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Abstract
In this paper we consider the p-Norm Hamming Centroid problem which asks to determine
whether some given strings have a centroid with a bound on the p-norm of its Hamming distances to
the strings. Specifically, given a set S of strings and a real k, we consider the problem of determining
whether there exists a string s∗ with

(∑
s∈S

dp(s∗, s)
)1/p ≤ k, where d(, ) denotes the Hamming

distance metric. This problem has important applications in data clustering and multi-winner
committee elections, and is a generalization of the well-known polynomial-time solvable Consensus
String (p = 1) problem, as well as the NP-hard Closest String (p =∞) problem.

Our main result shows that the problem is NP-hard for all fixed rational p > 1, closing the
gap for all rational values of p between 1 and ∞. Under standard complexity assumptions the

reduction also implies that the problem has no 2o(n+m)-time or 2o(k

p
(p+1) )-time algorithm, where m

denotes the number of input strings and n denotes the length of each string, for any fixed p > 1.
The first bound matches a straightforward brute-force algorithm. The second bound is tight in

the sense that for each fixed ε > 0, we provide a 2k

p
(p+1) +ε

-time algorithm. In the last part of the
paper, we complement our hardness result by presenting a fixed-parameter algorithm and a factor-2
approximation algorithm for the problem.
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1 Introduction

The Hamming distance between two strings of equal length is the number of positions at which
the corresponding symbols in the strings differ. In other words, it measures the number of
substitutions of symbols required to change one string into the other, or the number of errors
that could have transformed one string into the other. This is perhaps the most fundamental
string metric known, named after Richard Hamming who introduced the concept in 1950 [24].

While Hamming distance has a variety of applications in a plethora of different domains, a
common usage for it appears when clustering data of various sorts. Here, one typically wishes
to cluster the data into groups that are centered around some centroid, where the notion of
centroid varies from application to application. Two prominent examples in this context are:
Consensus String, where the centroid has a bound on the sum of its (Hamming) distance

to all strings, and
Closest String, where the centroid has a bound on the maximum distance to all strings.
In functional analysis terms, these two problems can be formalized using the p-norms of the
Hamming distance vectors associated with the clusters. That is, if S ⊆ {0, 1}n is a cluster
and s∗ ∈ {0, 1}n is its centroid, then the p-norm of the corresponding Hamming distance
vector is defined by

‖(s∗, S)‖p :=
(∑
s∈S

dp(s∗, s)
)1/p

,

where d(s∗, s) = |{i : s∗[i] 6= s[i], 1 ≤ i ≤ n}| denotes the Hamming distance between s∗

and s. Using this notation, we can formulate Consensus String as the problem of finding
a centroid s∗ with a bound on ‖(s∗, S)‖1 for a given set S of strings, while Closest String
can be formulated as the problem of finding a centroid s∗ with a bound on ‖(s∗, S)‖∞.

The following cluster S with 5 strings, each of length 7, shows that for different p, we
indeed obtain different optimal centroids. For each p ∈ {1, 2,∞}, string s∗p is an optimal
p-norm centroid but it is not an optimal q-norm centroid, where q∈{1, 2,∞}\{p}. Moreover,
one can verify that s∗2 is the only optimal 2-norm centroid and no optimal ∞-norm centroid
is an optimal 2-norm centroid.

S :
1111 111
1111 000
0000 100
0000 010
0000 001

‖ · ‖1 ‖ · ‖2 ‖ · ‖∞
s∗1 = 0000 000 14

√
68 7

s∗2 = 0011 000 16
√

56 5
s∗∞ = 0011 001 17

√
61 4

p
centroid

The notion of p-norms for distance vectors is very common in many different research
fields [33, 30, 21, 34, 20, 2, 27, 3, 17, 39]. In cluster analysis of data mining and machine
learning, one main goal is to partition m observations (i.e., m real vectors of the same
dimension) into K groups so that the sum of “discrepancies” between each observation
and its nearest center is minimized. Here, two highly prominent clustering methods are
K-means [32] and K-medians [25, 4] clustering, each using a slightly different notion of
discrepancy measure. The first method aims to minimize the sum of squared Euclidean
distances between each observation and the “mean” of its respective group. In other words,
it minimizes the squared 2-norm of the Euclidean-distance vector. K-medians, on the
other hand, uses the 1-norm instead of the squared 2-norm to define the discrepancy to the
mean. Thus, instead of calculating the mean for each group to determine its centroid, one
calculates the median.
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In committee elections from social choice theory [17, 39, 35, 16], the p-norm is used to
analyze how well a possible committee represents the voter’s choices. In a fundamental
approval-based procedure to select a t-person committee from n candidates, each voter either
approves or disapproves each of the candidates, which can be expressed as a binary string
of length n. An optimal committee is a length-n binary string containing exactly t ones
and which minimizes the p-norm of the vector of the Hamming distances to each voter’s
preference string [39].

Problem Definition, Notation, and Conventions

Since the Hamming distance is frequently used in various applications, e.g., in computational
biology [36], information theory, coding theory and cryptography [24, 11, 37], in social
choice [26, 1] and since the notion of p-norm is very prominent in clustering tools [38, 6, 30, 40]
and preference aggregation rules [1, 5, 35], where often p = 1, 2,∞ but also other values of p
are used, it is natural to consider computational problems associated with the p-norm of the
Hamming distance metric. This is the main purpose of this paper. Specifically, we consider
the following problem:

p-Norm Hamming Centroid (p-HDC)
Input: A set S of strings s1, . . . , sm ∈ {0, 1}n and a real k.
Question: Is there a string s∗ ∈ {0, 1}n such that ‖(s∗, S)‖p ≤ k?

Throughout, we will call a string s∗ as above a solution. Note that there is nothing special
about using the binary alphabet in the definition above, but for ease of presentation we use it
throughout the paper. When p = 1, our p-HDC problem is precisely the Consensus String
problem, and when p =∞ it becomes the Closest String problem.

