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—— Abstract

Motivated by the use of high speed circuit switches in large scale data centers, we consider the
problem of circuit switch scheduling. In this problem we are given demands between pairs of servers
and the goal is to schedule at every time step a matching between the servers while maximizing the
total satisfied demand over time. The crux of this scheduling problem is that once one shifts from
one matching to a different one a fixed delay ¢ is incurred during which no data can be transmitted.

For the offline version of the problem we present a (1 — 1/e — €) approximation ratio (for any
constant € > 0). Since the natural linear programming relaxation for the problem has an unbounded
integrality gap, we adopt a hybrid approach that combines the combinatorial greedy with randomized
rounding of a different suitable linear program. For the online version of the problem we present a
(bi-criteria) ((e — 1)/(2e — 1) — €)-competitive ratio (for any constant ¢ > 0 ) that exceeds time by
an additive factor of O(%/c). We note that no uni-criteria online algorithm is possible. Surprisingly,
we obtain the result by reducing the online version to the offline one.
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1 Introduction

In recent years the vast scaling up of data centers is fueled by applications such as cloud
computing and large-scale data analytics. Such computational tasks, which are performed in a
data center, are distributed in nature and are spread over thousands of servers. Thus, it is no
surprise that designing better and efficient switching algorithms is a key ingredient in obtaining
better use of networking resources. Recently, several works have focused on high speed optical
circuit switches that have moving optical mirrors [6, 10, 28] or wireless circuits [13, 15, 29].

A common feature of many of these new switching models is that at any time the data
can be transmitted on any matching between the senders and the receivers. However, once
the switching algorithm decides to reconfigure from the current matching to a new different
matching. This is due to physical limitations such as the time it takes to rotate mirrors, a
fixed delay is incurred. This delay happens before data can be sent along the new reconfigured
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matching. Indeed even if one mirror rotates the delay must be incurred and no data can be
sent. This has led to significant study on obtaining good scheduling algorithms that take this
delay into account [18, 21, 27]. The cost in switching between matchings makes the problem
different when compared to the classical literature on scheduling in crossbar switching [5],
which are usually based on Birkhoff von-Neumann decompositions. In this paper, we focus
on finding the schedule that sends as much data as possible in a fixed time window. We aim
to design simple and efficient offline and online algorithms, with provable guarantees, for
the scheduling problem that incorporates switching delays.

In the circuit switch scheduling problem, we are given a traffic demand matrix D €
RLA‘ * ‘B‘, where A is the set of senders and B is the set of receivers. D;; denotes the amount
of data that needs to be sent from sender ¢ to receiver j. The D;;’s can also be seen as weights
on the edges of a complete bipartite graph with vertex set AU B. We are also given a time
window W and a switching time > 0. At any time, the algorithm must pick a matching
M and duration a for which the data is transmitted along the edges of the matching M
that still require data to be sent. When the algorithm changes to another matching M’ for
another duration o/, the algorithm must account for 6 amount of time for switching between
the two matchings. Indeed even if one edge changes in the matching, the delay must be
incurred and no data can be sent on any of the matching edges. The total amount of time
that data is sent along matchings as well as switching time between the matchings must
total no more than W. The objective is to maximize the total demand that is satisfied.

1.1 Our Results and Contributions

Our main contribution in this paper are simple and efficient algorithms for the offline and
online variants of the circuit switch scheduling problem. The following theorem summarizes
our result for the offline setting which gives the first constant factor approximation algorithm
for all instances.

» Theorem 1. Given any constant € > 0, there is a polynomial time algorithm that returns
a (1 — /e — €)-approzimation for the circuit switch scheduling problem.

It was already noted in Bojja et al. [27] that the circuit switch scheduling problem is a
special case of maximizing a monotone submodular function given a knapsack constraint.
Unfortunately, the above reduction requires a ground set of exponential size where elements
in the ground set corresponds to matchings of senders and receivers. Hence, the rich literature
on submodular function maximization (such as [24]) cannot be applied. Indeed the main
challenge is the presence of exponential number of matchings that define the configurations.

