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Abstract
We study the expected value of the window mean-payoff measure in Markov decision processes
(MDPs) and Markov chains (MCs). The window mean-payoff measure strengthens the classical
mean-payoff measure by measuring the mean-payoff over a window of bounded length that slides
along an infinite path. This measure ensures better stability properties than the classical mean-payoff.
Window mean-payoff has been introduced previously for two-player zero-sum games. As in the
case of games, we study several variants of this definition: the measure can be defined to be prefix-
independent or not, and for a fixed window length or for a window length that is left parametric. For
fixed window length, we provide polynomial time algorithms for the prefix-independent version for
both MDPs and MCs. When the length is left parametric, the problem of computing the expected
value on MDPs is as hard as computing the mean-payoff value in two-player zero-sum games, a
problem for which it is not known if it can be solved in polynomial time. For the prefix-dependent
version, surprisingly, the expected window mean-payoff value cannot be computed in polynomial
time unless P=PSpace. For the parametric case and the prefix-dependent case, we manage to
obtain algorithms with better complexities for MCs.
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1 Introduction

Markov Decision processes (MDPs) are a classical model for decision-making in stochastic
environments [16, 1]. Objectives in MDPs are formalized by functions that map infinite
paths to values. Classical examples of such functions are the mean-payoff and the discounted
sum [16]. The mean-payoff function does not guarantee local stability of the values along the
path: if the mean-value of an infinite path is v, it is possible that for arbitrarily long infixes of
the path, the mean-payoff of the infix is largely away from v. There have been several recent
contributions [8, 4, 9, 5] that address this problem. Here, we study window mean-payoff
objectives for MDPs; these objectives were first introduced in [8, 9] for two-player games.

In window mean-payoff [9], payoffs are considered over a local finite length window that
slides along the path: the objective is to ensure that the mean-payoff always reaches a given
threshold within the window length `. This is a strengthening of classical mean-payoff: for
all lengths `, and all infinite sequences π of payoffs, if π satisfies the window mean-payoff
objective for threshold v, then π has a mean-payoff of at least v. Interestingly, this additional
stability property can always be met at the cost of a small degradation of mean-payoff
performances in two-player games: whenever there exists a strategy with mean-payoff value
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32:2 Expected Window Mean-Payoff

Table 1 Complexity, hardness and memory requirements for solving different window objectives
for Markov decision processes and Markov chains (2-p stands for “two-player”).

MDP Markov chain
Complexity Memory Hardness Complexity

WMP polynomial (Thm. 5) polynomial 2-p DirWMP (Thm. 9) polynomial (Cor. of Thm. 5)
BWMP UP ∩ coUP (Thm. 10) memoryless 2-p Mean-payoff (Thm. 13) polynomial1 (Thm. 19)
DirWMP exponential2 (Thm. 15) exponential PSpace (Thm. 16) pseudopolynomial3 (Thm. 21)

v then for every ε > 0, there is a window length ` and a strategy that ensure that the
window mean-payoff for threshold v − ε is eventually satisfied for windows of length ` (see
Lemma 2(b) in [9]).

Here, we study how to maximize the expected value of the window mean-payoff function
f`DirWMP defined as follows: let π : N→ Z be an infinite sequence of payoffs, then

f`DirWMP(π) = sup{λ ∈ R | ∀i ∈ N : max
1≤j≤`

1
j

j−1∑
k=0

π(i+ k) ≥ λ}

i.e., it returns the supremum of all thresholds that are enforced by the sequence of payoffs
π for every window of length `. As in [13], we study natural variants: (i) when the length
of the window is fixed or it is left unspecified but needs to be bounded, and (ii) when
the window property needs to be enforced from the beginning or not (leading to a prefix-
independent variant.)

