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Abstract
Partial order reductions have been successfully applied to model checking of concurrent systems and
practical applications of the technique show nontrivial reduction in the size of the explored state
space. We present a theory of partial order reduction based on stubborn sets in the game-theoretical
setting of 2-player games with reachability/safety objectives. Our stubborn reduction allows us to
prune the interleaving behaviour of both players in the game, and we formally prove its correctness on
the class of games played on general labelled transition systems. We then instantiate the framework
to the class of weighted Petri net games with inhibitor arcs and provide its efficient implementation
in the model checker TAPAAL. Finally, we evaluate our stubborn reduction on several case studies
and demonstrate its efficiency.
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1 Introduction

The state space explosion problem is the main obstacle for model checking of concurrent
systems as even very simple processes running in parallel can produce an exponentially
large number of possible interleavings and hence make the state space search practically
intractable. One of the ways to tame this problem is by employing a variety of partial order
reduction techniques, including the seminal work on stubborn set reductions by Valmari
et al. [24, 23, 25].

As our main contribution, we generalize the theory of partial order reductions into the
framework of 2-player games. The idea is that whenever one of the players can perform a
series of moves in different sub-components of the system in parallel (without being disturbed
by the other player), we may apply the classical stubborn set reductions in order to reduce
the number of interleavings of independent actions. There is a number of subtle points that
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23:2 Partial Order Reduction for Reachability Games

one has to satisfy so that the reduced game preserves the winning strategies of both players.
We formulate a number of sufficient conditions that define the notion of a stable stubborn set
reduction that guarantees the preservation of winning strategies for both players in the game.
In the setting of general game labelled transition systems, we formally prove the correctness
of stable reductions and we demonstrate the applicability of the framework on weighted Petri
net games with inhibitor arcs. We show how to approximate in a syntax-driven manner
the conditions of a stable Petri net game reduction and provide an efficient, open source
implementation in the model checker TAPAAL [6]. We also implement a game engine based
on dependency graphs, following the approach from [14, 5], and on several case studies
evaluate the game engine both with and without the use of the stable stubborn set reduction.
The experiments demonstrate that the computation of the stubborn sets has only a minor
overhead and has the potential of achieving exponential reduction both in the running
time as well as in the number of searched configurations. We believe that this is the first
implementation of 2-player game partial order reduction technique for Petri nets working
in practice.

Related Work. Partial order reductions in the non-game setting for linear time properties
have previously been studied [19, 23, 18, 17] which lends itself towards the safeness or liveness
properties we want to preserve for winning states. In [19] and [23] Peled and Valmari present
partial order reductions for general LTL. In [18] Lehmann et al. study stubborn sets applied
to a subset of LTL properties called simple linear time properties which does not require all
the requirements for general LTL preservation.

The extension of partial order reductions to game-oriented formalisms and verification
tasks has not yet received much attention in the literature. In [10] partial order reductions
for LTL without the next operator are adapted to a subset of alternating-time temporal
logic and applied to multi-agent systems. The authors considers games with imperfect
information, however they also show that their technique does not work for strategies
with perfect information. We assume an antagonistic environment and focus on preserving
the existence of winning strategies with perfect information, reducing the state space and
improving existing controller synthesis algorithms. Partial order reduction for the problem of
checking bisimulation equivalance between two labelled transition systems is presented in [9].
Our partial order reduction is applied directly to a labelled transition system while theirs are
applied to the bisimulation game graph. While the setting is distinctly different, our approach
is more general as we allow for mixed states, provide less information to the controller, and
allow for reduction in both controllable as well as environmental states. Moreover, we provide
an implementation of the on-the-fly strategy synthesis algorithm and argue by a number of
case studies for its practical applicability.

The work on partial order reductions for modal mu-calculus and CTL (see e.g. [21, 26])
allows us in principle to encode the game semantics as a part of the mu-calculus formula,
however, there is to the best of our knowledge no literature documenting the practical
applicability of this approach.

Complexity and decidability results for control synthesis in Petri nets games are not
encouraging. The control synthesis problem is for many instances of Petri net formalisms
undecidable [1, 2], including those that allow for inhibition [2] which we utilise to model our
case studies. If the problem is decidable for a given instance of a Petri net formalism (like
e.g. for bounded nets) then it is usually of exponential complexity. In fact, most questions
about the behaviour of bounded Petri nets are at least PSPACE-hard [11]. Among these
questions is the existence of an infinite run [7] that we need to test as one of the sufficient
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conditions for applying stubborn set reductions to games. Instead of using exact infinite run
detection approaches like in [7], we opt for efficient overapproximation algorithms to detect
cycles using both syntactic and local state information.

2 Preliminaries

I Definition 1 (Game Labelled Transition System). A (deterministic) Game Labelled Trans-
ition System (GLTS) is a tuple G = (S, A1, A2,→,Goal) where S is a set of states, A1 is a
finite set of actions for player 1 (the controller), A2 is a finite set of actions for player 2 (the
environment) where A1 ∩A2 = ∅ and A = A1 ∪A2, → ⊆ S ×A× S is a transition relation
s.t. if (s, a, s′) ∈ → and (s, a, s′′) ∈ → then s′ = s′′, and Goal ⊆ S is a set of goal states.