Bojja et al. [27] show that the greedy algorithm can be implemented in polynomial time
and give a guarantee under the assumption that all entries of the data matrix are small as
compared to the time window. Unfortunately, it is easy to construct examples where the
greedy algorithm does not give a guarantee close to (1 — é) (Refer to the full version of our
paper [23] for an example).

A different approach is to formulate a linear programming relaxation and round the
fractional solution. Indeed, it is easy to formulate two natural linear programming relaxations
to the circuit switch scheduling problem. The first assigns a distribution over matchings for
every time, whereas the second picks configurations with the additional knapsack constraint.
Unfortunately, both have an unbounded integrality gap (Refer to the full version of our paper
[23] for the gap examples). Thus, a different approach must be used.

We adopt a hybrid approach that combines greedy and rounding of a special linear
program to prove the above theorem. We first give an improved analysis of the greedy
algorithm and show it gives a (1 — 1 — ¢) approximation when § < ¢ W. On the other hand,
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when § > eW, the optimal solution only contains % different matchings. While it is not
possible to even guess these constant number of matchings in the solution, we can enumerate
(approximately) the time these unknown matchings are scheduled. We then formulate an
assignment linear program that assigns matchings to each of these guessed time slots. Then
a simple randomized rounding gives us the desired approximation in this case.

We also consider the online variant of the problem where the data matrix is not known
in advance but is revealed over time. We consider a discrete time process where at each
time step, we receive a new data matrix that needs to be transmitted in addition to the
traffic demand still left from all preceding time steps. Moreover, we can choose a matching
to transmit data at any time step with the constraint that whenever we change the matching
from the previous step, no data is transmitted for § steps. Our main contribution is a
reduction from the online variant to the offline variant. To the best of our knowledge,
such reductions with a minor loss in the guarantee are seldomly found. This results in a
bi-criteria algorithm since the online algorithm is allowed a slightly larger time window than
the optimum. We remark that such a bi-criteria approximation is necessary and we refer the
reader to the full version of our paper [23] for details. The following theorem summarizes
the above.

» Theorem 2. Given a B-approximation for the offline circuit switch scheduling problem and
an integer k > 3, there exists an algorithm achieving a competitive ratio of (1 — 2/k) ﬁ
for the online circuit switch scheduling problem which uses a time window of W 4+ ké as
compared to a time window of W for the optimum.

Combining Theorem 1 and Theorem 2, we have the following corollary.

» Corollary 3. For any constant € > 0, there exists an algorithm achieving a competitive

ratio of (26;_11 — e) for the online circuit switch scheduling problem which uses a time window

of W+ O (/) as compared to a time window of W for the optimum.

We note that the online algorithm in the above corollary runs in polynomial time. If one
is not interested in the running time of the algorithm, but rather interested only in coping
with an unknown future, then Theorem 2 gives an online algorithm whose competitive ratio
is (1/2 — €) for any arbitrarily small constant ¢ > 0 (by assuming that the offline problem can
be solved optimally, i.e., 5 = 1).

1.2 Related Work

Bojja et al. [27] were the first to formally introduce the offline variant of the circuit switch
scheduling problem. They focused on the special case that all entries of the data matrix are
significantly small, and analyzed the greedy algorithm. Though it is known that the greedy
algorithm does not provide any worst-case approximation guarantee for the general case
of maximizing a monotone submodular function given a knapsack constraint, [27] proved
that in the special case of small demand values, where D;; < eW for all ¢, j they obtain
a (1 — ﬁ)-approximation. To the best of our knowledge, our algorithm gives the best
provable bound for the offline variant of the circuit switch scheduling problem. A different
related variant of the problem is when data does not have to reach its destination in one step,
i.e., data can go through several different servers until it reaches its destination [18, 21, 27].

A dual approach, given by Liu et al. [20], aims to minimize the total needed time to trans-
mit the entire demand matrix. Since our algorithm aims to maximize the transmitted data in
a time window of W, one can use our algorithm as a black box while optimizing over W. It was
proven in [19] that the problem of minimizing the time needed to send all of the data is NP-
Complete. Hence, we conclude that the circuit switch scheduling problem is also NP-Complete.
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The problem of decomposing a demand matrix into matchings, i.e., the decomposition of
a matrix into permutation matrices, was considered by [3, 8, 17, 22]. The special cases of
zero delay [14] and infinite delay [25] have also been considered. Several related, but slightly
different, settings include [7, 11, 26].

