ hp : forallH S’ : State . isValid(S’) <=> crtDeactivateTime(S’) = 0 /\
(( existsH S : State . @ manual
isValid (S) /\ step(S, S8’) /\ activateHPWorkingCond(S’))
\/ ( existsH S : State . @ degraded
isValid(S) /\ step(S, S’) /\ badSensorsRecoveredCond(S’))
\/ ( existsH S : State . @ hp :
isValid (S) /\ step(S, S’) /\
not hpDeactivated(S’) /\ not problemDetectedCond(S’)))
%(def_isValid_hp)%

The other modes are specified in a similar way3. We can now verify that the valid states
of each mode have the expected properties. The corresponding sentence for the mode hp,
stating that all valid states have no detected faulty or unreliable sensors is shown in Listing 5.
We can prove this conjecture in HETS by translation, using the SPASS prover with a time
limit of 70 seconds on a modern machine. Proving that in every state valid in degraded
mode there is at least one faulty or unreliable sensor takes significantly more time (time limit
of 500 seconds with SPASS) and requires the introduction of a lemma. This is typical for
proofs in first-order logic, especially in the case of very large theories as the one obtained in
this case via translation.

Listing 5 Conjectures.

forallH S : State . (@ hp : isValid(S))
=> not exists s : Sensor
status (S, s) = detectedBad \/ status(S,s) = detectedFault
%#(no_detected_problems_hp)% %implied

5 Conclusions and future work

By implementing in HETS the hybridisation method and the lifting of translations introduced
in [5, 6], we obtain a framework for specification and verification of reconfigurable systems.
Proofs are done by translation to first-order logic using the first-order provers already
integrated with HETS. Given the large variety of hybrid institutions that can be specified,
this is often the only tool support available. An interesting enterprise would be to implement

2 Note that forallH and existsH are the universal and existential quantifiers introduced via hybridisation;
their semantics does not always subsume that of quantification in the base logic, see [5].
3 The complete specification of the HP system is available under https://ontohub.org/forver/hp.dol.
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a generic parameterized prover for hybrid logics, possibly following the ideas of [1], and
to make it available in HETS for each generated hybridised institution. The results of [15]
hold for a restricted form of hybridisation, without quantifications on nominals and with no
constraints on models and therefore cannot be applied in our setting.
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A Implementation

In this appendix we give an overview of how the hybridisation method was implemented
in HETS. We have made some simplifications and changes of the actual names used in the
HETS source code to ease understanding.

A.1 Adding a new logic in HETS

HETS has an abstract interface for logics, in the form of a Haskell multiparameter type class
with functional dependencies, called Logic. The parameters are types for the constituents
of a logic: its identifier, its signatures and signature morphisms, its symbols of signatures
with their kinds, its low-level, human readable syntax in the form of basic specifications for
theories, lists of symbols for convenient use during structuring and symbol maps for signature
morphisms, its sublogics and its proof trees. Being a type class, Logic provides a list of
methods that must be provided for each particular choice of the parameter types in order
to obtain a new instance of the type class. These include, among others, composition of
signature morphisms, parsers, printers, static analysis of basic specifications, symbol lists
and symbol maps, sentence translation along signature morphisms, various operations on
signatures and signature morphisms. The functional dependency between the type logic
identifier and all other types is used to determine the missing types and thus the correct
instance of a function in the type class. This means that all methods in the class Logic take
as first argument the logic identifier, and this determines the logic uniquely.

To sketch an example, propositional logic has as identifier a singleton type, called
Propositional. Types must be provided for its constituents: signatures are sets of names
(implemented in HETS using the datatype Id) of propositional symbols, signature morphisms
are maps between these sets, where we also store the source and the target signature for each
morphism, and so on.

Listing 6 Signatures in propositional logic.

newtype PropSign = PropSign {items :: Set Id}

The type class Logic contains a method for union of signatures: signature_union ::
lid -> sign -> sign -> Result sign, where the type Result a is a polymorphic type
with variable a used for dealing with errors (the union of signature may not give a legal
signature for each institution). We must provide an implementation of this method for
propositional logic, and this will be done as a method signatureUnion :: PropSign ->
PropSign -> Result PropSign. Then we must provide an instance declaration for the
types for components of propositional logic where we say how the methods of the type class
are implemented.

Listing 7 Propositional logic.

instance Logic -- the type class
Propositional -- the logic identifier

PropSign -- the type of signatures
PropMorphism

where

signature_union Propositional = signatureUnion
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To sum up, adding a new logic in HETS requires creating a new instance of the Logic class,
and this is achieved by defining types for the constituents of that logic and by implementing
the methods of the Logic class for these types.

A.2 Generic implementation of hybridisation in HETS

The first step is to define the generic types for the constituents of a hybridised institution.
We used type variables for the parts that come from the base institution. For example, the
type of hybrid signatures is presented in Listing 8.

Listing 8 Hybrid signatures.
data HSign sig = HSign {

baseSig :: sig,
noms :: Set Id,
mods :: Set Id}

where the variable sig stands for the base signatures. Then we need to implement the
methods of the Logic class over these generic types. Typically this will require that the
corresponding method in the base institution is involved, and we need to make it accessible.
This is achieved by giving as an argument the logic identifier of the base institution and
imposing the condition that the type variables that appear in the generic types introduced
at the first step will be instantiated with the corresponding types from the base institution.
For example the method for union of hybrid signatures presented in Listing 9 will have to
make the union of the base signatures. We add the requirement that the argument for the
type variable sig is the type of signatures of the base institution, as recorded in the Haskell
context of the method sigUnion. The identifier baseLid allows us to properly identify the
Logic instance of the base institution, and thus signature_union baseLid will invoke the
implementation of signature union in the base institution, for the base signatures of the
hybrid signatures that we want to unite. Then we unite the sets of nominals and modalities,
respectively, and return the result.

Listing 9 Union of hybrid signatures.

sigUnion :: (Logic baselid ... sig ...)
=> baselid -> HSign sig -> HSign sig -> Result (HSign sig)
sigUnion baselLid hsigl hsig2 = do
usig <- signature_union baselid (baseSig hsigl) (baseSig hsig2)
let uNoms = Set.union (noms hsigl) (noms hsig2)
uMods = Set.union (mods hsigl) (mods hsig2)
return $ HSign usig uNoms uMods

As a result of these two steps, we obtain generic types for hybrid institutions and generic
implementations of the methods in the Logic class for these types. Let us assume we want
to extend HETS with the hybridisation of propositional logic, with no quantification and no
semantic constraints on models. This is written as in Listing 10.

Listing 10 Hybridisation of propositional logic.

newhlogic HProp =
base: Propositional
end

When HETS analyzes this definition, it generates a new instance of the Logic class, whose
component type for signatures is HSign PropSign, and similarly for the other component
types of a logic. The instance declaration in Listing 11 states that the implementation of
signature union for the new logic HProp is given by the method sigUnion introduced in

17:9
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17:10  Hybridisation of Institutions in HETS

Listing 9. It uses partial application: the methods on both sides of the equal sign take as
arguments two hybrid signatures. HProp is the unique value of the singleton type HProp
generated as a logic identifier for the new hybridised logic that we want to define.

Listing 11 Logic instance for hybrid propositional logic.

instance Logic
HProp

(HSign PropSign)
where

signature_union HProp = sigUnion Propositional
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