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Abstract
We consider the problem of realizable interval-sequences. An interval sequence comprises of n

integer intervals [ai, bi] such that 0 ≤ ai ≤ bi ≤ n− 1, and is said to be graphic/realizable if there
exists a graph with degree sequence, say, D = (d1, . . . , dn) satisfying the condition ai ≤ di ≤ bi, for
each i ∈ [1, n]. There is a characterisation (also implying an O(n) verifying algorithm) known for
realizability of interval-sequences, which is a generalization of the Erdös-Gallai characterisation for
graphic sequences. However, given any realizable interval-sequence, there is no known algorithm for
computing a corresponding graphic certificate in o(n2) time.

In this paper, we provide an O(n log n) time algorithm for computing a graphic sequence for any
realizable interval sequence. In addition, when the interval sequence is non-realizable, we show how
to find a graphic sequence having minimum deviation with respect to the given interval sequence, in
the same time. Finally, we consider variants of the problem such as computing the most regular
graphic sequence, and computing a minimum extension of a length p non-graphic sequence to a
graphic one.
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1 Introduction

The Graph Realization problem for a property P deals with the following existential question:
Does there exist a graph that satisfies the property P? Its fundamental importance is
apparent, ranging from better theoretical understanding, to network design questions (such
as constructing networks with certain desirable connectivity properties). Some very basic,
yet challenging, properties that have been considered in past are degree sequences [7, 16, 18],
eccentricites [4, 22], connectivity and flow [14, 10, 8, 9].

One of the earliest classical problems studied in this domain is that of graphic sequences.
A sequence of n positive integers, D = (d1, . . . , dn), is said to be graphic if there exists an n
vertex graph G such that D is identical to the sequence of vertex degrees of G. The problem
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47:2 Efficiently Realizing Interval Sequences

of realizing graphic sequences and counting the number of non-isomorphic realizations of a
given graphic-sequence, is particularly of interest due to many practical applications, see [25]
and reference therein. In 1960, Erdös and Gallai [7] gave a characterization (also implying an
O(n) verifying algorithm) for graphic sequences. Havel and Hakimi [16, 18] gave a recursive
algorithm that given a sequence D of integers computes a realizing graph, or proves that the
sequence is non-graphic, in optimal time O(

∑
i di). Recently, Tripathi et al. [26] provided a

constructive proof of Erdös and Gallai’s [7] characterization.
We consider a generalization of the graphic sequence problem where instead of specifying

precise degrees, we are given a range (or interval) of possible degree values for each vertex.
Formally, an interval-sequence is a sequence of n intervals S = ([a1, b1], . . . , [an, bn]), also
represented as S = (A,B), where A = (a1, . . . , an) and B = (b1, . . . , bn), and 0 ≤ ai ≤ bi ≤
n− 1 for every i. It is said to be realizable if there exists a sequence D = (d1, . . . , dn) that
is graphic and satisfies the condition ai ≤ di ≤ bi, for 1 ≤ i ≤ n. Two questions that are
natural to ask here are:

I Question 1 (Verification). Find an efficient algorithm for verifying the realizability of any
given interval-sequence S?

I Question 2 (Graphic Certificate). Given a realizable interval-sequence S, compute a certi-
ficate (that is, a graphic sequence D) realizing it.

Cai et al. [5] extended Erdös and Gallai’s work by providing an easy to verify characteriz-
ation for realizable interval-sequences, thereby resolving Question 1. Their result crucially
uses the (g, f)-Factor Theorem of Lovász [23]. Garg et al. [13] provided a constructive
proof of the characterisation of Cai et al. [5] for realizable interval sequences. In [20], Hell
and Kirkpatrick provided an algorithm based on Havel and Hakimi’s work for computing
a graph that realizes an interval sequence (if exists). For non-realizable interval sequences
S, their algorithm computes a graph whose deviation δ(D,S) (see Section 2 for definition)
with respect to L1-norm is minimum. The time complexity of their algorithm is O(

∑n
i=1 bi)

(which can be as high as Θ(n2)).

Our Contributions. In this paper we introduce a new approach for representing and analyz-
ing the interval sequence realization problem. Our algorithms are based on a novel divide and
conquer methodology, wherein we show that partitioning a realizable interval sequence along
any levelled sequence (a new class of sequences introduced herein) guarantees that at least one
of the new child interval sequences is also realizable. This enables us to present an O(n logn)
time algorithm for computing a graphic certificate (if exists) for a given interval sequence.
While the problem was well studied, to the best of our knowledge there was no known
o(n2) time algorithm for computing graphic certificate. Also, there was no sub-quadratic
time algorithm known for computing even the deviation δ(D,S). Specifically, we obtain the
following result.

I Theorem 1. There exists an algorithm that for any integer n ≥ 1 and any length n interval
sequence S, computes a graphic sequence D realizing S, if exists, in O(n logn) time.

Moreover, when S is non-realizable, the algorithm outputs in same time a graphic sequence
D minimizing the deviation δ(D,S).