In the following, we list some notation and conventions that we use. By p-distance
we mean the pth-power of the Hamming distance. For each natural number t by [t] we
denote the set {1, 2, . . . , t}. Unless stated otherwise, by strings we mean binary strings over
alphabet {0, 1}. Given a string s, we use |s| to denote the length of this string. For two
binary strings s and s′, let s ◦ s′ denote the concatenation of s and s′. By s[j] we denote the
jth value or the value in the jth character of string s. By s = (1− s[j])j∈[|s|] we denote the
complement of the (binary) string s. Given two integers j, j′ ∈ {1, 2, · · · , |s|} with j ≤ j′,
we write s|j

′

j for the substring s[j]s[j + 1] · · · s[j′]. Given a number `, we use 0` and 1` to
denote the length-` all-zero string and the length-` all-one string, respectively.

Our Contributions

Our main result is a tight running time bound on the p-HDC problem for all fixed rationals
p > 1. Specifically, we show that the problem is NP-hard and can be solved in 2kp/(p+1)+ε ·
|I|O(1) time for arbitrary small ε > 0 where |I| denotes the size of the instance, but cannot
be solved in 2o(kp/(p+1)) time unless the Exponential Time Hypothesis (ETH) [12] fails.
The lower bounds are given in Theorem 3 and Proposition 6 and the upper bound in
Theorem 10. While the upper bound in this result is not very difficult, the lower bound uses
an intricate construction and some delicate arguments to prove its correctness. In particular,
the construction extensively utilizes the fact that since p > 1, the p-norm of Hamming
distances is convex and always admits a second derivative. We believe that this kind of
technique is of interest on its own. As another consequence of the hardness construction,
we also obtain a 2o(n+m) running time lower bound assuming ETH, which gives evidence
that the trivial brute-force 2n · |I|-time algorithm for the problem cannot be substantially
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improved. Moreover, the lower bounds also hold when we constrain the solution string to
have a prescribed number of ones. That is, we also show hardness for the committee election
problem mentioned above (Corollary 7).

In the final part of the paper we present two more algorithms for p-HDC. First, we provide
an mO(m2) · |I|O(1) time algorithm (see Theorem 13), by first formulating the problem as a
so-called Combinatorial n-fold Integer Program, and then applying the algorithm developed
by Knop et al. [28]. Second, we show that the problem can be approximated in polynomial
time within a factor of 2, using an extension of the well known 2-approximation algorithm
for Closest String (see Proposition 14).

Related Work

The NP-complete Closest String [18, 29] problem (aka. Minimum Radius) is a special
case of p-HDC with p =∞. It seems, however, difficult to adapt this hardness reduction to
achieve our hardness results for every fixed rational p (see also the beginning of Section 2
for some more discussion). Closest String has been studied extensively under the lens
of parameterized complexity and approximation algorithmics. The first fixed-parameter
algorithm for parameter k, the maximum Hamming distance bound, was given by Gram et
al. [22], runs in O(kk · km + mn) time where m and n denote the number and the length
of input strings, respectively. This algorithm works for arbitrary alphabet Σ. For small
alphabets Σ, there are algorithms with O(mn+ n · |Σ|O(k)) running time [31, 9]. Both types
of running time are tight under the ETH [12, Theorem 14.17]. For arbitrary alphabet Σ,
Knop et al. [28] gave an algorithm with mO(m2) · logn running time based on so-called n-fold
integer programming. As for approximability, Closest String admits a PTAS with running
time O(nO(ε−2)) [31] but no EPTAS unless FPT = W[1] [13].

Our problem falls into the general framework of convex optimization with binary variables.
If the input and the output are allowed to have fractional values, then the underlying convex
optimization problem, called Lp-Norm Convex Minimization, can be solved in polynomial
time for each fixed value p ≤ 2 [34, Chapter 6.3.2]. This convex optimization problem is a
special variant of the in general NP-hard Lp Subspace Approximation problem [14, 23].
This problem has as input m points s1, . . . , sm in Rn and an integer k′, and asks to find a
subspace H of Rn of dimension k′ that minimizes the following

∑m
i=1(distp(H, ai))1/p, where

dist(H, ai) is the minimum Euclidean distance between ai and any point in H. For k = 0,
Lp Subspace Approximation is equivalent to the Lp-Norm Convex Minimization.

For p ∈ {2, 3}, maximizing (instead of minimizing) the p-norm reduces to Mirkin
Minimization in consensus clustering with input and output restricted to two-clusters,
which was shown to be NP-hard [15] under Turing reductions. Recently, Chen et al. [7]
showed that the simple 2n-time algorithm by brute-force searching all possible outcome
solutions is essentially tight under ETH. They also provided some efficient algorithms and
showed that the problem admits an FPTAS using a simple rounding technique.

2 NP-hardness for the p-Norm of Hamming Distance Vectors

We now show that p-HDC is NP-hard for each fixed rational number p > 1 (Theorem 3
and Proposition 6) and that algorithms with running time 2o(n+m) or 2o(k

p/(p+1)) would
contradict the ETH. We reduce from the NP-hard 3-Coloring problem [19] in which, given
an undirected graph G = (V,E), we ask whether there is a proper vertex coloring col : V →
{0, 1, 2}, that is, no two adjacent vertices receive the same color.
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The first challenge we need to overcome when designing the reduction is to produce some
regularity in the solution string: Given n̂ ∈ N, in Lemma 1, we show how to construct a set
of strings to enforce a solution string to have exactly n̂ ones which only occur in the columns
of some specific range. This allows us later on to build gadgets that have several discrete
states. Indeed, after controlling the overall number of ones in the solution in this way, we
can allocate three columns (one for each color) for each vertex v in G and build a gadget
for v such that this gadget induces minimum p-distance to the solution if and only if there is
exactly 1 one in the solution in the columns allocated for v. This column determines the
color for v. Then, for each edge, we will introduce an edge gadget consisting of six strings
which induce minimum p-distance in the solution if and only if they are “covered” by the
ones in the solution exactly twice, corresponding to different colors.