Regarding the theoretical problem of maximizing a monotone submodular function given a
knapsack constraint, Sviridenko [24] (building upon the work of Khuller et al. [16]) presented
a tight (1 — 1/e)-approximation algorithm. This tight algorithm enumerates over all subsets
of elements of size at most three, and greedily extends each subset of size three, and returns
the best solution found. Deviating from the above combinatorial approach of [16, 24],
Badanidiyuru and Vondrék [2] and Ene and Nguyen [9] present algorithms that are based on
an approach that extrapolates between continuous and discrete techniques. Unfortunately,
as previously mentioned, none of the above algorithms can be directly applied to the circuit
switch problem due to the size of the ground set.

The online version of the circuit switch scheduling problem has been considered from
a queuing theory prospective, with delays [4] and without delays [12]. In these works,
guarantees are proven under the assumption that the incoming traffic is from a known
distribution or i.i.d. random variables. To the best of our knowledge, the online version has
not been studied from a theoretical perspective.

2 Preliminaries

First, let us start with a formal description of the problem. We are given a complete bipartite
graph G = (A, B, FE) where A and B are the sets of sending and receiving servers, a constant
0 > 0 and a time window W > 0. We are also given the traffic demand matrix of the graph,
D e RTIX‘Bl, where D;; denotes the amount of data that needs to be sent from sender 7 to
receiver j. The D;;’s can be seen as weights on the edges of the complete bipartite graph.
To simplify the notation, for an edge e = (4, j) we abbreviate D;; to D.. Let M be the
collection of all matchings in G.

» Definition 4. The pair (M, «) is called a configuration if M € M and o € Ry.

The term scheduling a configuration (M, a) means sending data via the matching M for a
duration of time that equals a.. For simplicity of presentation, we also interpret a matching M
as a {0, 1}AXIBl matrix where e € M if and only if the entry of edge e in M equals 1. Note
that for any edge e € M the total data sent through e would be min(D,, «) and the total
amount of data sent by the configuration would be || min (D, aM) ||y = _ ., min (D, a)
(note that the minimum is taken element-wise). For simplicity of presentation we may use
[|.|]1 and [|.]| interchangeably.

Switching from a configuration (M, @) to another (M’, ) incurs a given constant delay d,
during which no transmission is done. Let C denote the collection of all possible configurations.

» Definition 5. A schedule S of size k is a subset S C C such that |S| = k. We say that S
requires a total time of 3= s )5 (@ +6) to be scheduled.

The total time of the schedule includes both the time for sending data with each configuration
and the delay in switching between them. This brings us to the definition of a feasible schedule.

» Definition 6. A schedule S is feasible if 3, \s yes(@+06) < W.

In the offline setting, the goal is to find a feasible schedule S that maximizes the data sent
over the given time window of length W. This problem can be formulated as follows:

max{ ‘min (D’Z(M,a)eSO‘M)Hl 1S CC Y (mayes (@+0) < W} . (1)
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We note that C might be of infinite size. However, we use standard discretization techniques
to limit the set of possible values of « in our algorithms. We will discuss this with more detail
in the later relevant sections. For now, assume C is finite. To facilitate the notation and the

analysis of our problem, we turn to a well-known class of functions called submodular functions.

» Definition 7. Given a ground set N = {1,2,3,....,n}, a set function f : 2NV — R, is a
submodular function if for every A,B C N: f(A)+ f(B) > f(AUB) + f(ANB).

For our problem, define f : 2¢ — R, as:

1190 i (0. st

Moreover, we denote by fs (M, a)) = f (S U (M, a))— f (S) the marginal gain of the schedule
S if the configuration (M, «) was added to it. It has been shown that f is submodular (refer
to Theorem 1 in [27]). For the sake of completeness, we state the theorem. Note that f is
monotone if for every A C B C N: f(A) < f(B).

» Theorem 8 (Theorem 1 in [27]). The function f is a monotone submodular function.