Our new approach enables us to tackle also an optimization version of the problem in
which it is required to compute the “most regular” sequence realizing the given interval
sequence S, using the natural measure of the minimum sum of pairwise degree differences,∑
i,j |di − dj |, as our regularity measure. To the best of our knowledge, this problem was

not studied before and is not dealt with directly by the existing approaches to the interval
sequence problem. Specifically, we obtain the following.
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I Theorem 2. There exists an algorithm that for any integer n ≥ 1 and any length n

realizable interval sequence S, computes the most regular graphic sequence realizing interval
sequence S (i.e., the one minimizing the sum of pairwise degree difference), in time O(n2).

The tools developed in this paper allows us to study other interesting applications, such
as computing a minimum extension of non-graphic sequences to graphic ones (see Section 6).

Related work. Kleitman and Wang [21], and Fulkerson-Chen-Anstee [2, 6, 12] solved the
problem of degree realization for directed graphs, wherein, for each vertex both the in-degree
and out-degree is specified. In [17], Nichterlein and Hartung proved the NP-completeness of
the problem when the additional constraint of acyclicity is imposed. Over the years, various
extensions of the degree realization problems were studied as well, cf. [1, 28]. The Subgraph
Realization problem considers the restriction that the realizing graph must be a subgraph
(factor) of some fixed input graph. For an interesting line of work on graph factors, refer
to [27, 3, 19, 15]. The subgraph realization problems are generally harder. For instance, it
is very easy to compute an n-vertex connected graph whose degree sequence consists of all
values 2, however, the same problem for subgraph-realization is NP-hard (since it reduces to
Hamiltonian-cycle problem).

Lesniak [22] provided a characterization for the sequence of eccentricities of an n-vertex
graph. Behzad et al. [4] studied the problem of characterizing the set comprising of vertex-
eccentricity values of general graphs (the sequence problem remains open). Fujishige et al. [11]
considered the problem of realizing graphs and hypergraphs with given cut specifications.

Organization of the Paper. In Section 2, we present the notation and definitions. In
Section 3, we discuss the main ideas and tools that help us to construct graph certificates for
interval sequence problem. Section 4 presents our O(n logn) time algorithm for computing
graphic certificate with minimum deviation. Section 5 provides a quadratic-time algorithm
for computing the most regular certificate. We discuss the applications in Section 6.

2 Preliminaries

A sequence is defined to be an n-element vector whose entries are non-negative integers.
For any sequence D = (d1, . . . , dn), define min(D) = minni=1{di}, max(D) = maxni=1{di},
sum(D) =

∑n
i=1 di, and parity(D) = sum(D) mod 2. Given any two sequences X =

(x1, . . . , xn) and Y = (y1, . . . , yn), we say that X ≤ Y if xi ≤ yi for 1 ≤ i ≤ n. Any
two sequences X and Y are said to be similar if they are identical up to permutation of
the elements (i.e., their sorted versions are identical). A sequence D is said to lie in an
interval-sequence (A,B), denoted by D ∈ (A,B), if A ≤ D ≤ B. We define min(X,Y ) =
(min{x1, y1}, . . . ,min{xn, yn}), and max(X,Y ) = (max{x1, y1}, . . . ,max{xn, yn}). The L1-
distance of the pair (X,Y ) is defined as L1(X,Y ) =

∑n
i=1 |yi − xi|.

Denote by > and ⊥ the n-length sequences all whose entries are respectively n− 1 and 0.
Given a sequence D = (d1, . . . , dn) and an integer k ∈ [1, n], define the vectors X(D) and
Y (D) by setting for 1 ≤ k ≤ n:

Xk(D) ,
k∑
i=1

di, and Yk(D) , k(k − 1) +
n∑

i=k+1
min(di, k) .

For any sequence D = (d1, . . . , dn), the spread of D is defined as φ(D) =
∑

1≤r<s≤n |dr−ds|,
and it always lies in the range [0, n3]. A sequence D is said to be more regular than another
sequence D′ if φ(D) < φ(D′). For any two integers x ≤ y, [x, y] = {x, x+ 1, . . . , y}. For any
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47:4 Efficiently Realizing Interval Sequences

I ⊆ [1, n], define D[I] to be the subsequence of D consisting of elements di, for i ∈ I; and
define EI to be the characteristic vector of I, namely, the sequence (e1, e2, . . . , en) such that
ei = 1 if i ∈ I, and ei = 0 otherwise. For any sequence D = (d1, . . . , dn) and an interval-
sequence S = ([a1, b1], . . . , [an, bn]), the upper and lower deviation of D, is respectively
defined as

δU (D,S) =
n∑
i=1

max{0, (di − bi)}, and δL(D,S) =
n∑
i=1

max{0, (ai − di)} .

The deviation of D is defined as δ(D,S) = δU (D,S) + δL(D,S). For any vertex x in
an undirected simple graph H, define degH(x) to be the degree of x in H, and define
NH(x) = {y | (x, y) ∈ E(H)} to be the neighbourhood of x in H.

We next state the Erdös and Gallai [7] characterisation for realizable(graphic) sequences,
and Cai et al. [5] characterisation for realizable interval sequences. An O(n)-time implement-
ation of the both theorems is provided in the full version.

I Theorem 3 (Erdös and Gallai [7]). A non-increasing sequence D = (d1, . . . , dn) is graphic
if and only if
(i) Xn(D) is even, and
(ii) X(D) ≤ Y (D).