In general, the design of gadgets for p-HDC is quite different from the known NP-hard
case Closest String (p =∞) [18, 29]: In Closest String every optimal solution s∗ must
regard the “worst” possible input string while in our case s∗ can escape such constraints by
distributing some of its Hamming distance from the “worst” to other strings.

In the remainder of this section, let a and b be two fixed integers such that a and b are
coprime, a > b, and p = a/b > 1. To better capture the Hamming distance, we introduce the
notion of the Hamming set of two strings s and s′ of equal length n, which consists of the
indices of the columns at which both strings differ: hs(s, s′) = {j ∈ [n] | s[j] 6= s′[j]}.

As mentioned, we first show how to construct a set of strings to enforce some structure
on the optimal solution, that is, a binary string with minimum sum of the p-distances.

I Lemma 1 (?1). Let p> 1 be a fixed rational number, and a and b be two coprime fixed
integers with p=a/b. Let S consist of one string 1(2b+1)n̂◦0n̂ and 2a−b copies of string 0(2b+2)n̂,
where n̂ is a positive integer. For each string s∗ ∈ {0, 1}(2b+2)n̂, the following holds.
(1) If d(s∗,0(2b+2)n̂) = n̂ and hs(s∗,0(2b+2)n̂) ⊆ [(2b+1)n̂], then ‖(s∗, S)‖pp = (2a+2a−b) · n̂p.
(2) If d(s∗,0(2b+2)n̂) 6= n̂ or hs(s∗,0(2b+2)n̂) * [(2b + 1)n̂], then ‖(s∗, S)‖pp > (2a + 2a−b) · n̂p.

To show Lemma 1 we crucially use the fact that p > 1. In contrast, if p = 1, then taking the
majority value in each column yields an optimal solution, and thus it is impossible to force
every optimal solution to have a certain number of ones without at the same time specifying
in which precise columns these ones should occur.

In the reduction we make heavy use of specific pairs of strings whose Hamming distances
to an arbitrary string always sum up to some lower bound. They will enforce local structure
in some columns of the solution, while being somewhat immune to changes elsewhere. As a
tool in the reduction we derive the following lower bound on the p-distance of an arbitrary
string to a pair of strings which are quite far from each other, in terms of Hamming distances.

I Lemma 2 (?). Let s1 and s2 be two strings of the same length R such that the Hamming
distance between s1 and s2 is d(s1, s2) = 2L. For each rational p > 1 and each length-R
string ŝ the following holds.
(1) dp(ŝ, s1) + dp(ŝ, s2) ≥ 2 · Lp.
(2) If d(ŝ, s1) = d(ŝ, s2) = L, then dp(ŝ, s1) + dp(ŝ, s2) = 2 · Lp.
(3) If d(ŝ, s1) 6= L or d(ŝ, s2) 6= L, then dp(ŝ, s1) + dp(ŝ, s2) > 2 · Lp.

Using Lemmas 1 and 2, we can show NP-hardness of p-HDC for each fixed rational p > 1.
For better readability, we will first show hardness for the case with multiple identical
strings (Theorem 3) and then extend the construction to also include the case where no two
strings are the same (Proposition 6).

1 Proofs for results marked by ? can be found in [8].
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I Theorem 3. For each fixed rational number p > 1, p-HDC (with possibly multiple identical
strings) is NP-hard.

Proof. First of all, let a and b be two fixed coprime integers such that p = a/b. To show the
hardness result, we reduce from the NP-hard 3-Coloring problem [19] defined above. Let
G = (V,E) be an instance of 3-Coloring. Let n be the number of vertices in G and m the
number of edges. Denote V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}.

Construction. We introduce three groups of strings of length (2b + 2) · n̂ each, where
n̂ = n+m. The first group ensures that each optimal solution string must have exactly n̂
ones which appear in the first 3n̂ columns (using Lemma 1), the second group ensures that
an optimal solution enforces that each vertex has exactly one of the three colors, and the
third group, combined with the second group, ensures that no two adjacent vertices obtain
the same color.

Group 1. Construct one string 1(2b+1)n̂ ◦ 0n̂ and 2a−b copies of the same string 0(2b+2)n̂.
Group 2. This group consists of one pair of strings for each vertex. Each pair consists of two

strings which are mostly complements to each other. This ensures that the Hamming
distance to the solution induced by a pair is somewhat homogeneous, regardless where
exactly the ones in the solution occur. However, in each pair there are three columns,
corresponding to the vertex, which will skew the pairs of Hamming distances in a way to
induce minimum p-distances only if the solution has exactly 1 one in these three columns.
Formally, for each vertex vi ∈ V , let ui be a string of length 3n̂ which has exactly 3
ones in the columns 3i − 2, 3i − 1, 3i, and let ui be the complement of ui. Deriving
from ui, we construct two vertex strings si and ri with si := ui ◦ 0(2b−2)n̂ ◦ 0 ◦ 1n̂−1
and ri := ui ◦ 0(2b−2)n̂ ◦ 1 ◦ 0n̂−1. Note that both strings si and ri have all zeros in the
columns {3n̂, . . . , (2b + 1)n̂} such that d(si, ri) = 4n̂.
For an illustration, the strings s2 and r2, which correspond to the vertex v2, are as follows:
s2 = 000 111 ◦ 03n̂−6 ◦ 0(2b−2)n̂ ◦ 0 ◦ 1n̂−1, r2 = 111 000 ◦ 13n̂−6 ◦ 0(2b−2)n̂ ◦ 1 ◦ 0n̂−1.