For the online version of the problem, we use a discrete time model. Unlike the offline
version, in the online setting we do not know the entire traffic matrix of the graph in the

beginning. We start with Dy as the demand matrix already present in the initial graph.

At time t an additional traffic matrix D, is revealed to the algorithm that includes new
demands for data that need to be transmitted. In the online version of the problem sending
configuration (M, a)) means that for the next o € Z, time steps our algorithm is busy sending
the matching M. Switching a configuration to a different one incurs an additional delay of
0 € N steps, during which no data can be sent. The incoming traffic matrices, at every step
starting with the sending of (M, ) and ending with the switching cost (a total of a + § time
steps), will accumulate and be added to the remaining traffic matrix of the graph.

3 Offline Circuit Switch Scheduling Problem

In this section, we prove Theorem 1 by giving an approximation algorithm for the circuit
switch scheduling problem. Our algorithm is a combination of the greedy algorithm as well as
a linear programming based approach. We first show that the greedy algorithm gives close to
a(l— %)—approximation if §, the switching time, is much smaller than the time window. This
is done in Section 3.1. In Section 3.2, we give a randomized rounding algorithm for a linear
programming relaxation that gives a (1 — %)—approximation but runs in time exponential in
number of matchings used in the optimal solution. While the natural linear program for the
problem has unbounded gap, we show how to bypass this when the schedule has a constant
number of matchings.

3.1 Greedy Algorithm

The greedy algorithm is as follows: at each step choose the configuration that maximizes
the amount of data it sends per unit of time it uses. Formally, if R; is the remaining data
demand in the graph after i configurations were already chosen, the greedy algorithm will
choose the following configuration to be used next:

|| min (R;, aM) ||
a+6 ’

(2)

(Mi41, 1) = argmaxyre pq,acr,
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Algorithm 1 Greedy Algorithm.

1: Input: G=(A,B,E),D,6,W

2: Output: {(Mi,a1),...,(M,, )}

3: S+ 0.1+ 0, Ry + D.

4: while Ea:(M,a)es (a+9) <W do

5: 11+ 1, (]\41',041')(—aI‘gIIIELX]\/[E./\/L(XE]RJr %W.
6: S+ SuU {(ML', Oéi)}, Riy; + R; —min (Ri, OéiML').
7: end while

8 T 1.

9: if }Z(pa)es (@+0) > W then

10 B W —0-3""1(a;+9)

11: if 3, > 0 then

2 Se (S\{(Mran)}) U{(My, 6}

13: else

14: S+ (S\{(M;,ar)})

15: end if

16: end if

17: return S

The greedy algorithm continues to pick configurations until the first time the time
constraint is violated or met. Algorithm 1 demonstrates this process. Let r denote this
number of steps and S, the schedule created after r steps of this algorithm. The last chosen
configuration may violate the time window budget and a natural strategy is to reduce its
duration to the time window W as is done in Step (11)-(12) of the algorithm. Indeed [27]
analyzes this algorithm and shows that it performs well if each entry in data matrix is small.
They also show that the above optimization problem can be solved using the maximum
weight matching problem. We give a different analysis of the algorithm and show that it
gives us a (1 — L — ¢)-approximation if § < (36 W-

» Theorem 9. Let S, denote the schedule as returned by the greedy algorithm and O denote
the optimal schedule. Then

rsnz (1-2) (1-1) 1@

Proof. To analyze the algorithm, we first show that the objective of the optimal schedule of
a slightly smaller time window W — ¢ is not much smaller than the optimum value of the
optimum schedule for time window W in Lemma 10. Indeed, the lemma states that given
any schedule for time window W, for example the optimal schedule, there exists a schedule
with time window W — § of a comparable objective.

» Lemma 10. For any schedule S for a time window of W, there is a schedule S on a

window of W — § time such that f(S) > (1- Q—W‘;) f(S).