Let G = (S, A1, A2,→,Goal) be a fixed GLTS for the remainder of the section. Whenever
(s, a, s′) ∈ → we write s a−→ s′ and say that a is enabled in s and can be fired in s yielding s′.
Otherwise we say that a is disabled in s. The set of enabled player i actions where i ∈ {1, 2}
in a state s ∈ S is given by eni(s) = {a ∈ Ai | ∃s′ ∈ S. s

a−→ s′}. The set of all enabled
actions is given by en(s) = en1(s) ∪ en2(s). For a state s ∈ S where en(s) 6= ∅ if en2(s) = ∅
then we call s a player 1 state, if en1(s) = ∅ then we call s a player 2 state, and otherwise
we call it a mixed state. The GLTS G is called non-mixed if all states are either player
1 or player 2 states. For a sequence of actions w = a1a2 · · · an ∈ A∗ we write s w−→ s′ if
s
a1−→ s1

a2−→ · · · an−−→ s′. If w ∈ Aω, i.e. it is infinite, then we write s w−→. Actions that are a
part of w are said to occur in w. A sequence of states induced by w ∈ A∗ ∪Aω is called a
run and is written as π = s0s1 · · · . We use ΠG(s) to denote the set of all runs starting from
a state s ∈ S in GLTS G, s.t. for all s0s1 · · · ∈ ΠG(s) we have s0 = s, and ΠG =

⋃
s∈S ΠG(s)

as the set of all runs. The length of a run π (number of states in the run) is given by the
function ` : ΠG → N0 ∪ {∞}. A position in a run π = s0s1 . . . ∈ ΠG(s) is a natural number
i ∈ N0 that refers to the state si and is written as πi. A position i can range from 0 to `(π)
s.t. if π is infinite then i ∈ N0 and otherwise 0 ≤ i ≤ `(π). Let Πmax

G (s) be the set of all
maximal runs starting from s, defined as Πmax

G (s) = {π ∈ ΠG(s) | `(π) =∞∨en(π`(π)) = ∅)}.
We omit the GLTS G from the subscript of run sets if it is clear from the context.

A reduced game is defined by a function called a reduction.

I Definition 2 (Reduction). Let G = (S, A1, A2,→,Goal) be a GLTS. A reduction is a
function St : S → 2A.

I Definition 3 (Reduced Game). Let G = (S, A1, A2,→,Goal) be a GLTS and St be a
reduction. The reduced game of G by the reduction St is given by GSt = (S, A1, A2,−→

St
,Goal)

where s a−→
St

s′ iff s
a−→ s′ and a ∈ St(s).

The set of actions St(s) is the stubborn set of s with the reduction St. The set of
non-stubborn actions for s is defined as St(s) = A \ St(s).

A (memoryless) strategy is a function which proposes the next action player 1 wants to
be fired.

I Definition 4 (Strategy). Let G = (S, A1, A2,→,Goal) be a GLTS. A strategy is a function
σ : S → A1∪{⊥} where for all s ∈ S we have if en1(s) 6= ∅ then σ(s) ∈ en1(s) else σ(s) = ⊥.
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23:4 Partial Order Reduction for Reachability Games

The intuition is that in order to ensure progress, player 1 always has to propose an action
if she has an enabled action. Let σ be a fixed strategy for the remainder of the section. We
define a function nextσ(s) that returns the set of actions considered at s ∈ S under σ as:

nextσ(s) =
{
en2(s) ∪ σ(s) if σ(s) 6= ⊥
en2(s) otherwise.

Let Πmax
σ (s) ⊆ Πmax(s) be the set of maximal runs subject to σ starting at s ∈ S, defined as:

Πmax
σ (s) = {π ∈ Πmax(s) | ∀i ∈ {1, ..., `(π)}. ∃a ∈ nextσ(πi−1). πi−1

a−→ πi)} .

I Definition 5 (Winning Strategy). Let G = (S, A1, A2,→,Goal) be a GLTS and s ∈ S be a
state. A strategy σ is a winning strategy for player 1 at s in G iff for all π ∈ Πmax

σ (s) there
exists a position i s.t. πi ∈ Goal.

If a state is winning for player 1 in G then no matter what action sequence the environment
chooses, eventually a goal state is reached. Furthermore, for a given winning strategy σ at s
in G there is a finite number n ∈ N such that a goal state is always reached with at most n
action firings. We call the minimum such number the strategy depth of σ.

I Definition 6 (Strategy Depth). Let G = (S, A1, A2,→,Goal) be a GLTS, s ∈ S a winning
state for player 1 in G where s /∈ Goal, and σ a winning strategy at s in G. Then n ∈ N0 is
the depth of σ at s in G if:

for all π ∈ Πmax
G,σ (s) there exists 0 ≤ i ≤ n s.t. πi ∈ Goal, and

there exists π′ ∈ Πmax
G,σ (s) s.t. π′n ∈ Goal and for all 0 ≤ j < n we have π′j /∈ Goal.