I Theorem 4 (Cai et al. [5]). Let S = ([a1, b1], . . . , [an, bn]) = (A,B) be an interval-sequence
such that A is non-increasing and for any index 1 ≤ i < n, bi+1 ≤ bi whenever ai = ai+1.
For each k ∈ [1, n], define Wk(S) = {i ∈ [k + 1, n] | bi ≥ k + 1}. Then S is realizable if and
only if X(A) ≤ Y (B)− ε(S), where, ε(S) is defined by setting

εk(S) =
{

1 if ai = bi for i ∈Wk(S) and
∑
i∈Wk(S)(bi + k|Wk(S)|) is odd,

0 otherwise.

3 Main Tools

In this section, we develop some crucial tools that help us in efficient computation of certificate
for a realizable interval-sequence. These tools will help us to search a graphic sequence in
O(n logn) time using a clever divide and conquor methodology. Also they aid in searching
for the maximally regular sequence in just quadratic time.

Levelling operation. Given a sequence D = (d1, . . . , dn) and a pair of indices α 6= β

satisfying dα > dβ , we define π(D,α, β) = D∗ = (d∗1, . . . , d∗n) to be a sequence obtained from
D by decrementing dα by 1 and incrementing dβ by 1 (i.e., d∗α = dα − 1, d∗β = dβ + 1, and
d∗k = dk for k 6= α, β). This operation is called the levelling operation on D for the indices α
and β. The operation essentially “levels” (or “flattens”) the sequence D, making it more
uniform.

We now discuss some properties of levelling operations.

I Lemma 5. Any levelling operation on a sequence D that results in a non-similar sequence,
reduces its spread φ(D) by a value at least two.
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Proof. Let D = (d1, d2, . . . , dn) and Z = (z1, . . . , zn) = π(D,α, β), be a sequence obtained
from D by performing a levelling operation on a pair of indices α, β such that dα > dβ . If
dα = dβ + 1, then it is easy to verify that D and Z are similar. If dα ≥ dβ + 2, then

φ(Z) = |zα − zβ |+
∑
s6=α,β

(|zα − zs|+ |zβ − zs|) +
∑

1≤r<s≤n,
r,s/∈{α,β}

|zr − zs|

= |dα − dβ | − 2 +
∑

s6=α,β s.t.
ds /∈(dβ ,dα)

(|dα − ds|+ |dβ − ds|)

+
∑
s6=α,

β s.t.ds∈(dβ ,dα)

(|dα − ds|+ |dβ − ds| − 2) +
∑

1≤r<s≤n,
r,s/∈{α,β}

|dr − ds|

≤
( ∑

1≤r<s≤n
|dr − ds|

)
− 2 = φ(D)− 2 .

Thus, the claim follows. J

I Lemma 6 (Corollary 3.1.4, [24]). The levelling operations preserves graphicity, that is, if
we perform a levelling operation on a graphic sequence, then the resulting sequence is also
graphic.

Proof. Let D = (d1, . . . , dn) be a graphic sequence, and π(D,α, β) = D∗ = (d∗1, . . . , d∗n) for
some indices α, β satisfying dα > dβ . If dα = 1 + dβ , then D∗ is similar to D, and thus also
graphic. So for the rest the proof let us focus on the case dα ≥ 2 + dβ . Let G = (V,E) be
a graph realising the sequence D, and let xα and xβ be two vertices in G having degrees
respectively dα and dβ . Since |NG(xα)| ≥ 2 + |NG(xβ)|, there must exists at least one
neighbour, say w, of vertex xα that does not lie in set {xβ} ∪ NG(xβ). Let G∗ = (V,E∗)
be a graph obtained from G by deleting the edge (w, xα), and adding a new edge (w, xβ).
Observe that the degree of all vertices other than xα and xβ are identical in graphs G and
G∗, also degG∗(xα) = degG(xα)−1, and degG∗(xβ) = degG(xβ)+1. Therefore G∗ is a graph
realising the profile D∗, and thus the claim follows. J

Levelled sequences. A sequence D is said to be levelled with respect to the integer-sequence
S = (A,B) if
(i) A ≤ D ≤ B, and
(ii) the spread of D cannot be decreased by a levelling operation, i.e., for any two indices

α 6= β satisfying dα > dβ and A ≤ π(D,α, β) ≤ B, we have φ(π(D,α, β)) = φ(D).
See Figure 1.

The volume of a sequence D lying between A and B with respect to S = (A,B) is defined
as

vol(D,S) , L1(D,A) ,

and is invariant of levelling operations applied to D. In other words, applying a levelling
operation to a sequence D may reduce its spread but preserves its volume. Note that the
volume lies in the range [0, L1(A,B)].

ISAAC 2019
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I Lemma 7. For any S = (A,B), a sequence D satisfying A ≤ D ≤ B can be transformed
into a levelled sequence D∗ having the same volume vol(D,S) by a repeated application of
(at most O(n3)) levelling operations.1

Proof. By Lemma 5, every levelling operation that results in a new (non-similar) sequence
decreases the spread by at least two. Since the spread of any sequence D is always non-
negative and finite (specifically, O(n3)), it is possible to perform (O(n3)) levelling operations
on D so that the resultant sequence D∗ is levelled. Since the levelling operation preserves
the volume, vol(D∗,S) must be same as vol(D,S). J

Any graphic sequence D realizing the interval sequence S = (A,B) by Lemma 7 can
be altered by O(n3) levelling operations to obtain a levelled sequence lying between A and
B. The resultant sequence by Lemma 6 remains graphic, thus the following theorem is
immediate.