Main contributions. First, we provide an algorithm to compute the best expected value
of f`WMP (prefix-independent version with fixed window length ` - noted WMP) with a time
complexity polynomial in the size of the MDP and in ` (Theorem 5). As window mean-payoff
objectives aim at strong stability over reasonable periods of time, it is natural to assume that
` is bounded polynomially by the size of the MDP, and so our algorithm is fully polynomial
for those interesting cases. This complexity matches the complexity of computing the value
of the function f`WMP for two-player games [9], and we provide a relative hardness result:
deciding the existence of a winning strategy in a window mean-payoff game can be reduced
in log-space to the problem of the expected value of f`WMP in an MDP (Theorem 9). Second,
we consider the case in which the length ` in the measure f`WMP is not fixed but is required
to be bounded (BWMP). We provide an algorithm in UP ∩ coUP (Theorem 10), and we
show that providing a polynomial time solution for this case would give a polynomial time
solution to the value problem in mean-payoff games (Theorem 13), a long-standing open
problem [18]. Third, we consider the prefix-dependent version (DirWMP), i.e. the window
property needs to hold directly from the beginning of the path. Surprisingly, this problem is
expected to be harder: no polynomial time solution can exist unless P=PSpace. Indeed,
we show that this problem is PSpace-Hard even if ` is given in unary (Theorem 16). We
also provide an algorithm that executes in time that is polynomial in the size of the MDP,
and in the largest weight appearing in the MDP, and exponential in the window length `
(Theorem 15). Finally, while our main results concentrate on MDPs, we also systematically
provide results for the special case of Markov chains. An overview of our results is given
in Table 1.

1 independent of any window size
2 exponential in window size and the number of bits to represent the weights on the edges
3 pseudopolynomial in the number of bits to represent the weights on the edges
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Related works. Window mean-payoff objectives were first introduced in [8] for two-player
games, then for games with imperfect information in [13], and in combination with ω-regular
constraints in [7]. Here, we consider them for MDPs instead of games. Still, we show that,
for the prefix-independent version of the window objectives, inside an end-component of
an MDP, the expected window mean-payoff value is closely related to the worst-case value
of the associated zero-sum games (see Lemma 6 and Lemma 11). Stability issues of the
mean-payoff measure triggered other works. First, in [4], MDPs with the objective to optimize
the expected mean-payoff performance and stability are studied. Their notion of stability
is related to statistical variance. The notion of stability offered by window mean-payoff
objective studied here, is stronger. The techniques used to solve the two problems differ:
in [4] they rely on solving sets of quadratic constraints, while our techniques rely on graph
game algorithms and linear programming. Second, [5] introduces window-stability objectives.
They are directly inspired from the window mean-payoff objective of [4] but contrary to
window mean-payoff objectives, do not enjoy the inductive window property which is heavily
used in our algorithms. Also, [5] considers games (2 players) and graphs (1 player) but not
MDPs (1 1

2 players).
MDP with classical mean-payoff objectives have been studied both for the threshold

probability problem, in which the objective is to find a strategy that maximizes the probability
that the mean-payoff is above a given threshold, and for the expectation problem that asks
for a strategy that maximizes the expected value of the mean-payoff [16]. Combination
of both types of constraints have been considered in [3]. The work of Brihaye et al. [6],
appeared recently on arXiv, and was done independently of our work. The authors of [6]
consider the threshold probability problem for window mean-payoff objectives in MDP: given
a threshold λ ∈ Q, and a window length `, the problem asks to find a strategy that maximizes
the probability of obtaining a window mean-payoff greater than or equal to λ. We study
the expectation problem, and as for traditional mean-payoff objectives, the two problems
are different and cannot be easily reduced to one another (see [3] and the discussion in the
previous paragraph). Our work and their work are largely complementary. Some of the basic
techniques employed in the two papers are however similar, e.g. for the prefix-independent
objectives, both the works analyze maximal end components in related ways. Nevertheless,
there are also important differences between the two works; e.g. we show that for the
expected value, the prefix-dependent and the prefix-independent versions of the bounded
window mean-payoff objective, lead to the same value; this is not the case for the threshold
probability problem. We also show interesting connections between the fixed and the bounded
case, for the expected value problem: the bounded case can be seen as the limit of the fixed
case (Theorem 14), again this property does not hold for the threshold problem. Also, the
algorithms for direct fixed window objective differ largely for the two problems. Though both
the problems have been shown to be PSpace-Hard, the expected value problem requires
a more involved reduction. Finally, while we have shown how to solve the expected value
problem for the special case of MCs for which we establish better complexity results, this is
not considered in [6].

Structure of the paper. Sect. 2 introduces the necessary definitions and concepts. Sect. 3
defines the different variants of window mean-payoff objectives. Sect. 4 studies the prefix-
independent variants while Sect. 5 covers the prefix-dependent variants. Algorithms and
hardness results are given for all the problems. Finally, Sect. 6 considers the special case of
MCs. We only provide sketches of the proofs here. Full proofs are given in [2].