Group 3. We now use three pairs of strings for each edge to ensure relatively homogeneous
distributions of Hamming distances to the solution and then skew them. This time, we
aim to skew distances to the solution so that their corresponding p-distances are minimum
only if the solution distributes exactly three ones (corresponding to the colors) over three
special regions: two corresponding to the endpoints of the edge and one extra dummy
region.
Formally, for each edge ej ∈ E let e(0)

j , e
(1)
j , and e(2)

j denote three strings, each of length 3n̂,
that ensure that the edge and both of its endpoints each have a distinct color:

∀` ∈ {1, 2, · · · , n̂} : e(0)
j [3`− 2, 3`− 1, 3`] :=

{
100, 1 ≤ ` ≤ n with v` ∈ ej , or ` = j + n,

000, otherwise.

e
(1)
j [3`− 2, 3`− 1, 3`] :=

{
010, 1 ≤ ` ≤ n with v` ∈ ej , or ` = j + n,

000, otherwise.

e
(2)
j [3`− 2, 3`− 1, 3`] :=

{
001, 1 ≤ ` ≤ n with v` ∈ ej , or ` = j + n,

000, otherwise.
Now, we construct the following six edge strings for edge ej :

∀z ∈ {0, 1, 2} : t(z)j := e
(z)
j ◦ 0(2b−2)n̂ ◦ 0 ◦ 1n̂−1 and w(z)

j := e
(z)
j ◦ 0(2b−2)n̂ ◦ 1 ◦ 0n̂−1.

Just as for group 2, the two strings t(z)j and w(z)
j have all zeros in the columns {3n̂, . . . , (2b+

1)n̂} such that d(t(z)j , w
(z)
j ) = 4n̂.
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2 0

0 1
v1 v2

v3 v4

e1

e5

e3

e2e4

G :

 

111 111 111 111 111 111 111 111 111 0000 00000
000 000 000 000 000 000 000 000 000 0000 00000
000 000 000 000 000 000 000 000 000 0000 00000

s1 : 111 000 000 000 000 000 000 000 000 0111 11111
s2 : 000 111 000 000 000 000 000 000 000 0111 11111
s3 : 000 000 111 000 000 000 000 000 000 0111 11111
s4 : 000 000 000 111 000 000 000 000 000 0111 11111
t
(0)
1 : 100 100 000 000 100 000 000 000 000 0111 11111
t
(1)
1 : 010 010 000 000 010 000 000 000 000 0111 11111
t
(2)
1 : 001 001 000 000 001 000 000 000 000 0111 11111
t
(0)
2 : 000 100 000 100 000 100 000 000 000 0111 11111
t
(1)
2 : 000 010 000 010 000 010 000 000 000 0111 11111
t
(2)
2 : 000 001 000 001 000 001 000 000 000 0111 11111
t
(0)
3 : 000 000 100 100 000 000 100 000 000 0111 11111
t
(1)
3 : 000 000 010 010 000 000 010 000 000 0111 11111
t
(2)
3 : 000 000 001 001 000 000 001 000 000 0111 11111
t
(0)
4 : 100 000 100 000 000 000 000 100 000 0111 11111
t
(1)
4 : 010 000 010 000 000 000 000 010 000 0111 11111
t
(2)
4 : 001 000 001 000 000 000 000 001 000 0111 11111
t
(0)
5 : 000 100 100 000 000 000 000 000 100 0111 11111
t
(1)
5 : 000 010 010 000 000 000 000 000 010 0111 11111
t
(2)
5 : 000 001 001 000 000 000 000 000 001 0111 11111
s∗ : 100 010 001 100 001 001 010 010 100 0000 00000

v1 v2 v3 v4 e1 e2 e3 e4 e5

group 1

group 2

group 3

Figure 1 Illustration of the reduction used in Theorem 3. The left figure depicts a graph G that
admits a proper vertex coloring col (see the labels on the vertices). For instance, vertex v1 has
color 0, i.e., col(v1) = 0. The right figure shows the crucial part of an instance of p-HDC with p = 2
(i.e., a = 2 and b = 1) that we will construct according to the proof for Theorem 3. For each pair of
constructed strings we only show the first one. A solution string s∗ corresponding to the coloring col
is depicted at the bottom of the right figure.

For an example, assume that a = 3, b = 2, n = 3, and m = 2, and there is an edge of the
form e2 = {v1, v3}. Then, the two triples of strings that we construct for e2 have each length
(2b + 2)(n+m) = 30 and are

t
(0)
j = 100 000 100 000 100 0000000000 01111, w

(0)
j = 011 111 011 111 011 0000000000 10000,

t
(1)
j = 010 000 010 000 010 0000000000 01111, w

(1)
j = 101 111 101 111 101 0000000000 10000,

t
(2)
j = 001 000 001 000 001 0000000000 01111, w

(2)
j = 110 111 110 111 110 0000000000 10000.

Summarizing, the instance I ′ of p-HDC consists of the following strings, each of length (2b +
2)n̂ = (2b + 2)(n+m):
(1) Add the 2a−b + 1 strings in group 1 to I ′.
(2) For each vertex vi ∈ V , add the vertex strings si and ri to I ′.
(3) For each edge ej ∈ E, add two triples t(0)

j , t(1)
j , t(2)

j and w(0)
j , w(1)

j , w(2)
j to I ′.

See Figure 1 for an illustration.
Finally, we define k such that kp = (2a + 2a−b) · n̂p + 2(n+ 3m) · (2n̂)p. This completes

the construction, which can clearly be done in polynomial time.
Correctness of the construction. Before we show the correctness of our construction,

we define a notion and make an observation. Let s and s′ be two strings of equal length.
We say that s covers s′ exactly once if there is exactly one integer ` ∈ {1, 2, · · · , |s|} with
s[`] = s′[`] = 1.

ESA 2019
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B Claim 4 (?). Let s∗ and s be two strings, both of length 4n̂, such that
(i) s∗ has exactly n̂ ones and each of them is in the first 3n̂ columns, and
(ii) in s, the first 3n̂ columns have exactly 3 ones and the last n̂ columns are 0 ◦ 1n̂−1.

Then, if s∗ covers s exactly once, then dp(s∗, s)+dp(s∗, s) = 2·(2n̂)p; else dp(s∗, s)+dp(s∗, s) >
2 · (2n̂)p.

We show that G has a proper 3-coloring if and only if there is a string s∗ such that the sum
of the p-distances from s∗ to all strings in I ′ is at most kp = (2a+2a−b) · n̂p+2(n+3m) ·(2n̂)p.