I Theorem 8. For any realizable interval sequence S = (A,B) there exists a graphic sequence
realizing S which is a levelled sequence.

Characterizing and Computing Levelled sequences. Given any interval sequence S =
(A,B) and a real number ` ∈ [min(A),max(B)], let2

F (`,S) ,
∑
i∈[1,n]

(min{`, bi} −min{`, ai}) .

Observe that F (·,S) is a non-decreasing function in the range (min(A),max(B)). Hence we
may define the corresponding inverse function as F−1(L,S) = min{` | F (`,S) = L}.

Given any interval sequence S = (A,B), we define I(`,S) , {i ∈ [1, n] | ai < ` < bi}.
We conclude this section by providing the following theorems for characterising and

computing levelled sequences (proofs are deferred to the full version).

I Theorem 9. Consider an interval sequence S = (A,B). Let L be an integer in [0,L1(A,B)]
and ` ≥ 0 be such that ` = F−1(L,S). Then the collection of levelled sequences that have
volume L with respect to S is equal to the collection of sequences D = (d1, . . . , dn) satisfying
the following three conditions:
(a) di = bi for any i satisfying bi ≤ `;
(b) di = ai for any i satisfying ai ≥ `; and
(c) Among all indices lying in set I(`,S), exactly F (`,S)−F (b`c ,S) indices i satisfy di = d`e,

and the remaining indices i satisfy di = b`c.

I Theorem 10. Given an interval sequence S = (A,B) consisting of n-pairs, and an integer
L ∈ [0,L1(A,B)], a levelled sequence D having volume L with respect to S can be computed
in O(n) time.

1 We remark that the algorithms presented later on generate a desired levelled sequence using more
efficient methods than the one implicit in the proof, and are therefore faster.

2 One can think of S as representing a collection of n connected vessels, each in the shape of a unit column
closed at both ends, then F (`,S) is the amount of fluid that will fill this connected vessel system to
level `.
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Figure 1 Illustration of a levelled sequence D (in red) satisfying L = vol(D,S) = 33. For ` = 7.5,
F (` = 7.5,S) = 33, F (b`c = 7,S) = 30, and F (d`e = 8,S) = 36. The segments contributing to
F (` = 7.5,S), i.e., the parts of the connected vessel system filled with fluid, are shown in blue. The
values in D at all indices in set I(`,S) differ by at most one as they lie in the set {b`c , d`e}.

4 An O(n log n) time algorithm for Graphic Certificate

In this section, we present an algorithm for computing a certificate for interval sequence that
takes just O(n logn) time. If the input interval S = (A,B) is realizable, our algorithm com-
putes a graphic sequence D ∈ S, otherwise it computes a sequence minimizing the deviation
value δ(D,S). We begin by considering the case where the sequence S is realizable (since it
is simpler to understand given Theorems 9 and 10), and then we move to the case where S
is non-realizable. Then characterization of [5] implies an O(n) time verification algorithm for
realizability of interval sequence. (For details refer to the full version).

4.1 Realizable Interval Sequences
First we show that any two levelled sequences after an appropriate reordering of their elements
are coordinate-wise comparable.

I Lemma 11. For any interval sequence S = (A,B), and any two levelled sequences C,D ∈ S
satisfying vol(D,S) ≤ vol(C,S), the following holds.
1. D′ ≤ C, for some sequence D′ ∈ S similar to D.
2. D ≤ C ′′, for some sequence C ′′ ∈ S similar to C.

Proof. We show how to transform D = (d1, · · · , dn) into sequence D′ = (d′1, · · · , d′n) ∈ S
such that D′ ≤ C. Let `D = F−1(vol(D,S),S) and `C = F−1(vol(C,S),S). Since F (·,S)
is a non-decreasing function, we have that `D ≤ `C .

Let us first consider the case where `C and `D are both non-integral, and b`Cc = b`Dc =
(say `1) and d`Ce = d`De = (say `2). By Theorem 9, for any index i ∈ [1, n],

ISAAC 2019



47:8 Efficiently Realizing Interval Sequences

(i) ai ≥ `D (or ai ≥ `C) implies di = ai = ci;
(ii) bi ≤ `D (or bi ≤ `C) implies di = bi = ci.

Also, among indices in set I0 = I(`D,S) = I(`C ,S),
(i) exactly LD−F (b`Dc ,S) indices i satisfy di = `2 (let ID denote the set of these indices)

and the remaining indices i satisfy di = `1;
(ii) exactly LC −F (b`Cc ,S) indices i satisfy ci = `2 (let IC denote the set of these indices)

and the remaining indices i satisfy ci = `1.
Since LD ≤ LC , it follows that |ID| ≤ |IC |, however, observe that ID need not be a subset of
IC . We set D′ to be the sequence that satisfy the condition that
(i) d′i = di, for each i /∈ I0, and
(ii) for indices in I0, at any arbitrary |ID| indices lying in IC , d′i take the value `2, and at

remaining |I0| − |ID| indices d′i take the value `1.
It is easy to verify that D and D′ are similar, and D′ ≤ C.