I Lemma 7. Let G = (S, A1, A2,→,Goal) be a GLTS, s ∈ S a winning state for player 1
in G, and σ a winning strategy at s in G.
1. There exists n ∈ N0 that is the depth of σ at s in G.
2. For all a ∈ nextσ(s) where s a−→ s′, the depth of σ at s′ in G is m such that 0 ≤ m < n.

A set of actions for a given state and a given set of goal states is called an interesting
set if for any path leading to any goal state at least one action from the set of interesting
actions has to be fired.

I Definition 8 (Interesting Actions). Let G = (S, A1, A2,→,Goal) be a GLTS and s ∈ S a
state. A set of actions As(Goal) ⊆ A is called an interesting set of actions for s and Goal if
whenever s /∈ Goal, w = a1 · · · an ∈ A∗, s

w−→ s′, and s′ ∈ Goal then there exists 1 ≤ i ≤ n

s.t. ai ∈ As(Goal).

I Example 9. In Figure 1 we see an example of a GLTS G = (S, A1, A2,→,Goal) where
S = {s1, s2, s3, s4, s5, s6, s7} is the states denoted by a circle, A1 = {a, b, c} is the player 1
actions, A2 = {d} is the player 2 actions, and → is denoted by the solid and dashed lines
between states and labelled with a corresponding action for player 1 and 2, respectively. Let
Goal = {s6}.

We consider different proposals for a set of interesting actions for the state s1. The set
{b} is an interesting set of actions in s1 since the goal state s6 cannot be reached without
firing b at least once. Furthermore, the sets {a} and {c} are also sets of interesting actions
for the state s1.

Player 1 has to consider his safe actions. A player 1 action is safe in a given player 1
state if by firing it before any sequence of player 1 actions excluding the safe action then it
will never reach a player 2 state.
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s1 s2 s3

s4 s5 s6 ∈ Goal

s7safe(s1) = {a}
As1 ({sg}) = {a}

a b

c

a b

c

d

Figure 1 Example of safe and interesting sets of actions for a state s1.

I Definition 10 (Safe Action). Let G = (S, A1, A2,→,Goal) be a GLTS and s ∈ S a state
s.t. en2(s) = ∅. An action a ∈ A1 ∩ en1(s) is safe in s if whenever w ∈ (A1 \ {a})∗ and
s
w−→ s′ and en2(s′) = ∅ and s aw−−→ s′′ then en2(s′′) = ∅. The set of all safe actions for s is

written as safe(s).

I Example 11. Consider again the GLTS in Figure 1. We reasoned in Example 9 that the
set {b} is an interesting set of actions in the state s1. However, b is not a safe player 1 action
in s1 since by definition b has to be enabled at s1 to be safe. The enabled actions at s1
is en(s1) = {a, c}, and between these two actions only a is safe. The action c is not safe
since we have s1

a−→ s2 and en2(s2) = ∅ but s1
ca−→ s5 and en2(s5) 6= ∅. It is clear from the

figure that s1 is a winning state for player 1 with a as the action player 1 should choose in
order to win.

3 Stable Reduction

A reduction St provides at each state a set of actions which are sufficient to fire such that a
certain property is preserved in the reduced game. In the game setting, we have to guarantee
the preservation of winning strategies for both players in the game. In what follows, we
shall introduce a number of conditions that preserve winning strategies and we call such a
reduction a stable one.

For the remainder of the section let s ∈ S be a state and Goal ⊆ S be a set of goal states,
and let As(Goal) be a fixed set of interesting actions for s and Goal.

I Definition 12 (Stable Strategy Conditions). A reduction St is called stable if St satisfies
for every s ∈ S Conditions I, W, R, G1, G2, S, C, and D.
I If en1(s) 6= ∅ and en2(s) 6= ∅ then en(s) ⊆ St(s).
W For all w ∈ St(s)

∗
and all a ∈ St(s) if s wa−−→ s′ then s aw−−→ s′.

R As(Goal) ⊆ St(s)
G1 For all w ∈ St(s)

∗
if en2(s) = ∅ and s w−→ s′ then en2(s′) = ∅.

G2 For all w ∈ St(s)
∗
if en1(s) = ∅ and s w−→ s′ then en1(s′) = ∅.

S en1(s) ∩ St(s) ⊆ safe(s) or en1(s) ⊆ St(s)
C For all a ∈ A2 if there exists w ∈ Aω2 s.t. s w−→ and a occurs infinitely often in w then

a ∈ St(s).
D If en2(s) 6= ∅ then there exists a ∈ en2(s) ∩ St(s) s.t. for all w ∈ St(s)

∗
where s w−→ s′

we have a ∈ en2(s′).