Proof. Let Ty.a be the total time spent sending data and Tgyiscn be the total time spent
switching between configurations. Thus, W = Tyata + Tswitcn. We prove that we can remove ¢

time from some configuration or we can remove an entire configuration from S while reducing

the objective by no more than % fraction of the objective. Consider the two following cases

for the given S. If Tyata >

> %, we have % < % f(8). Thus there exists a configuration
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that we can deduct § time from and at most lose QW‘S (8). If Tswiten > % This means the

number of configurations is at least Q—Mg. Each configuration on average sends % (S) data.
Therefore, there is a configuration we can completely remove from our schedule such that
total amount of lost data is at most % f(8). In both cases we can reduce the time taken by
the schedule by at least § and have a new schedule S such that f (S‘) > (1- ‘2/75) f(S). =

Let O’ denote the optimal solution with time window W — §. From Lemma 10, we have

flonH > (1 — %) f(O). In the following lemma, we show that the output of the greedy

algorithm is at least a (1 — %)—approximation of f(O'). The proof of the lemma follows

standard analysis for greedy algorithms for coverage functions, or more generally submodular

functions, except at the last step. For the proof refer to the full version of our paper [23].

The proof of Theorem 9 now follows immediately.

» Lemma 11. If O’ is the optimum schedule on time window W — 4, then

(8> (1 D) f(0). A

(&
3.2 Linear Programming Approach for Constant Number of
Configurations

In this section, we assume that we want to schedule at most a given constant & number of
configurations and prove the following theorem.

» Theorem 12. There exists a randomized polynomial time algorithm that given an integer
k and an instance of the circuit switch scheduling problem returns a feasible schedule whose
objective, in expectation, is at least (1 — % —€) of the optimum solution that uses at most k
matchings. Moreover the running time of the algorithm is polynomial in .

Let us denote optimum schedule by O = {(M},a7),..., (M}, af)}. Note that, without
the loss of generality, we can assume that we know what the «}’s are. This can be done
by a standard discretization of the possible values. Since, the number of configurations is
constant this enumeration will be polynomial in Ei,c to an accuracy of e. The total data
sent by a schedule S is f(S) = |[min(D, }> 5/ 4)es @M)||1. However, in this section, it is
more beneficial to consider the total data as the sum of total data sent over each edge. We
model the total data by Z = Zee g Ze, Where z. is the amount of data that was sent through
edge e in our graph. In the case of the optimum, zZ = min(De, }_ .1+ a)c0ree - @7) and
Z* =73 .cp % We can formulate the following integer program for this problem.?

(P) max Z Ze (3)

eelR

s.t. > ami<1 Vi=1,...,k (4)
MeM
ze < D, Vee E (5)

k
Ze < Z Z ;T Yee E  (6)

i=1 MeM:ee M
xm,; € {0,1} VYee E,.VM e M,Yi=1,...,k

! The variable xar,; is the fractional indicator for choosing the configuration (M, o).

27:7
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Constraints (4) is to ensure that only one matching is considered in every time interval.
Constraint (5) and (6) are to model the total data sent. We can relax this integer program to
an LP by changing the zp;; € {0,1} to 0 < zp7; < 1. The following lemma states that the
relaxed linear program is a relaxation of our problem for the constant number of configurations.

» Lemma 13. Let Z;p be the value of an optimum solution to the LP, then Zpp > Z*

Proof. If O = {(M{,af),..., (M}, o))} is our optimum answer, based on O we will create a
feasible answer to the LP. For every (M, o) € O, we set xp+; = 1. Clearly, the constraint
4 is satisfied since we picked exactly one matching for every interval. The constraints 5 and
6 are by definition satisfied since f(O) = [[min(D, >,/ ,)eo @M)|| and the constraints are
modeling this minimum. This argument shows that the optimum answer is feasible in the
LP and since the LP is a maximization problem we can conclude that Z,p > f(O). <

The LP contains an exponential number of variables, since the number of matchings in the
complete graph is exponential in the size of the graph. To be able to solve this program we
need to introduce a separation oracle for the dual of this LP. The following program is the
dual of our LP.

k
(D) min Z yi + Z deae (7)
i=1

= eckE
st yizol Yy b VM eMNVi=1,... k (8)
eeM
Qe +be > 1 Vee FE )
ae >0, b >0, y; >0 Veec ENi=1,...,k

The Lemma 14 states the existence of a separation oracle.
» Lemma 14. The dual program D admits a polynomial time separation oracle.