The remaining case is when d`De ≤ b`Cc. For any index i ∈ [1, n], di ≤ d`De and
ci ≥ b`Cc, implies di ≤ ci. Observe that by Theorem 9,
(i) for an index i, di > d`De implies di = ai(≤ ci); and
(ii) for an index i, ci < b`Cc implies ci = bi(≥ di).

Therefore, for each index i, di ≤ ci. So in this case, we set D′ to be D. The construction of
sequence C ′′ follows similarly. J

Next lemma shows significance of partitioning an interval-sequence using a levelled
sequence.

I Lemma 12. Let C and D be any two levelled sequences lying in an interval sequence
S = (A,B), and having volume LC and LD, respectively. Also assume D is a graphic
sequence. Then,
(a) LD ≤ LC implies (A,C) is a realizable interval sequence.
(b) LD ≥ LC implies (C,B) is a realizable interval sequence.

Proof. We provide proof of the case LD ≤ LC (the proof of part (b) will follow in a similar
fashion). By Lemma 11, we can transform D = (d1, · · · , dn) into another levelled sequence
D′ = (d′1, · · · , d′n) ∈ S such that D′ is similar to D and D′ ≤ C. Since D′ ≤ C, and D′ is a
graphic sequence, it follows that (A,C) is realizable interval sequence. J

From Lemma 12, and the fact that each realizable interval-sequence contains a levelled
graphic sequence (see Theorem 8), we obtain following.

I Theorem 13. For any realizable interval sequence S = (A,B), and any levelled sequence
C ∈ S, at least one of the interval-sequences (A,C) and (C,B) is realizable.

The above theorem provides a divide-and-conquer strategy to search for a levelled graphic
sequence for realizable interval-sequences as shown in Algorithm 1. Let (A0, B0) be initialized
to (A,B). We compute a levelled sequence C0 having volume bL1(A0, B0)/2c using Theorem 9.
It follows from Theorem 13, either (A0, C0) or (C0, B0) must be a realizable interval-sequence.
If (A0, C0) is realizable then we replace B0 by C0; otherwise (C0, B0) must be realizable, so
we replace A0 by C0. We continue this process (of replacements) until L1(A0, B0) decreases
to a value smaller than 2. In the end, the interval sequence (A0, B0) contains at most two
sequences, namely A0 and B0. If A0 is graphic then we return A0, otherwise we return B0.
The correctness of the algorithm is immediate from the description.
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Algorithm 1 Certificate-Realizable(A, B).

1 Initialize interval sequence (A0, B0) to (A,B);
2 while L1(A0, B0) ≥ 2 do
3 C0 ← a levelled sequence of volume bL1(A0, B0)/2c;
4 if (Interval-sequence (A0, C0) is realizable) then B0 ← C0;
5 else A0 ← C0;
6 if A0 is graphic then Return A0;
7 else Return B0;

To analyze the running time, observe that the L1-distance between A0 and B0 decreases
by (roughly) a factor of 2 in each call of the while loop, so it follows that number of iterations
is O(logn). Verifying if an interval sequence is realizable, or a sequence D is graphic can be
performed in O(n) time. Also in O(n) time we can generate a levelled sequence of any given
volume L by Theorem 10. Thus, the total time complexity of the algorithm is O(n logn).

We obtain the following result:

I Theorem 14. There exists an algorithm that for any integer n ≥ 1 and any n-length
interval sequence S = (A,B), computes a graphic sequence D ∈ (A,B), if it exists, in
O(n logn) time.

4.2 Non-Realizable Sequences
In this subsection we consider the scenario where S is non-realizable, our goal is to compute
a graphic sequence D minimizing the deviation δ(D,S) with respect to the given interval
sequence S.

As a first step, we show that in order to search a sequence D minimizing δ(D,S), it
suffices to search a sequence D ≥ A that minimizes the value δU (D,S).

I Lemma 15. min{δ(D,S) | D is graphic } = min{δU (D,S) | D is graphic, D ≥ A}, for
any interval sequence S = (A,B).

Proof. Let D = (d1, . . . , dn) be a graphic sequence minimizing the value δ(D,S), and in
case of ties take that D for which δL(D,S) is the lowest. Let us suppose there exists an
index i ∈ [1, n] such that di < ai. Consider the graph G realizing the sequence D, and let
vi denote the ith vertex of G, so that, deg(vi) = di. Observe that |NG(vi)| 6= n− 1, since
di < ai ≤ n − 1. For any vertex vj /∈ NG(vi), dj = deg(vj) must be at least bj , because
otherwise adding (vi, vj) to G reduces δ(D,S). Thus for any vertex vj /∈ NG(vi), adding
(vi, vj) to G, decreases δL(D,S) and increases δU (D,S) by a value exactly 1. However, by
our choice D was a sequence minimizing δL(D,S), thus δL(D,S) must be zero. The claim
follows from the fact that D ≥ A and δ(D,S) = δU (D,S). J

By the previous lemma, our goal is to find a graphic sequence D in the interval sequence
(A,>) minimizing δ(D,S). Notice that if D is graphic, then the interval sequence (A,R),
where R = max(D,B), is realizable. Also, δ(D,S) = sum(R − B). Hence, in order to
compute a graphic sequence with minimum deviation, we define R to be the set of all
sequence R ∈ [B,>] such that
(i) the interval sequence (A,R) is realizable, and
(ii) sum(R−B) is minimized.
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The following lemma shows the significance of the set R in computing a certificate with
minimum deviation.