CONCUR 2019



23:6 Partial Order Reduction for Reachability Games

If s is a mixed state then Condition I ensures all enabled actions are included in the
reduction. That is, we do not attempt to reduce the state space from this state. Condition W
ensures that we can swap the ordering of firing actions, such that firing the actions included
in the reduction first still ensures we can reach a given state, i.e. they are independent.
Condition R ensures that a goal state cannot be reached solely by exploring actions not
in the reduction, i.e. reachability of paths to goal states are preserved in the reduction.
Conditions G1 and G2 ensure that if a state is a player 1 (or player 2) state then a player
2 (or player 1) state cannot be reached solely by exploring actions not in the reduction,
i.e. reachability of paths to mixed states and opposing player states are preserved in the
reduction. Condition S ensures either that all stubborn player 1 actions are also safe and
if this is not the case then all player 1 actions are included in the reduction. Condition C
preserves infinite paths on which only player 2 actions are fired. Condition D ensures that at
least one player 2 action cannot be disabled solely by exploring actions not in the reduction.

I Example 13. In Figure 2 we see an example of a GLTS G = (S, A1, A2,→,Goal) where
S = {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10} are the states denoted by a circle, A1 = {a, b, c, d} is
the player 1 actions, A2 = {e} is the player 2 action, and → is denoted by the solid and
dashed lines between states and labelled with a corresponding action for player 1 and 2,
respectively. Let Goal = {s8} be a fixed set of goal states for this GLTS and As1(Goal) = {a}
be a set of interesting actions. Thick lines indicate transitions and states that are preserved
by a stable reduction St, while thin lines indicates transitions and states that are removed
by the same reduction. For state s1 we have St(s1) = {a, c} as it is sufficient to satisfy the
stable reduction conditions. We satisfy G1 since c has to be fired once to reach s7. For
s1

ba−→ s5 and s1
bc−→ s7 we also have s1

ab−→ s5 and s1
cb−→ s7, so W is satisfied. Clearly St(s1)

is an interesting set since As1(Goal) ⊆ St(s1), so R is satisfied. Condition S is satisfied since
St(s1) ∩ en(s1) ⊆ safe(s1). We have that I, G2, C, and D are satisfied as well since their
antecedents are not true.

s1

s2

s3

s4

s5

s6

s7

s8 ∈ Goal

s9 s10

safe(s1) = {a}
As1 ({sg}) = {a, b, c}

a

b

c

b

c a

c a

b

c

b

a

d e

Figure 2 Example of a stable reduction for a state s1.

We shall first notice the fact that if a goal state is reachable from some state, then the
state has at least one enabled action that is also in the stubborn set.

I Lemma 14. Let G = (S, A1, A2,→,Goal) be a GLTS, St a reduction that satisfies Condi-
tions W and R, and s ∈ S a state. If there exists w ∈ A∗ s.t. s w−→ s′ and s′ ∈ Goal then
St(s) ∩ en(s) 6= ∅.

The correctness of stable stubborn reductions is proved by the next two lemmas. Both
lemmas are proved by induction on the depth of a winning strategy for player 1 in the game.
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I Lemma 15. Let G = (S, A1, A2,→,Goal) be a GLTS and St a stable reduction. For all
s ∈ S if state s is winning for player 1 in G then state s is winning for player 1 in GSt.

I Lemma 16. Let G = (S, A1, A2,→,Goal) be a GLTS and St a stable reduction. For all
s ∈ S if state s is winning for player 1 in GSt then state s is winning for player 1 in G.

We can now present the main theorem showing that stable reductions preserve the winning
strategies of both players in the game.

I Theorem 17 (Strategy Preservation for GLTS). Let G = (S, A1, A2,→) be a GLTS and St
a stable reduction. For all s ∈ S state s is winning for player 1 in G iff state s is winning
for player 1 in GSt.

Moreover, for non-mixed games we can simplify the conditions of stable reductions by
removing the requirement on safe actions.

I Theorem 18 (Strategy Preservation for Non-Mixed GLTS). Let G = (S, A1, A2,→) be a
non-mixed GLTS and St a stable reduction with Condition S excluded. For all s ∈ S state s
is winning for player 1 in G iff state s is winning for player 1 in GSt.

4 Stable Reductions on Petri Net Games

We now introduce the formalism of Petri net games and show how to algorithmically construct
stable reductions in a syntax-driven manner.

I Definition 19 (Petri Net Game). A Petri net game is a tuple N = (P, T1, T2,W, I) where P
and T = T1]T2 are finite sets of places and transitions, respectively, such that P ∩T = ∅ and
where transitions are partitioned into player 1 and player 2 transitions,W : (P×T )∪(T×P )→
N0 is a weight function for regular arcs, and I : (P × T ) → N∞ is a weight function for
inhibitor arcs. A marking M on N is a function M : P → N0. The setM(N) is the set of
all markings for N .