Proof. Given a solution ({y;}¥_;, {ag}ecr, {be}ecr) We are required to determine whether
it is feasible and if not provide a constraint that is violated. We can easily determine whether
all constraints of type (9) are satisfied, and if not provide one that is violated, by a simple
enumeration over all edges e € E. The same can be done for constraints of type (8) by
enumerating over ¢ = 1,...,k and for each ¢ compute a maximum weight matching in G
equipped with {b.}.cp as edge weights and check whether the maximum weight matching
has value at most y;/a}. If the maximum weight matching exceeds the target value return
the constraint that corresponds to ¢ and the maximum weight matching. |

Solving the linear program will provide us with a fractional solution {xas;} mem i=1,... k- For
any ¢ we have » mem Tr,i < 1. This constraint of the LP creates a distribution over the
matchings in time interval i. We create a solution to the program P from the fractional
solution by a randomized rounding technique. We pick M € M for the time interval ¢
with probability x;. Note that with probability 1 — 3, . (%, no matching will be
chosen for this time interval. A formal description of this rounding method is provided in
Algorithm 2. Let X, ; denote the indicator random variable if matching M is selected for
the " slot. Moreover, let Y, ; denote the random variable that edge e is present in the
matching chosen in the i*" slot. We have Y= ZMeM:eeM X,; for each e € E and ¢ and
E[Yei]l = > premeecrr Tari- Moreover, let Z, denote the random variable that denotes the
data sent along edge e. Then we have Z, = min(De, Zle alY, ;). Observe that the random
variables {Y, ;}¥_, are independent.
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Algorithm 2 Randomized Rounding.

Input: (k, {of}iy, {wari}meriz1,. k)
Output: {(M;,af)}r,
fori<1,...,k do
choose M; to be a random matching w.p. s ; for the interval ¢
end for
return {(M;,a})}r

The following Lemma 15 is implicit in Theorem 4 of Andelman and Mansour [1].
» Lemma 15. Let Yi,...,Y, be independent Bernoulli random wvariables and let Z =
min(B, Y | b;Y;) for some non-negative reals B,bi,...,b,. Then we have that E[Z] >
(1- Y min(B,E[X", b:Yi]).

Applying the above lemma for each e and random variables {Y;’i}f”':l, we obtain that

(1 _ %) min (DE,E lzk: Yo > - (1 - é) min (De,zk: 3 aw)

i=1 i=1 MeM:ee M

E[Z]

Y

A%
/
—

I
o | =
N—
N

o

Now summing over all edges, Theorem 12 follows. We are now ready to conclude our
discussion of the offline variant of the circuit switch scheduling problem and prove Theorem 1.

Proof of Theorem 1. Given € > 0, if 6 < (ﬁe)W then Theorem 9 gives us a (1 — 1 —¢)-

approximation. Otherwise, 2(%1)% > % implying that at most @% configurations can
be scheduled. In this case, Theorem 12 will give a (1 — L — ¢)-approximation. <

4  Online Circuit Switch Scheduling Problem

In this section, we prove Theorem 2. Recall that in the online setting, we consider a discrete
time model® where an additional traffic matrix is revealed at every time ¢t = 1,2,...,T. At
every time step t, a new set of traffic demands arrives and adds to the remaining traffic
that has not been sent so far. We assume that the data matrix arriving at each step is
integral and thus can be modeled as a multigraph. We denote the incoming traffic matrices
as multigraphs {E1, Eo, ..., Er} (instead of D;’s to simplify and familiarize the notation)
and thus union of any two such graphs is defined by adding the number of copies of edges in
the two constituents. Before proving the general theorem, we first consider the case when
there is no delay while switching matchings, i.e., § = 0. Observe that in this case, the offline
problem can be solved exactly and we show a %—competitive algorithm for the online problem.
The general reduction builds on this simple case along with the offline algorithm.

2 We could also consider a continuous time model where data matrices can arrive at any time and the
algorithm can choose a matching at any time instant with a switching time ¢ when no data is sent. Our
results apply to this model as well. The discrete model makes the presentation of the results easier.