I Lemma 16. For any R ∈ R, and any graphic sequence D0 lying in the interval sequence
(A,R), we have δ(D0,S) = min{δ(D,S) | D is graphic } = sum(R−B).

Proof. Let D∗ be a graphic sequence minimizing the value δ(D,S). By Lemma 15, we
may assume that D∗ belongs to (A,>). Observe that δ(D∗,S) = sum(R∗ − B), where
R∗ = max{B,D∗}. By the choice of D∗ we have that sum(R∗−B) = δ(D∗,S) ≤ δ(D0,S) =
δU (D0,S) ≤ sum(R−B), where the last inequality follows from the fact that D0 ∈ (A,R).
By definition of R, we have that sum(R∗ − B) ≥ sum(R − B), and therefore δ(D∗,S) =
δ(D0,S) = sum(R−B) = sum(R∗ −B). Thus R∗ also lies in the set R. The lemma follows
from the fact that δ(D∗,S) = min{δ(D,S) | D is graphic }. J

Next, let RL be the set of all levelled sequences in R with respect to interval sequence
(B,>).

I Lemma 17. RL 6= ∅.

Proof. Clearly, R 6= ∅. Consider any sequence R = (r1, . . . , rn) ∈ R. Suppose there
exists α, β ∈ [1, n] such that rα − rβ ≥ 1 and R′ = π(R,α, β) ∈ [B,>]. Observe that
sum(R′ − B) = sum(R − B). It remains to show that (A,R′) is realizable. Indeed, if
D ∈ (A,R) is a graphic sequence, then either
(i) D = (d1, . . . , dn) lies in (A,R′), or
(ii) dα − dβ ≥ 1 and D′ = π(D,α, β) lies in (A,R′).

Since levelling operation preserves graphicity, D′ is graphic. Thus R′ ∈ R, which shows that
R is closed under the levelling operation, and hence RL is non-empty. J

Algorithm 2 Certificate-Non-Realizable(A, B).

1 (M1,M2)← (B,>);
2 while L1(M1,M2) ≥ 2 do
3 M0 ← a levelled sequence of volume bL1(M1,M2)/2c;
4 if (Interval-sequence (A,M0) is realizable) then M2 ←M0;
5 else M1 ←M0;
6 if (A,M1) is realizable then R←M1;
7 else R←M2;
8 Return Certificate-Realizable(A,R)

We now describe the algorithm for computing a graphic sequence with minimum deviation
(refer to Algorithm 2 for a pseudocode). Recall that we assume that (A,B) is a non-realizable
interval sequence. The first step is to compute a levelled sequence R ∈ RL, and the second
is to use Algorithm 1 to find a graphic sequence in (A,R).

We initialize two sequences M1 and M2, resp., to B and >, and these sequences serve
as lower and upper boundaries for sequence R. The pair (M1,M2) is updated as long
as sum(M2 − M1) ≥ 2 as follows. We compute a levelled sequence M0 having volume
bL1(M1,M2)/2c with respect to the interval sequence (M1,M2) using Theorem 10. There
are two cases:
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Case 1. (A,M0) is realizable.
Consider any sequence R ∈ (M1,M2) that lies in RL. Since (A,M0) is realizable, from
the definition of R it follows that sum(R−B) ≤ sum(M0−B). As R andM0 both belong
to (M1,M2), by Lemma 11, there exists a sequence R0 similar to R lying in interval
(M1,M2) ⊆ (B,>) such that R0 ≤ M0. It is easy to check that R0 ∈ RL, thus the
search range of R which was (M1,M2) can be narrowed down to (M1,M0), so we reset
M2 to M0.

Case 2. (A,M0) is not realizable.
Consider any R ∈ RL, we first show that sum(R−B) > sum(M0 −B). Let us assume
on the contrary, sum(R−B) ≤ sum(M0 −B). In such a case, by Lemma 11, there exists
a sequence R′ similar to R lying in interval (M1,M2) ⊆ (B,>) such that R′ ≤M0. Also
R′ ∈ RL. Since, by definition of RL, (A,R′) is realizable, it violates the fact that (A,M0)
is not realizable. Now as R,M0 both belong to (M1,M2), by Lemma 11, there exists a
sequence R0 similar to R lying in interval (M1,M2) ⊆ (B,>) such that R0 ≥M0. Also
R0 ∈ RL, thus the search range of R can be narrowed down to (M0,M2), so we reset
M1 to M0.

We continue the process of shrinking the range (M1,M2) until L1(M1,M2) decreases to a
value smaller than 2. Finally there exists in range (M1,M2) at most two sequences, namely
M1 and M2. If (A,M1) is graphic then we set R to M1, otherwise we set R to M2.

The running time analysis is similar to the one for Algorithm 1. Since the L1-distance
between M1 and M2 decreases by a factor of 2 in each successive call of the while loop of the
algorithm, it follows that number of times the while loops run is O(logn). Verifying if an
interval sequence is realizable, or a sequence D is graphic can be performed in O(n) time.
Also it takes O(n) time to generate a levelled sequence of any given volume L by Theorem 10.
Finally, the running time of Algorithm 1 is O(n logn). Thus, the total time complexity of
algorithm is O(n logn).