For the rest of this section, let N = (P, T1, T2,W, I) be a fixed Petri net game such that
T = T1 ∪ T2. Let us first fix some useful notation. For a place or transition x, we
denote the preset of x as •x = {y ∈ P ∪ T | W ((y, x)) > 0}, and the postset of x as
x• = {y ∈ P ∪ T | W ((x, y)) > 0}. For a transition t, we denote the inhibitor preset of
t as ◦t = {p ∈ P | I((p, t)) 6= ∞}, and the inhibitor postset of a place p as p◦ = {t ∈ T |
I((p, t)) 6=∞}. For a place p we define the increasing preset of p, containing all transitions
that increase the number of tokens in p, as +p = {t ∈ •p | W ((t, p)) > W ((p, t))}, and
similarly the decreasing postset of p as p− = {t ∈ p• |W ((t, p)) < W ((p, t))}. For a transition
t we define the decreasing preset of t, containing all places that have their number of tokens
decreased by t, as −t = {p ∈ •t |W ((p, t)) > W ((t, p))}, and similarly the increasing postset
of t as t+ = {p ∈ t• | W ((p, t)) < W ((t, p))}. For a set X of either places or transitions,
we extend the notation as •X =

⋃
x∈X

•x and X• =
⋃
x∈X x

•, and similarly for the other
operators.

A Petri net N = (P, T1, T2,W, I) defines a GLTS G(N) = (S, A1, A2,→,Goal) where
S = M(N) is the set of all markings, A1 = T1 is the set of player 1 actions, A2 = T2 is
the set of player 2 actions, M t−→ M ′ whenever for all p ∈ P we have M(p) ≥ W ((p, t)),
M(p) < I((p, t)) and M ′(p) = M(p)−W ((p, t)) +W ((t, p)), and Goal ∈M(N) is the set of
goal markings, described by a simple reachability logic formula defined below.

By analysing the increasing presets and postsets, we can identify a sufficient condition
for a transition to be safe.

CONCUR 2019



23:8 Partial Order Reduction for Reachability Games

Table 1 Increasing and decreasing transitions for expression e ∈ EN .

Expression e incrM (e) decrM (e)
c ∅ ∅
p +p p−

e1 + e2 incrM (e1) ∪ incrM (e2) decrM (e1) ∪ decrM (e2)
e1 − e2 incrM (e1) ∪ decrM (e2) decrM (e1) ∪ incrM (e2)

e1 · e2
incrM (e1) ∪ decrM (e1) ∪
incrM (e2) ∪ decrM (e2)

incrM (e1) ∪ decrM (e1) ∪
incrM (e2) ∪ decrM (e2)

I Lemma 20 (Safe Transition). Let N = (P, T1, T2,W, I) be a Petri net game and t ∈ T a
transition. If t+ ∩ •T2 = ∅ and −t ∩ ◦T2 = ∅ then t is safe in any marking of N .

Let EN be the set of marking expressions in N given by the abstract syntax (here e
ranges over EN ):

e ::= c | p | e1 ⊕ e2

where c ∈ N0, p ∈ P , and ⊕ ∈ {+,−, ∗}. An expression e ∈ EN is evaluated relatively to a
markingM ∈M(N) by the function evalM : EN → Z where evalM (c) = c, evalM (p) = M(p)
and evalM (e1 ⊕ e2) = evalM (e1)⊕ evalM (e2).

In Table 1 we define the functions incrM : EN → 2T and decrM : EN → 2T that, given an
expression e ∈ EN , return the set of transitions that can (when fired) increase resp. decrease
the evaluation of e.

I Lemma 21 ([4]). Let N = (P, T1, T2,W, I) be a Petri net and M ∈M(N) a marking. Let
e ∈ EN and let M w−→M ′ where w = t1t2 . . . tn ∈ T ∗.

If evalM (e) < evalM ′(e) then there is i, 1 ≤ i ≤ n, such that ti ∈ incrM (e).
If evalM (e) > evalM ′(e) then there is i, 1 ≤ i ≤ n, such that ti ∈ decrM (e).

We can now define the set of reachability formulae ΦN that evaluate over the markings
in N as follows:

ϕ ::= true | false | t | e1 ./ e2 |deadlock | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ

where e1, e2 ∈ EN , t ∈ T and ./ ∈ {<,≤,=, 6=, >,≥}.
The satisfaction relation for a formula ϕ ∈ ΦN in a marking M is defined as expected:

M |= true
M |= t iff t ∈ en(M)
M |= e1 ./ e2 iff evalM (e1) ./ evalM (e2)
M |= deadlock iff en(M) = ∅
M |= ϕ1 ∧ ϕ2 iff M |= ϕ1 and M |= ϕ2

M |= ϕ1 ∨ ϕ2 iff M |= ϕ1 or M |= ϕ2

M |= ¬ϕ iff M 6|= ϕ

Our aim is to be able to preserve at least one execution to the set Goal = {M ∈M(N) |
M |= ϕ} for a given formula ϕ describing the set of goal markings. In order to achieve this,
we define the set of interesting transitions AM (ϕ) for a formulae ϕ so that any firing sequence
of transitions from a marking that does not satisfy ϕ leading to a marking that satisfies ϕ
must contain at least one interesting transition. Table 2 provides the definition of AM (ϕ)



F.M. Bønneland, P. G. Jensen, K. G. Larsen, M. Muñiz, and J. Srba 23:9

Table 2 Interesting transitions of ϕ (assuming M 6|= ϕ, otherwise AM (ϕ) = ∅).