FSTTCS 2019
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2 Preliminaries

For k ∈ N, we denote by [k]0 and [k] the set of natural numbers {0, . . . , k} and {1, . . . , k}
respectively. Given a finite set A, a (rational) probability distribution over A is a func-
tion Pr : A → [0, 1] ∩ Q such that

∑
a∈A Pr(a) = 1. We denote the set of probabil-

ity distributions on A by D(A). The support of a probability distribution Pr on A is
Supp(Pr) = {a ∈ A | Pr(a) > 0}, and Pr is called Dirac if |Supp(Pr)| = 1. An event is said to
happen almost surely if it happens with probability 1.

Markov chain. A weighted Markov chain (MC, for short) is a tupleM = 〈S,E, sinit, w,P〉,
where S is a set of states, sinit ∈ S is an initial state, E ⊆ S × S is a set of edges, w : E → Q
maps edges to weights (or payoff ), and P : S → D(E) assigns a probability distribution on
the set E(s) of outgoing edges from s. In the following, P(s, (s, s′)) is denoted P(s, s′), for
all s ∈ S. The Markov chainM is finite if S is finite.

For s ∈ S, the set of infinite paths inM starting from s is PathsM(s) = {π = s0s1 . . . ∈
Sω | s0 = s,∀n ∈ N, P(sn, sn+1) > 0}. The set of all the paths in M is PathsM =⋃
s∈S PathsM(s). For a path π = s0s1 . . . ∈ PathsM, by π(i, l) we denote the sequence of l+1

states (or l edges) si . . . si+l, and for simplicity, we denote π(i, 0) by π(i). The infinite suffix of
π starting in sn is denoted by π(n,∞) ∈ PathsM. The set of finite paths starting from a state
s ∈ S is defined as FpathsM(s) = {π = s . . . s′ ∈ S+ | ∃π̄ ∈ PathsM, ππ̄ ∈ PathsM(s)} and
FpathsM =

⋃
s∈S FpathsM(s). For π = s . . . s′, we denote by Last(π), the last state s′ in π.

Consider some measurable function f : PathsM(sinit) → R associating a value to each
infinite path starting from sinit. For an interval I ⊆ R, we denote by f−1(M, sinit, I) the
set {π ∈ PathsM(sinit) | f(π) ∈ I}, and for r ∈ R, we denote by f−1(M, sinit, r) the set
f−1(M, sinit, [r, r]). Since the set of paths PathsM(sinit) forms a probability space, measured by
a function Pr [17], and f is a random variable, we denote by EMsinit(f) =

∫
x∈R Pr(f−1(M, sinit, x))·

x the expected value of f over the set of paths starting from sinit.
The bottom strongly connected components (BSCCs for short) in a finite Markov chain

M are the strongly connected components B from which it is impossible to exit, i.e. for all
s ∈ B and t ∈M, if P(s, t) > 0 then t ∈ B. We denote by BSCC(M) the set of BSCCs ofM.
Every infinite path eventually ends up in one of the BSCCs with probability 1. Considering
♦ and � as the standard LTL eventually and always operators and that ♦�B denotes that
eventually the path visits only states in B (see [1] for a formal definition), we formally state:

I Proposition 1. For all s ∈ S, Pr(π ∈ PathsM(s) | ∃B ∈ BSCC(M), π |= ♦�B) = 1.

Markov decision process. A finite weighted Markov decision process (MDP, for short) is a
tuple Γ = 〈S,E,Act, sinit, w,P〉, where S is a finite set of states, sinit ∈ S is an initial state,
Act is a finite set of actions, and E ⊆ S ×Act× S is a set of edges, the function w : E → Q
maps edges to weights (or payoffs), and P : S × Act → D(E) is a function that assigns a
probability distribution on the set E(s, a) of outgoing edges from s if action a ∈ Act is taken
from s. Given s ∈ S and a ∈ Act, we define Post(s, a) = {s′ ∈ S | P(s, a)(s, s′) > 0}. Then,
for all states s ∈ S, we denote by Act(s) the set of actions {a ∈ Act | Post(s, a) 6= ∅}. We
assume that, for all s ∈ S, we have Act(s) 6= ∅. In the following, we denote P(s, a)(s, s′) by
P(s, a, s′).

A strategy in Γ is a function σ : S+ → D(Act) such that Supp(σ(s0 . . . sn)) ⊆ Act(sn),
for all s0 . . . sn ∈ S+. We denote by strat(Γ) the set of strategies available in Γ. Once we fix
a strategy σ in an MDP Γ = 〈S,E,Act, sinit, w,P〉, we obtain an MC Γ[σ] [1]. A strategy σ is
deterministic, if for each s0 . . . sn ∈ S+, the distribution assigned by σ is Dirac, otherwise the
strategy is randomized. We show that deterministic strategies suffice for playing optimally
in all the problems considered here. For a sequence ρ ∈ S+ of states, we also denote by
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Last(ρ) the last state in ρ. Consider a measurable function f that associates a value to infinite
paths in Markov chains. Then, we call supσ∈strat(Γ) EΓ[σ]

sinit (f) the optimal expected value of f
in Γ. In the sequel, when clear from the context, we denote supσ∈strat(Γ) EΓ[σ]

sinit (f) by EΓ
sinit(f).