For the “if” direction, let s∗ be a string which has a sum of p-distances of at most kp to
all strings in I ′. Before we define a coloring for the vertices and show that it is proper we
observe several properties of the solution string s∗.

By Lemma 2(1), the sum of p-distances to all strings from group 2 and group 3 is at least
2 · (2n̂)p · (n+3m) since these groups consist of n+3m pairs of strings, and the strings in each
of these pairs have Hamming distance exactly 4n̂ to each other. By the definition of k, the sum
of p-distances from s∗ to the first of group of strings is thus at most (2a+2a−b) · n̂p. Hence, by
the contra-positive of Lemma 1(2), the solution string s∗ has exactly n̂ ones, which all appear
in the first (2b + 1)n̂ columns, i.e., d(s∗,0(2b+2)n̂) = n̂ and hs(s∗,0(2b+2)n̂) ⊆ [(2b + 1)n̂]. By
Lemma 1(1), this implies that∑

s∈group 1
dp(s∗, s) = (2a + 2a−b) · n̂p. (1)

Next, we claim that the ones in the solution s∗ indeed all appear in the first 3n̂ columns,
i.e., hs(s∗,0(2b+2)n̂) ⊆ [3n̂]. Suppose, for the sake of contradiction, that solution s∗ contains
x ones which appear in columns ranging from 3n̂ + 1 to (2b + 1)n̂ with x > 0. Consider
an arbitrary pair of strings si and ri from group 2 or an arbitrary pair of strings t(z)i and
w

(z)
i from group 3; for the sake of readability, represent them by s and s′. By construction,

strings s and s′ have Hamming distance exactly 4n̂ to each other, but have all zeros in the
columns between 3n̂+ 1 and (2b + 1)n̂. Since x > 0, by the triangle inequality of Hamming
distances, it follows that at least one string from the pair, s or s′, has Hamming distance
more than 2n̂ from s∗. However, by Lemma 2(3), this means that the sum of p-distances from
s∗ to {s, s′} exceeds 2 · (2n̂)p. Since there are in total n+ 3m such pairs in groups 2 and 3,
the sum of p-distances from s∗ to these groups exceeds 2(n+ 3m) · (2n̂)p, a contradiction to
equation (1) and the defined bound k. Thus, indeed, it holds that

d(s∗,0(2b+2)n̂) = n̂ and hs(s∗,0(2b+2)n̂) ⊆ [3n̂]. (2)

This implies that, when determining the p-distance of s∗ to the strings from group 2 and
group 3, we can ignore, the values in the columns ranging from 3n̂+ 1 to (2b + 1)n̂, in each
string, which includes the solution s∗, because s∗ also has only zeros in these columns. We
will hence from now on treat these columns as if they do not exist. In this way, we obtain
strings of length 4n̂. Again, consider an arbitrary pair of strings si and ri from group 2 (resp.
an arbitrary pair of strings t(z)i and w(z)

i from group 3), and represent them by s and s′. Since
we ignore columns 3n̂+ 1 to (2b + 1)n̂, string s′ is the complement of s. By construction,
the Hamming distance between s and s′ is exactly 4n̂. Using Claim 4 on s∗, s, s′ , the sum
of p-distances from s∗ to the pair {s, s′} is indeed equal to 2 · (2n̂)p. By the same claim, it
follows that s∗ covers each string si (resp. t(z)j ) from group 2 (resp. group 3) exactly once.

Having this property, we are ready to color the vertices. Let col : V → {0, 1, 2} be a
mapping defined as follows. For each vi ∈ V , set col(vi) = z where z ∈ {0, 1, 2} such that
s∗[3i− 2 + z] = 1. Note that, since s∗ covers si exactly once and since si has exactly three
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ones in the columns 3i− 2, 3i− 1, and 3i, there is indeed such a z with col(vi). We claim
that col is a proper coloring for G. Suppose, towards a contradiction, that there is an
edge ej = {vi, vi′} ∈ E such that vi and vi′ have the same color from col, say z ∈ {0, 1, 2}.
By the definition of col, this means that s∗[3i − 2 + z] = s∗[3i′ − 2 + z] = 1. However,
by the definition of the string t(z)j which corresponds to the edge ej , we also have that
t
(z)
j [3i − 2 + z] = t

(z)
j [3i′ − 2 + z] = 1. This implies that t(z)j is not covered by s∗ exactly

once – a contradiction to our reasoning above that s∗ covers each string from the third
group exactly once.

For the “only if” direction, let col : V → {0, 1, 2} be a proper coloring for G. For an
edge e ∈ E with two endpoints vi, vi′ , let col(e) = {col(vi), col(vi′)}. We claim that string s∗,
defined as follows, has the desired bound on the sum of the p-distances to all strings of I ′.

∀i ∈ {1, 2, · · · , n} : s∗[3i− 2, 3i− 1, 3i] :=


100, col(vi) = 0,
010, col(vi) = 1,
001, col(vi) = 2.

∀j ∈ {n+ 1, n+ 2, · · · , n̂} : s∗[3j − 2, 3j − 1, 3j] :=


100, col(ej) = {1, 2},
010, col(ej) = {0, 2},
001, col(ej) = {0, 1}.

s∗|(2
b+2)n̂

3n̂+1 := 0n̂.
First of all, since col is a proper coloring, s∗ is well defined in all (2b + 2)n̂ columns.

Moreover, it has exactly n ones in the first 3n columns and exactly m ones in the next
3m columns, and all zeros in the remaining columns. Thus, by Lemma 1(2), the sum of the
p-distances from s∗ to the first group of strings is (2a + 2a−b) · n̂p.

Now, we focus on strings from group 2 and group 3. Since the solution s∗ and each
string in these groups have only zeros in the columns between 3n̂+ 1 and (2b + 1)n̂, we can
simply ignore the values in these columns and assume from now on that the strings have
length 4n̂. Moreover, for each i ∈ [n], the pair si and ri can be considered as complement to
each other. Thus, for each string si from group 2, s∗ and si fulfill the properties stated in
Claim 4. Moreover, by definition, s∗ covers si exactly once. Thus, by the same claim, we
have that the sum of the p-distances from s∗ to all strings in group 2 is n · 2 · (2n̂)p.