This completes the proof of Theorem 1.

5 Most Regular Certificate in O(n2) time

In this section, we present an O(n2)-time algorithm for computing a most-regular certificate
with respect to a given interval sequence S = (A,B). We assume that S is realizable. Our
algorithm involves a subroutine that given an integer z ∈ [min(A),max(B)− 1], computes a
most-regular graphic-sequence, say D, satisfying the condition z ≤ ` = F−1(vol(D,S),S) ≤
z + 1. The following lemma is immediate from Theorem 9.

I Lemma 18. Any levelled sequence D̄ = (d̄1, . . . , d̄n) of volume L with respect to interval
sequence S = (A,B), satisfies z ≤ ` = F−1(L,S) ≤ z+ 1 if and only if d̄i = ai for ai ≥ z+ 1,
d̄i = bi for bi ≤ z, and d̄i ∈ {z, z + 1} for remaining indices i.

We partition the set [1, n] into three sets I1, I2, I3 such that I1 = {i ∈ [1, n] | ai ≥ z+ 1},
I2 = {i ∈ [1, n] | ai ≤ z and z + 1 ≤ bi}, and I3 = {i ∈ [1, n] | bi ≤ z}. Also, using
integer sort in linear time, we rearrange the pairs in (A,B) along with the corresponding
sets I1, I2, I3 so that
(i) for any i ∈ I1, j ∈ I2, k ∈ I3, we have i < j < k, and
(ii) the sub-sequences A[I1] and B[I3] are sorted in the non-increasing order.
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We initialize Dz = (dz,1, dz,2, . . . , dz,n) by setting dz,i to : ai if i ∈ I1, z if i ∈ I2, and
bi if i ∈ I3. The sequence Dz is sorted in non-increasing order, since the sub-sequences
A[I1] and B[I3] are sorted in non-increasing order. Let α = |I1| and β = |I1| + |I2|, so
that I2 = [α + 1, α + 2, . . . , β]. We would search all those indices i ∈ [α, β] such that on
incrementing dα+1, . . . , di to value z + 1, the resulting sequence is graphic; or equivalently,
the sequence Dz + E[α+1,i] is graphic. Note that for any index i ∈ [α, β],
(i) the sequence Dz + E[α+1,i] is non-increasing, and
(ii) A ≤ Dz + E[α+1,i] ≤ B.

The next lemma, which follows from the definition of φ, will be used to compute φ(Dz +
E[α+1,i]) from φ(Dz). (The proof is deferred to the full version).

I Lemma 19. For any index i ∈ [α+ 1, β], φ(Dz + E[α+1,i]) = φ(Dz) + (i− α)(n− i− α).

For each z we compute the vectors X(Dz) and Y (Dz). For each integer k ∈ [1, n], let

Avoid(k) =
{
i ∈ [α, β] | Xk

(
Dz + E[α+1,i]

)
> Yk

(
Dz + E[α+1,i]

)}
, and

Avoid =
⋃n
k=1 Avoid(k) .

By Theorem 3, for any i ∈ [α, β], the sequence Dz+E[α+1,i] is graphic if and only if i does
not lie in the set Avoid, and parity(Dz + E[α+1,i]) = 0. The following lemma (whose proof
is deferred to the full version) shows that the set Avoid(k), for any index k, is computable
in O(1) time.

I Lemma 20. For each k ∈ [1, n], Avoid(k) is a contiguous sub-interval of [1, n], and is
computable in O(1) time.

Algorithm 3 presents the procedure for computing the most-regular certificate. For each
k ∈ [1, n], Avoid(k) is a contiguous sub-interval of [1, n], therefore, the union Avoid =⋃n
k=1 Avoid(k) can be computed in linear time using simple stack based data-structure, once

the intervals are sorted in order of their endpoints3 using integer sort. Let Iz denote the
set obtained by removing from [α, β] \Avoid each index i for which parity(Dz +E[α+1,i]) =
parity(sum(Dz) + (i − α)) is non-zero. Since sum(Dz) (or parity(Dz)) is computable in
O(n), the set Iz can be computed in O(n) time as well. Note that Dz + E[α+1,i] is graphic
if and only if i ∈ Iz. By Lemma 19, for any index i ∈ Iz, the value φ(Dz + E[α+1,i]) is
computable in O(1) time, once we know φ(Dz). This shows that in just O(n) time, we can
compute the spread of all the levelled sequences D satisfying z ≤ F−1(vol(D),S) < z + 1,
and also find a sequence having the minimum spread. All that remains is to efficiently
computing φ(Dz) for each z ∈ [min(A),max(B)]. Observe that Dmin(A) = A, and so
φ(Dmin(A)) =

∑
1≤r<s≤n |ar − as| is computable in O(n2) time. Next by Lemma 19, for

any z ∈ [min(A),max(B) − 1], φ(Dz+1) = φ(Dz) + (β − α)(n − β − α) is computable in
O(1) time. Since z can take max(B) − min(A) − 1 values, our algorithm in total takes
O(n2 + n(max(B)−min(A)− 1)) = O(n2) time.