ϕ AM (ϕ) AM (¬ϕ)
deadlock (•t)− ∪ +(◦t) for some t ∈ en(M) ∅

t
+p for some p ∈ •t where M(p) < W ((p, t)) or
p− for some p ∈ ◦t where M(p) ≥ I((p, t)) (•t)− ∪ +(◦t)

e1 < e2 decrM (e1) ∪ incrM (e2) AM (e1 ≥ e2)
e1 ≤ e2 decrM (e1) ∪ incrM (e2) AM (e1 > e2)
e1 > e2 incrM (e1) ∪ decrM (e2) AM (e1 ≤ e2)
e1 ≥ e2 incrM (e1) ∪ decrM (e2) AM (e1 < e2)

e1 = e2
decrM (e1) ∪ incrM (e2) if evalM (e1) > evalM (e2)
incrM (e1) ∪ decrM (e2) if evalM (e1) < evalM (e2) AM (e1 6= e2)

e1 6= e2 incrM (e1) ∪ decrM (e1) ∪ incrM (e2) ∪ decrM (e2) AM (e1 = e2)
ϕ1 ∧ ϕ2 Defined in Equation (1) AM (¬ϕ1 ∨ ¬ϕ2)
ϕ1 ∨ ϕ2 AM (ϕ1) ∪AM (ϕ2) AM (¬ϕ1 ∧ ¬ϕ2)

that is similar to the one presented in [4] for the non-game setting, except for the conjunction
where we in our setting use Equation (1) that provides an optimisation for Condition S and
possibly ends with a smaller set of interesting transitions.

AM (ϕ1 ∧ ϕ2) =



AM (ϕ1) if M |= ϕ2

AM (ϕ2) if M |= ϕ1

AM (ϕ1) if M 6|= ϕ1 and AM (ϕ1) ⊆ safe(M)
AM (ϕ2) if M 6|= ϕ2 and AM (ϕ2) ⊆ safe(M)
AM (ϕ1) ∪AM (ϕ2) otherwise

(1)

The desired property of the set of interesting transitions is formulated below.

I Lemma 22. Let N = (P, T1, T2,W, I) be a Petri net, M ∈M(N) a marking, and ϕ ∈ ΦN
a formula. If M 6|= ϕ and M w−→M ′ where w ∈ AM (ϕ)

∗
then M ′ 6|= ϕ.

We shall now discuss a method for detecting the impossibility of infinite firing sequences
consisting of purely player 2 transitions. Let Fin ⊆ P ∪ T2 be the smallest set that for every
p ∈ P and every t ∈ T2 satisfies:
1. p ∈ Fin whenever W ((p, t)) > W ((t, p)) for every t ∈ •p ∩ T2,
2. t ∈ Fin whenever −t ∩ Fin 6= ∅, and
3. p ∈ Fin whenever •p ∩ T2 ⊆ Fin.
It is easy to observe that by performing any infinite firing sequence of T2 transitions, only
finitely many tokens can be added to any place from Fin and the infinite firing sequence
contains only finitely many occurrences of any transition from Fin. We let Inf = (P ∪T2)\Fin
denote the complement of the set Fin. Note that Fin and Inf only has to be computed once
as it is independent of any specific marking.

In Algorithm 1 we present an overapproximation algorithm for detecting cycles of player 2
transitions. The algorithm first checks for orphan transitions (with empty preset) and
includes them to the cycle transitions. Then, for a given marking M , it overapproximates
the set MarkedPlaces of possible places that can be marked by firing T2 transitions from M .
Finally, every transition from the set Inf that has its preset marked is added to the set of
possible infinite cycle transitions.
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Algorithm 1: cycle(N,M): Overapproximation algorithm for computing the set of
transitions that may appear in infinite player 2 computations.

input :N = (P, T1, T2,W, I) and M ∈M(N)
output : If a transition t ∈ T2 appears infinitely often on some infinite firing

sequence of T2 transitions from the marking M then t ∈ cycle(N,M).
1 CycleTransitions := ∅;
2 foreach t ∈ T2 do
3 if •t = ∅ then
4 CycleTransitions := CycleTransitions ∪ {t};

5 FreshPlaces := {p ∈ P |M(p) > 0}; MarkedPlaces := ∅;
6 while MarkedPlaces 6= FreshPlaces do
7 MarkedPlaces := FreshPlaces;
8 foreach p ∈ P \MarkedPlaces do
9 if ∃t ∈ T2. p ∈ t• ∧ •t ⊆ MarkedPlaces then

10 FreshPlaces := FreshPlaces ∪ {p};

11 foreach t ∈ Inf ∩ T2 do
12 if •t ⊆ MarkedPlaces then
13 CycleTransitions := CycleTransitions ∪ {t};

14 return CycleTransitions;

I Lemma 23. Let N = (P, T1, T2,W, I) be a Petri net game and M ∈M(N). Algorithm 1
terminates and if there exists w ∈ Tω2 s.t. M w−→ where t ∈ T2 occurs infinitely often in w

then t ∈ cycle(N,M).

We can now provide a list of syntactic conditions that guarantee the stability of a given
reduction.