Analogously, consider a string t(z)j from group 3, j ∈ {1, 2, . . . ,m} and z ∈ {0, 1, 2}.
Recall that t(z)j corresponds to the edge ej , and let vi and vi′ be the two endpoints of edge ej .
We claim that s∗ covers t(z)j exactly once. Observe that t(z)j has exactly 3 ones in the first
3n̂ columns, namely at columns 3i− 2 + z, 3i′ − 2 + z, and 3n+ 3j − 2 + z. To prove that s∗
covers t(z)j exactly once, it suffices to show that s∗ has 1 one in exactly one of these three
columns. To show this, we consider the substrings t(z)j |

3n+3j
3n+3j−2 and s∗|3n+3j

3n+3j−2.
Case 1: s∗|3n+3j

3n+3j−2 = t
(z)
j |

3n+3j
3n+3j−2. By the definition of s∗, this implies that s∗[3n+ 3j − 2 +

z] = 1 and col(ej) = {0, 1, 2} \ {z}. We claim that s∗[3i − 2 + z] = s∗[3i′ − 2 + z] = 0.
By the definition of s∗ regarding the columns that correspond to the endpoint vi of
edge ej , we have that s∗[3i − 2 + col(vi)] = 1 while s∗[3i − 2 + z] = 0 (since z /∈
col(ej) = {col(vi), col(vi′)}). Analogously, by the definition of s∗ regarding the columns
that correspond to the other endpoint vi′ of edge ej , we have that s∗[3i′− 2 + col(vi′)] = 1
while s∗[3i′ − 2 + z] = 0 (since z /∈ col(ej) = {col(vi), col(vi′)}). Thus, 3n + 3j − z

is the only column in which both s∗ and t
(z)
j have 1 one, implying that s∗ covers t(z)j

exactly once.

ESA 2019



28:10 On Computing Centroids According to the p-Norms of Hamming Distance Vectors

Case 2: s∗|3n+3j
3n+3j−2 6= t

(z)
j |

3n+3j
3n+3j−2. This means that s∗[3n + 3j − 2 + z] = 0 and that

z ∈ col(ej). To show that s∗ covers t(z)j exactly once in this case, it suffices to show that
either s∗[3i−2 + z] = 1 and s∗[3i′−2 + z] = 0, or s∗[3i−2 + z] = 0 and s∗[3i′−2 + z] = 1.

Assume that s∗[3i− 2 + z] = 1. Then, by the definition of s∗ regarding the columns
that correspond to the endpoint vi of edge ej , this means that col(vi) = z. Since col
is a proper coloring, it follows that col(vi′) 6= z. Thus, again by the definition of s∗
regarding the columns that correspond to the other endpoint vi′ of edge ej , it follows
that s∗[3i′ − 2 + z] = 0.
Assume that s∗[3i−2+z] = 0. Then, by the definition of s∗ regarding the columns that
correspond to the endpoint vi of edge ej , we have col(vi) 6= z. Since z ∈ col(ej) and
col is a proper coloring, the other endpoint vi′ of edge ej must have color col(vi′) = z.
Again, by the definition of s∗ regarding the columns that correspond vi′ , it follows
that s∗[3i′ − 2 + z] = 1.

We have just shown that s∗ covers t(z)j exactly once. Since s∗ and t(z)j fulfill the property
stated in Claim 4, it follows from the same claim that the sum of p-distances from s∗ to t(z)j

and to w(z)
j is 2 · (2n̂)p. There are 3m pairs in this group. So, the sum of the p-distances

from s∗ to all strings of this group is 3m · 2 · (2n̂)p.
In total, the sum of the p-distances from s∗ to all strings of I ′ is (2a + 2a−b) · n̂p + 2 ·

(2n̂)p · (n+ 3m) = kp, as required. J

Our NP-hardness reduction implies the following running time lower bounds [12].

I Corollary 5 (?). For each fixed rational number p > 1, unless the ETH fails, no 2o(n̂+m̂) ·
|I ′|O(1)-time or 2o(k

p/(p+1)) · |I ′|O(1)-time algorithm exists that decides every given instance I ′
of p-HDC where n̂ is the length of the input strings, m̂ is the number of input strings, and k
is the p-norm bound.

Using a slight modification of the construction, we can show that our results are not
idiosyncratic to instances which contain some strings multiple times. (Recall that the gadget
from Lemma 1 in the construction contains 2a−b copies of the all-zero string.) The basic
idea is to append an identity matrix to the strings we need to distinguish, and then to show
using a slightly more involved analysis that the gadgets still work in the same way.

I Proposition 6 (?). Theorem 3 and Corollary 5 hold even if all input strings are distinct.

Let p-Norm Approval Committee be the variant of p-HDC in which we additionally
get t ∈ N as an input and require the number of ones in the solution string s∗ to be
exactly t [39]. Note that in the proof of Theorem 3 we have first shown that each solution
string contains exactly n̂ ones. Thus, the reduction works in the same way for p-Norm
Approval Committee when we specify t = n̂ in the constructed instance. We hence obtain
the following.

I Corollary 7. For each fixed rational p > 1, p-Norm Approval Committee is NP-hard
and admits no algorithm running in 2o(n̂+m̂) · |I ′|O(1)-time or in 2o(k

p/(p+1)) · |I ′|O(1)-time
unless the ETH fails, where n̂ is the number of candidates, m̂ is the number of voters, and k
is the p-norm bound.

3 Algorithmic Results

We now turn to our positive results. In Section 3.1 we provide an efficient algorithm when
the objective value k is small. In Section 3.2, we derive an integer convex programming
formulation to obtain an efficient algorithm for instances where the number m of input
strings is small. Finally, we give a simple 2-approximation in Section 3.3.
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3.1 A Subexponential-Time Algorithm
In this section, we present an algorithm with running time 2k

p/(p+1)+ε · |I|O(1) for any ε > 0
and input instance I with distance bound k. By the lower bound result given in Corollary 5,
we know that under ETH, the running time of the obtained algorithm is tight.