This completes the proof of Theorem 2.

3 We say [r, s] ≤ [r′, s′] if either
(i) r < r′, or

(ii) r = r′ and s ≤ s′.



A. Bar-Noy, K. Choudhary, D. Peleg, and D. Rawitz 47:13

Algorithm 3 Most-Regular-Certificate(A, B).

1 opt←∞;
2 foreach z ∈ [min(A),max(B)− 1] do
3 I1 ← {i ∈ [1, n] | ai ≥ z + 1};
4 I2 ← {i ∈ [1, n] | ai ≤ z, z + 1 ≤ bi};
5 I3 ← {i ∈ [1, n] | bi ≤ z};
6 Rearrange the pairs in (A,B) along with the corresponding sets I1, I2, I3 so that

(i) for any triplet (i, j, k) satisfying i ∈ I1, j ∈ I2, k ∈ I3, we have i < j < k, and
(ii) the sub-sequences A[I1] and B[I3] are sorted in the non-increasing order;

7 Initialize Dz = (d1, d2, . . . , dn), where for i ∈ I1, di = ai; for i ∈ I2, di = z; and
for i ∈ I3, di = bi;

8 if z = min(A) then set φ(Dz) =
∑

1≤r<s≤n |ar − as|;
9 Compute X(Dz), Y (Dz);

10 Let α = |I1| and β = |I1|+ |I2|;
11 for k = 1 to n do
12 Avoid1(k) = [α, β] ∩ [α+ 1 + Yk(Dz)−Xk(Dz), k];
13 if max{k − α, 0}+Xk(Dz) > Yk(Dz) and k ≤ z then

Avoid2(k) = [α, β] ∩ [k, n];
14 else if max{k − α, 0}+Xk(Dz) ≤ Yk(Dz) then Avoid2(k) = ∅;
15 else Avoid2(k) = [α, β] ∩ [k,max{k, α}+Xk(Dz)− Yk(Dz)− 1];
16 Avoid(k) = Avoid1(k) ∪Avoid2(k);
17 Compute Avoid =

⋃n
k=1 Avoid(k);

18 foreach i ∈ [α, β] \Avoid do
19 if (parity(Dz) = (i− α) mod 2) then
20 Compute φ(Dz + E[α+1,i]) = φ(Dz) + (i− α)(n− i− α);
21 opt = min{opt, φ(Dz + E[α+1,i])};

22 Set φ(Dz+1) = φ(Dz) + (β − α)(n− β − α);
23 Return opt and the corresponding graphic sequence;

6 Applications and Extensions

In this section, we discuss some related problems whose solutions follow as immediate
application of our interval sequence work.

I Problem 1 (Minimum Graphic extensions). Given a sequence A = (a1, . . . , ap) find the
minimum integer n(≥ p) such that a super sequence D = (a1, . . . , ap, dp+1, dp+2, . . . , dn) of
sequence A is realizable.

Solution: Let M denote the value max(A) = maxi∈[1,p] ai. For any n ≥ p, let Sn =
([a1, a1], . . . , [ap, ap], [1, n], . . . , [1, n]) denote the sequence obtained by appending n−p copies
of interval [1, n] to interval sequence (A,A). Let n0 the denote the length of a minimum
graphic extension of A. Observe that n0 ∈ [max{p,M}, p+M ]. The lower limit is due to
the fact that the length of minimum graphic extension of A must be at least max{p,M};
the upper limit holds since one can have a bipartite graph with partitions X = {x1, . . . , xp}
and Y = {y1, . . . , YM} of length p and M , and for i ∈ [1, p], connect the vertex xi to vertices
y1, . . . , yai . It turns out that we need to find the smallest integer n ∈ [max{p,M}, p+M ]
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such that Sn is graphic. The minimum n can be obtained by a binary search over the
range [max{p,M}, p + d] and using Theorem 4; this takes O(max{p,M} log max{p,M})
time. Once n0 is known, the optimal graphic extension can be computed using Theorem 14
for searching graphic certificate in O(max{p,M} log max{p,M}) time.

I Problem 2. Given A = (a1, . . . , an), find a graphic sequence D = (d1, . . . , dn) whose
chebyshev distance (L∞ distance) from A is minimum.

Solution: The above problem can be reduced to interval sequence problem, as we need to find
smallest non-negative integer c ∈ [1, n] such that Sc = ([a1 − c, a1 + c], . . . , [an − c, an + c])
is realizable. To find the minimum c, we do a binary search with help of Theorem 4 for
verification; this takes O(n logn) time. Once optimal c is known, the sequence D can be
computed using Theorem 14 to search graphic certificate in Sc, thus the time complexity for
computing sequence D is O(n logn).

I Problem 3. Given A = (a1, . . . , an), find minimum fraction ε and a graphic sequence
D = (d1, . . . , dn) satisfying ai(1− ε) ≤ di ≤ ai(1 + ε).

Solution: Again we need to find smallest non-negative fraction ε such that the interval
sequence Sε = ([a1(1 − ε), a1(1 + ε)], . . . , [an(1 − ε), an(1 + ε)]) is realizable. To find the
minimum ε, we do a binary search with help of Theorem 4; this takes O(n logn) time. Once
ε is known, using Theorem 14, sequence D can be computed in O(n logn) time.
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