I Theorem 24 (Stable Reduction Preserving Closure). Let N = (P, T1, T2,W, I) be a Petri net
game, ϕ a formula, and St a reduction of G(N) such that for all M ∈M(N) the following
conditions hold.
1. If en1(M) 6= ∅ and en2(M) 6= ∅ then en(M) ⊆ St(M).
2. If en1(M) ∩ St(M) * safe(M) then en1(M) ⊆ St(M).
3. AM (ϕ) ⊆ St(M)
4. If en1(M) = ∅ then T1 ⊆ St(M).
5. If en2(M) = ∅ then T2 ⊆ St(M).
6. cycle(N,M) ⊆ St(M)
7. For all t ∈ St(M) if t /∈ en(M) then either

a. there exists p ∈ •t s.t. M(p) < W ((p, t)) and +p ⊆ St(s), or
b. there exists p ∈ ◦t s.t. M(p) ≥ I((p, t)) and p− ⊆ St(s).

8. For all t ∈ St(M) if t ∈ en(M) then
a. for all p ∈ −t we have p• ⊆ St(M), and
b. for all p ∈ t+ we have p◦ ⊆ St(M).

9. If en2(M) 6= ∅ then there exists t ∈ en2(M) ∪ St(M) s.t. (•t)− ∪ +(◦t) ⊆ St(M).

Then St satisfies I, W, R, G1, G2, S, C, and D.
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Algorithm 2: Computation of St(M) for some stable reduction St.
input :A Petri net game N = (P, T1, T2,W, I) and M ∈M(N) and formula ϕ
output :X ⊆ T where X is a stable stubborn set for M

1 if en(M) = ∅ then
2 return T ;
3 if en1(M) 6= ∅ ∧ en2(M) 6= ∅ then
4 return T ;
5 Y := ∅;
6 if en1(M) = ∅ then
7 Pick any t ∈ en2(M);
8 Y := T1 ∪ (•t)− ∪ +(◦t);
9 Y := Y ∪ cycle(N,M);

10 else
11 Y := T2;
12 Y := Y ∪AM (ϕ);
13 X := Saturate(Y );
14 if X ∩ en1(M) * safe(M) then
15 return T ;
16 return X;

In Algorithm 2 we provide a pseudocode for calculating stubborn sets for a given marking.
The algorithm calls Algorithm 3 that saturates a given set to satisfy Conditions 7 and 8.

I Theorem 25. Algorithm 2 terminates and returns St(M) for some stable reduction St.

I Remark 26. In the actual implementation of the algorithm, we first saturate only over the
set of interesting transitions and in the case that Saturate(AM (ϕ)) ∩ en(M) = ∅, we do not
explore any of the successors of the marking M as we know that no goal marking can be
reached from M (this follows from Lemma 14).

5 Implementation and Experiments

We extend the Petri net verification engine verifypn [12], a part of TAPAAL tool suite [6],
to experimentally demonstrate the viability of our approach. The synthesis algorithm for
solving Petri net games is an adaptation of the dependency graph fixed-point computation
from [15, 14] that we reimplement in C++ while utilising PTries [13] for efficient state storage.
The source code is available under GPLv3 [3]. We conduct a series of experiments using the
following scalable case studies.

In Autonomous Intersection Management (AIM) vehicles move at different speeds towards
an intersection and we want to ensure the absence of collisions. We model the problem as
a Petri net game and refer to each instance as AIM-W -X-Y -Z where W is the number
of intersections with lanes of length X, Z is the number of cars, and Y is the number of
different speeds for each car. The controller assign speeds to cars while the environment
aims to cause a collision. The goal marking is where all cars reach their destinations
while there are no collisions.
We reformulate the classical Producer Consumer System (PCS) as a Petri net game. In
each instance PCS-N -K the total of N consumers (controlled by the environment) and N
producers (controlled by the controller) share N buffers. Each consumer and producer has
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Algorithm 3: Saturate(Y ).
1 X := ∅;
2 while Y 6= ∅ do
3 Pick any t ∈ Y ;
4 if t /∈ en(M) then
5 if ∃p ∈ •t. M(p) < W ((p, t)) then
6 Pick any p ∈ •t s.t. M(p) < W ((p, t));
7 Y := Y ∪ (+p \X);
8 else
9 Pick any p ∈ ◦t s.t. M(p) ≥ I((p, t));

10 Y := Y ∪ (p− \X);

11 else
12 Y := Y ∪ (((−t)• ∪ (t+)◦) \X);
13 X := X ∪ {t};
14 Y := Y \ {t};
15 return X;