The algorithm is built on two subcases, distinguishing on a relation between the numberm
of input strings and the distance bound k. In each subcase we use a distinct algorithm
that runs in subexponential time when restricted to that subcase. To start with, a dynamic
programming algorithm which keeps track of the achievable vector of Hamming distances to
each input string after columns 1 to j ≤ n has running time O(n · km).

I Lemma 8 (?). p-HDC can be solved in O(n · km) time and space, where m and n are the
number and the length of the input strings, respectively, and k is the p-norm distance bound.

The dynamic program given in Lemma 8 is efficient if there is a small number m of
input strings only. In particular, if m satisfies m ≤ k

p/(p+1)

log k , then we immediately obtain
an O(n · 2k

p/(p+1))-time algorithm. Otherwise, we can use Lemma 9. The algorithm behind
Lemma 9 is based on a different but related idea as the fixed-parameter algorithm for
Closest String given by Gramm at al. [22]: We use data reduction to shrink the length
of the strings by kp, observe that one of the input strings must be close to a solution with
bound k if it exists, and then find the solution by a search tree.

I Lemma 9. p-HDC can be solved in O(nm2 · k
p·k
p√m ) time, where m and n are the number

and the length of the input strings, respectively, and k is the p-norm distance bound.

Proof. Let I = (S, k) be an instance of p-HDC with S = (s1, . . . , sm) being the input strings
of length n and k being the p-norm distance bound. To show the statement, we first observe
that if a column is an all-zero (resp. an all-one) column, then we can simply assume that
an optimal solution will also have zero (resp. one) in this column as our objective function
is convex. By preprocessing all columns that are either an all-zero or an all-one vector, we
obtain an equivalent instance, where each column has at least a zero and at least a one.
Thus, for each column, no matter which value a solution has at this column, it will always
induce Hamming distance of at least one to some input string. Consequently, if there are
more than kp columns remaining, then we can simply answer “no” as any string will have
cost more than k to the input. Otherwise, there remain at most kp columns.

If I is a yes-instance, meaning that there is a solution s∗ for I with ‖(s∗, S)‖p ≤ k, then
there is an input string s∗∗ ∈ S whose Hamming distance satisfies d(s∗∗, s∗) ≤ p

√
kp

m = k
p
√
m
.

Thus, we iterate over all input strings in S, assuming in each iteration that the current string
is the aforementioned s∗∗. For each string si that we assume to be the aforementioned s∗∗,
we go over all strings ŝ that differ from si by k′ columns with k′ ≤ k

p
√
m
. We check whether

‖(ŝ, S)‖p ≤ k. We answer “no” if for each input string si ∈ S, no length-n string ŝ with
d(si, ŝ) ≤ k

p
√
m

exists which satisfies ‖(ŝ, S)‖p ≤ k.
It remains to show the running-time bound. Observe that the preprocessing for all-zero

and all-one columns can be done in O(nm) time. After that, for each of the m input strings si,
we search all strings of Hamming distance at most k′ ≤ k

p
√
m

to si, and there are O(n
k
p√m ) such

strings. For each of them, we compute the objective function, which can be accomplished in
O(nm) time. As already reasoned, after the preprocessing, n is upper-bounded by kp. Thus,
the overall running time bound is O(nm+ nm2 · n

k
p√m ) = O(nm2 · k

p·k
p√m ), as claimed. J

Combining Lemma 8 with Lemma 9, we obtain a subexponential algorithm with respect to k.
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I Theorem 10. For each fixed positive value ε > 0, p-HDC can be solved in O(nm2 ·
2k

p/(p+1)+ε) time, where n and m denote the length and the number of input strings, and k is
the p-norm distance bound with p > 1.

Proof. Let I = (S, k) be an instance of p-HDC with S = (s1, . . . , sm) being the input strings
of length n and k being the p-norm distance bound. As already discussed, to solve our
problem we distinguish between two cases, depending on whether m ≤ k

p/(p+1)

log k holds.

If m ≤ k
p/(p+1)

log k , then km ≤ k
k
p/(p+1)

log k ≤ 2k
p/(p+1) . In this case, we use the dynamic

programming approach given in the proof of Lemma 8, which has the desired running
time O(n · km) = O(n · 2k

p/(p+1)).
Otherwise, m > k

p/(p+1)

log k , meaning that p·k·log k
p
√
m

< p · k · log k/ p

√
kp/(p+1)

log k = p · kp/(p+1) ·
(log k)(p+1)/p. For each fixed positive ε ∈ R there exists k0 = k0(p, ε) ∈ R such that, for
each k ≥ k0, we have p · (log k)(p+1)/p < kε. If k < k0, then the algorithm in the proof
of Lemma 9 runs in O(nm2) time. Otherwise k ≥ k0, which implies p·k·log k

p
√
m

< kp/(p+1)+ε.

Thus, the algorithm given in the proof of Lemma 9 has a running time of O(nm2 · k
p·k
p√m ) =

O(nm2 · 2
p·k·log k
p√m ) = O(nm2 · 2k

p/(p+1)+ε).
Altogether we presented an algorithm which has the desired running time bound. J

3.2 A Fixed-Parameter Algorithm for the Number of Input Strings
In this section, we show that minimizing the sum of the p-distances is fixed-parameter
tractable for the number m of input strings. The idea is to formulate our problem as a
combinatorial n-fold integer program (CnIP) with O(2m) variables and O(m) constraints.
We then apply the following simplified result of Knop et al. [28]:

I Proposition 11 ([28, Theorem 3]). Let E ∈ Z(r+1)×t be a matrix such that the last row
equals (1, 1, . . . , 1) ∈ Zt. Let b ∈ Zr+1, `, u ∈ Zt, and let f : Rt → R be a separable
convex function given by an evaluation oracle2. Then, there is an algorithm that solves3

P := min{f(x) | Ex = b∧` ≤ x ≤ u∧x ∈ Zt} in tO(r)·
(
(1+‖E‖∞)·r

)O(r2)·L+T time, where
L is the total bit-length of b, `, u, and the oracle of f , and T is the time that an algorithm
needs to solve the continuous relaxation of P .