27:9
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4.1 Without Configuration Delay

Observe that an online algorithm, in this case, will pick a set of matchings { My, Ma, ..., M1},
instead of a schedule, that covers the maximum number of edges. At each step ¢, the algorithm
picks the maximum matching from the graph formed by the new edges that arrive, F;, and the
remaining edges in the graph from previous steps which we denote by R;_;. The algorithm
is formally given in Algorithm 3. Here M denotes the set of all matchings on the complete
bipartite graph with parts A and B. The objective of Algorithm 3 is Zle | M|, where
| M| denotes the number of edges in the matching M;. We denote the optimum solution by
O ={0,...,0r}, We have the Theorem 16 for our approximation guarantee.

Algorithm 3 Online Greedy Algorithm without Delay.

1: Input: Bipartite multigraphs on Ei, Es,..., Er on AU B where E; is disclosed at
beginning of step t.

2: OQutput: {My, Ms,..., My}

3: Ry, S+ 0,t« 1.

4: fort+ 1,2,...,T do

5: R, <+ Ri_1 UE;, My + argmaxMeM,MgR;|M|.
6: S« SU{M}, Ry + R\ {M;}, t +t+ 1.

7: end for

8: return S

» Theorem 16. Algorithm 8 is %—competitive for the online circuit switch scheduling problem
without delays.

Proof. Let ' = {E,..., ET} denote the incoming edges for the first T steps. We call this
the input sequence for the first T steps. We use induction on T to prove the theorem.
Specifically, we prove that for any input sequence of edges for T steps, I' = {F1, Ea, ..., Er},
we have 3 [ M| > 3 321, |O4].

For T =1, we know that the maximum matching has the biggest size of any matching in
the graph. So, we have |M;| > |O1] and thus the base case holds. By the induction hypothesis,
we have that for any input sequence of T'— 1 steps, we have 23:11 M| > 1 th:ll |O;| where
{M;}5F and {0} are the output of the algorithm and the optimal solution, respectively.

Now, consider any input sequence Fjy, ..., Ep. Recall, Ry is the residual graph formed
after first step of the algorithm, i.e. Ry = E7 \ Mj. At the next step, the algorithm will find
the maximum matching in R = Ry U F5 as its edge set. We build a new sequence of T — 1
inputs and apply induction to it.

Let IV = {R}, E3,...,Er}. Consider the optimum solution on this new input sequence.
Let {M/}I_, be the matchings that our algorithm picks given this new input sequence and
{0,}L_, the optimum matchings. Using the induction hypothesis we can write 2322 |M]| >
Epo e}

First note that for 2 < ¢ < n, M; = M. This is true since M; and M/ are the maximum
matchings of the same graph as can be seen inductively. We now show the following lemma
that relates the optimum solution of the new instance to the original instance.

» Lemma 17. 3. (0} > 2, |O:] — | My].

Proof. The matchings {O2 \ My, O3\ My,...,Or\ M1} is a feasible output for the optimum
solution on the IV sequence. Therefore, we have Zthz |0} > 23;2 |O¢|—| M| as required. <



R. Schwartz, M. Singh, and S. Yazdanbod

Using the induction hypothesis and the lemma we can write

T L (T
Z |My| > 3 (Z 0| — |M1|>
t=2 t=2

Adding the inequality |M7| > |O1| to both sides, we obtain

a 1 (< 1 1 (< 1 1 (<
Z|Mt| > 3 (Z Ot|> + §|M1| > 3 <;|0f|> + 5\01| =3 (; |Ot>
and the induction step follows. |

4.2 With Configuration Delay

In this section, we assume switching between the configurations causes a delay of § € N steps
during which no data is sent. We also assume that we have access to a -approximation for

the offline version of the problem. Note that we view the offline algorithm as a black-box.

More formally, we assume we have an algorithm of the form Algorithm 4. To reiterate, G is
the given complete bipartite graph, D is the traffic demand matrix,  is the switching delay
and W is the size of the time window. Recall, that sending the configuration (M, &) means
that for the next « steps we will only send data using matching M.