a fixed buffer to consume/produce from/to, and each consumer/producer has K different
randomly chosen consumption/production rates. The game alternates in rounds where
the player choose for each consumer/producer appropriate buffers and rates. The goal of
the game is to ensure that the consumers have always enough products in the selected
buffers while at the same time the buffers have limited capacity and may not overflow.
The Railway Scheduling Problem contains four instances modelling the Danish train
station Lyngby and three of its smaller variants. The scheduling problem, including the
station layout, was originally described as a game in [16] and each instance is annotated by
a number N representing the number of trains that migrate through the railway network.
The controller controls the lights and switches, while the environment moves the trains.
The goal of the controller is to make sure that all trains reach (without any collisions)
their final destinations.
The Nim (NIM-K-S) Petri net game was described in [22] as a two player game where
the players in rounds repeatedly remove between 1 and K pebbles from an initial stack
containing S pebbles. The player that has a turn and empty stack of pebbles loses. In
our (equivalent) model, we are instead adding pebbles and the player that first adds to
or above the given number S loses.
The Manufacturing Workflow (MW) contains instances of a software product line Petri
net model presented in [20]. The net describes a series of possible ways of configuring a
product (performed by the environment) while the controller aims to construct a requested
product. The model instance MW-N contains N possible choices of product features.
The Order Workflow (OW) Petri net game model is taken from [8] and the goal of the
game is to synthesise a strategy that guarantees a workflow soundness, irrelevant of the
choices made by the environment. We scale the workflow by repeatedly re-initialising the
workflow N times (denoted by OW-N).

All experimental evaluation is run on AMD Opteron 6376 Processors with 120 GB memory
limitation and 12 hours timeout (we measure only the execution time without the parsing
time of the models). We use for all experiments the depth first search strategy and we only



F.M. Bønneland, P. G. Jensen, K. G. Larsen, M. Muñiz, and J. Srba 23:13

Table 3 Experiments with and without partial order reduction (POR and NORMAL).

Time (seconds) Markings ×1000 Reduction
Model NORMAL POR NORMAL POR %Time %Markings
AIM-13-100-6-11 117.9 46.6 1702 514 60 70
AIM-13-100-6-16 173.9 63.2 2464 746 64 70
AIM-13-150-9-16 337.0 219.9 3696 2454 35 34
AIM-13-150-9-21 408.0 294.1 4853 3331 28 31
AIM-14-150-9-16 449.9 278.4 4259 2865 38 33
AIM-15-150-9-16 534.5 384.9 4861 3204 28 34
PCS-2-2 24.0 19.9 9629 6554 17 32
PCS-2-3 116.1 90.9 61990 39114 22 37
PCS-2-4 399.1 283.3 240510 145109 29 40
LyngbySmall-2 3.4 1.0 1803 444 71 75
LyngbySmall-3 23.1 26.1 11473 10701 -13 7
LyngbySmall-4 144.3 193.3 65371 70008 -34 -7
Lyngby-2 3292.0 215.5 1511749 87214 93 94
NIM-5-49500 9.2 3.4 5054 892 63 82
NIM-7-49500 32.7 3.9 24039 1159 88 95
NIM-9-49500 165.1 4.7 114235 1522 97 99
NIM-11-49500 710.7 8.2 533516 1877 99 100
MW-40 735.3 0.2 69439 9 100 100
MW-50 1952.0 0.2 135697 11 100 100
MW-60 4417.0 0.3 234570 13 100 100
OW-10000 0.9 0.7 320 240 22 25
OW-100000 11.1 7.8 3200 2400 30 25
OW-1000000 137.7 109.8 32000 24000 20 25

report the examples where the algorithms both with and without partial order reduction
returned a result within the time and memory limits. We provide a reproducibility package
with all models and experimental data [3].

5.1 Results
Table 3 shows the experimental evaluation, displaying the relative gain in computation time
(in seconds) without and with partial order reduction as well in the number of explored
markings (in thousands). The results demonstrate significant reductions across all models,
in some cases like in NIM and MW even of several degrees of magnitude. Other models like
PCS, AIM and OW show a moderate but significant reduction. We observe that the time
reduction is generally only few percent smaller than the reduction in the number of explored
markings, showing typically between 2% to 20% overhead for computing (on-the-fly) the
stubborn sets. For two instances of the LyngbySmall models we notice an actual slowdown in
the running time where for LyngbySmall-3 the number of reduced markings is less significant
and it results in 13% slowdown, partially due to the overhead for computing stubborn sets
but also because the search strategy changed and this resulted in the fact that we have to
search a larger portion of the generated dependency graph before we obtain a conclusive
answer. This effect is, in particular, observed in the LyngbySmall-4 example where the
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number of markings stored when applying partial order reduction actually exceeds those
where no reduction is applied. Nevertheless, in general the experiments confirm the practical
applicability of partial order reduction for 2-player games with only minimal overhead for
computing the stubborn sets.

6 Conclusion

We generalised the partial order reduction technique based on stubborn sets from plain
reachability to a game theoretical setting. This required a nontrivial extension of the classical
conditions on stubborn sets so that a state space reduction can be achieved for both players
in the game. In particular, the computation of the stubborn sets for player 2 (uncontrollable
transitions) needed a new insight on how to handle and efficiently approximate the existence
of infinite runs with player 2 transitions only. We proved the correctness of our approach and
instantiated it to the case of Petri net games. We provided (to the best of our knowledge)
the first implementation of partial order reduction for Petri net games and made it available
as a part of the model checker TAPAAL. The experiments show promising results on a
number of case studies, achieving in general a substantial state space reduction with only a
small overhead for computing the stubborn sets. In the future work, we plan to combine our
contribution with a recent insight on how to effectively use partial order reduction in the
timed setting [4] in order to extend our framework to general timed games.
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