To get a useful running time bound from Proposition 11, we need a bounded number of
variables. To do this, we group columns in the input strings with the same “type” together and
introduce an integer variable for each column type. To this end, given a set S = {s1, . . . , sm}
of length-n strings, we say that two columns j, j′ ∈ [n] have the same type if for each i ∈ [m]
it holds that si[j] = si[j′]. The type of column j is its equivalence class in the same-type
relation. Thus, each type is represented by a vector in {0, 1}m. Let n′ denote the number of
different (column) types in S. Then, n′ ≤ min(2m, n). Enumerate the n′ column types as
t1, . . . , tn′ . Below we identify a column type with its index for easier notation. Using this, we
can encode the set S succinctly by introducing a constant e(j) for each column type j ∈ [n′]
that denotes the number of columns with type j. Given a solution string s∗, we can also
encode this string s∗ via an integer vector x ∈ {0, 1, . . . , n}n′ , where for each type j ∈ [n′]
we define x[j] as the number of ones in the solution s∗ whose corresponding columns are
of type j. Note that this encodes all essential information in a solution, since the actual

2 A function is separable convex if it is the sum of univariate convex functions.
3 The algorithm correctly reports either a minimizer x ∈ P or that P is infeasible or unbounded.
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order of the columns is not important (see Example 12). Vice versa, each integer vector
in x ∈ {0, 1, . . . , n}n′ satisfying 0 ≤ x[j] ≤ e(j) for each j ∈ [n′] yields a length-n binary
string s∗(x); it remains to add constraints and a suitable objective function to ensure that
s∗(x) has minimum sum of p-distances to the input strings.

I Example 12. For an illustration, let S = {0000, 0001, 1110}. The set S has two different
column types, represented by (0, 0, 1)T , call it type 1, and (0, 1, 0)T , call it type 2. There are
three columns of type 1 and one column of type 2. The solution 0110 for S can be encoded
by two variables x[1] = 2 and x[2] = 0.

We next introduce m variables y ∈ {0, 1, . . . , n}m that shall be equal to the Hamming
distances of each input string si, i ∈ [m], to the solution s∗(x) selected by x. To achieve
this, we need a formula specifying the Hamming distance between the two strings si and
s∗(x), and this formula needs to be linear in x. This can be achieved as follows; for the
sake of simplicity, we let si[j] = 1 if the column of type j has one in the ith row and
si[j] = 0 if it has zero in the ith row: d(si, s∗(x)) =

∑n′

j=1
(
si[j]·(e(j)−x[j]) + (1−si[j]) ·

x[j]
)

=
∑n′

j=1 (e(j) · si[j] + (1−2si[j])·x[j]) =wi +
∑n′

j=1 x[j] · (1− 2si[j]), where we define
wi :=

∑n′

j=1 e(j) · si[j], which denotes the number of ones in string si.
We can now formulate an appropriate CnIP. The variables are x ∈ Rn′ , y ∈ Rm, and a

dummy variable z ∈ Z. The bounds `, u for the variables are defined such that
(1) for each j ∈ [n′] it holds that 0 ≤ x[j] ≤ e(j),
(2) for each i ∈ [m] it holds that 0 ≤ y[i] ≤ n, and
(3) there is virtually no constraint on z, that is, −n′ · n+mn ≤ z ≤ n′ · n+mn.
The objective function is defined as f(x, y, z) =

∑n′

i=1 y[i]p which is clearly separable convex
over the domain specified by ` and u. Finally, the constraint system Et = b, where t> =
(x>y>z) is defined such that the first m constraints are

∑n′

j=1
(
x[j] · (1−2si[j])

)
−y[i] = −wi,

for each i ∈ [m], and the last constraint is
∑n′

j=1 x[j] +
∑m
i=1 y[i] + z = 0 (note that this

constraint can always be fulfilled by setting z accordingly).
By the above reasoning, an instance of p-HDC is a yes-instance if and only if min{f(x) |

Et = b ∧ ` ≤ t ≤ u ∧ t ∈ Zn′+n+1} is at most kp. Plugging in the running time of
Proposition 11, and using a polynomial-time algorithm for the continuous relaxation of the
CnIP above [10], we obtain the following.

I Theorem 13. p-Norm Hamming Centroid can be solved in mO(m2) · (n ·m)O(1) time.

3.3 A Factor-2 Approximation
It is known that by taking an input string that minimizes the largest Hamming distance
over all input strings, Closest String can be approximated within factor 2. Indeed, using
a similar idea, we show that the minimization version of our p-HDC problem can also be
approximated within factor 2. More specifically, we show that an input string which has
minimum p-norm to all other input strings is a 2-approximate solution.

I Proposition 14 (?). The minimization variant of p-HDC can be approximated within
factor 2 in polynomial time.

4 Conclusion and Outlook

We analyzed the complexity of p-Norm Hamming Centroid for all fixed rational values p
between p = 1 and p = ∞. We believe that the running time bounds established in this
paper, of essentially 2Θ(k

p
p+1 ) · (nm)O(1), connect the extreme points p = 1 and p = ∞ in
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a very satisfying way. We did not consider the non-norm case of 0 < p < 1, as it does not
fit our clustering motivation very well. But this non-convex case might be of independent
interest, and may be the subject of future work. Furthermore, we have focused here on the
case where p is a fixed constant. It would also be interesting to study the case where p is
part of the input.

An interesting generalization of Closest String is Closest Substring in which we
seek a string s∗ of a certain specified length such that each of the input strings has a substring
which is close to s∗ (see, e.g., Ma and Sun [31]). It would be interesting to see how our
results carry over to this and other similar variants. Finally, the fact that the simple 2-factor
approximation for Closest String carries over to p-HDC may imply that there are similar
connections for approximation algorithms. This warrants further investigation into whether
p-HDC admits a PTAS.
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