Algorithm 4 Offline Algorithm for Circuit Switch Scheduling.

1: Input: G=(A,B,E),D,0, W
2: Dutput: S = {(Ml,al),...,(Mj,aj)}

Given a constant k& > 1, the first step of the algorithm is to wait kJ steps for data to
accumulate and then run the offline algorithm on the accumulated data for time window
W = kdé. Let S; be the output of the offline algorithm. We run this schedule from time

t=k6+ 1 tot =2kd. Meanwhile, we collect the incoming data matrices in these times.

Figure 1 shows one step of the algorithm. At the next step, we consider the total remaining
data that includes data that has not been scheduled so far from previous schedule(s) and
newly arrived data in previous kd steps. We then run the offline algorithm on this data
matrix to obtain a schedule for the next k§ steps. More generally, we continue this process
for every block of kd time steps. Algorithm 5 is the formal description of the algorithm. Note
that this description is written as an enumeration over blocks of size kd. Recall that f(S)
denotes the amount of data sent by any schedule S.

Proof of Theorem 2. We use a coefficient v < 8 and optimize v in the end. We prove
the theorem by induction on the number of the blocks, i.e., [ and will follow along the
lines of proof of Theorem 16. As we did in the proof of Theorem 16, we consider the

incoming traffic as sequences. But in this case we define a sequence I' = {,I5,...,Ii},
where I; = U;.(:kfi)_l)(k&Hl D is the input of block ¢. For [ = 1, let the optimum schedule be

O and the algorithm’s schedule be §. Figure 1 shows this setting. Using Lemma 10, there
exists a schedule O with the property that f ((7)) > (1 — %) f(O). Since S is the output of
our offline algorithm we can write f(S) > 8f(0') > (1 - 2) Bf (O) > (1 — 2)~7f (O) and
the basis of the induction is proven.

For [ = t, again let O be the optimum schedule and § = .57 U S5 -- U S; be the output
of our algorithm where each S; is the schedule on ith kd block. Let O; be the optimum
schedule for the first block and S our algorithm’s schedule on that block. Refer to Figure 2
for an illustration of this setting.
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Algorithm 5 Online Greedy with Delay.

1: Input:d, k and data matrices Dy, Do, ..., D7 on A X B where D; revealed at beginning
of step i. Let I = [%].

2: Qutput:S =5 US U...US;.

3: S+ 0, Ry « 0.

4: for r+0,...,1—1 do

5. R Re 43 psii<i<orens Di-

6: S, + Of flineAlgorithm (G, R., 0, kd).

T Rey e R—min (B Y anes, M), S < SUS,.
8: end for

9: return S

o |

S

Figure 1 Basis of the induction. The crossed out block is the waiting period of our algorithm.

O1 02 03 e o °

Sl 52 53 e o o

Figure 2 Step of the induction.

Consider the new input sequence IV = {R| U I5, I3, ..., I;}. Let the optimum schedule
on the new input sequence be ¢ and the algorithm’s schedule be &’ = S{ U --- U S]. From
the induction hypothesis, we have f (S') > (1 — %) ~vf (O'). Note that S; = S,_; for i > 2
and thus f(S") = f(S\ S1) = f(S) — f(S1). As in the proof of Lemma 17, a candidate
schedule for the new instance is to consider O\ O; and ignore the data sent by the algorithm
in the schedule S if it appears in any of the optimal matchings. Thus we obtain that

F(O) = F(ONO1) = f(S1) = f(0) = f(O1) = f(S1)-

For O; based on our basis argument we can find Sy such that f(S1) > (1— 2) 8f(01). To
sum up, we have the two following inequalities:

f(8)=1(51)

v

<1 _ 2) Y((F(O) = F(O1) = [ (S1)),

(1 - 2) Bf(Oy).

Rewriting the first inequality, we have
2 2
1= (1-(1-2)7) rs0 = (1-2) 2 (0) - s 0w)
Adding the (1 — (1 — %) ’y) times the second inequality

r12 (1)@ (1-2) (v-5(1- (1-7)") ) s00

Optimizing the v we get v = W
~%

v

f(81)

and thus proving the theorem. |
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