A deterministic strategy can be encoded by a transition system 〈Q, act, δ, ι〉 where Q is a
(possibly infinite) set of states, commonly called modes, act : Q× S → Act selects an action
such that, for all q ∈ Q and s ∈ S, act(q, s) ∈ Act(s), δ : Q × S → Q is a mode update
function and ι : S → Q selects an initial mode for each state s ∈ S. The amount of memory
used by such a strategy is defined to be |Q|. A strategy is said to be memoryless if |Q| = 1,
that is, the choice of action only depends on the current state where the choice is made.
Formally, a strategy is memoryless if for all finite sequences of states ρ1 and ρ2 in S+ such
that Last(ρ1) = Last(ρ2), we have σ(ρ1) = σ(ρ2). A strategy is called finite memory if Q
is finite. Note that the state space of Γ[σ] is S ×Q. For a sequence π of states in Γ[σ], we
denote by proj(π)|S the corresponding sequence of states in the MDP Γ.

An end-component (EC, for short) M = (T,A) with T ⊆ S, and A : T → 2Act is
a sub-MDP of Γ (for all s ∈ T, we have A(s) ⊆ Act(s), and for all a ∈ A(s), we have
Post(s, a) ⊆ T ) that is strongly connected. A maximal EC (MEC, for short) is an EC that is
not included in any other EC. We denote by MEC(Γ) the set of all maximal end components
of Γ. Any infinite path will eventually end up in one maximal end component almost surely,
whatever strategy is considered. This is stated in the following proposition:

I Proposition 2 ([11]). In an MDP Γ, for each strategy σ ∈ strat(Γ), for every state s ∈ S,
and mode q ∈ Q, we have: Pr(π ∈ PathsΓ[σ]

(s, q) | ∃M = (T,A) ∈ MEC(Γ), proj(π)|S |=
♦�T ) = 1.

Weighted two-player games. An MDP can also be considered to have the semantics of a
two-player turn-based game (denoted 2P) played for infinitely many rounds while ignoring
the probabilities. Every 2P we consider here can be played optimally with deterministic
strategies, therefore we restrict ourselves to deterministic strategies for both players. The
first round starts from sinit. In each round, Player 1 chooses an action a ∈ Act(s) from a
state s while Player 2 chooses a state s′ ∈ Post(s, a). We denote by GΓ = 〈S,E,Act, sinit, w〉
the two-player game that is obtained from an MDP Γ = 〈S,E,Act, sinit, w,P〉.

For a 2P, Player 1 thus chooses among the deterministic strategies available in MDPs. A
strategy of Player 2 is a function µ : S+·Act→ S, with the restriction that if µ(s0s1 . . . sn·a) =
s then P(sn, a, s) > 0. The set of deterministic strategies for Player 1 and Player 2 are
denoted by strat1(G) and strat2(G) respectively. In a two-player game there is no randomness:
Given two strategies σ1 ∈ strat1(G) and σ2 ∈ strat2(G), we denote by π(G,s,σ1,σ2) the
unique path that occurs in 2P G under strategies σ1 and σ2 from state s. Then, for a
function f that associates a value to each infinite path, we denote by V f

s (G) the value
sup

σ1∈strat1(G)
inf

σ2∈strat2(G)
f(π(G,s,σ1,σ2)). The definitions of the memories of strategies also apply

to two-player games.
In the following, in MCs, MDPs and in 2Ps, w.l.o.g. we consider only non-negative integer

weights4. We denote by W the maximum weight appearing on the edges for MCs, MDPs and
2Ps. We denote the size of an MCM, MDP Γ and 2P G by |M|, |Γ| and |G| respectively.
This size is equal to |S|+ |E|.

4 For weights belonging to Q, we can multiply them with the LCM d of their denominators to obtain
integer weights. Among the resultant set of integer weights, if the minimum integer weight κ is negative,
then we add -κ to the weight of each edge so that the resultant weights are natural numbers. For a
function f if the expected value was originally x, then the new expected value is d · x− κ.

FSTTCS 2019
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3 Window Mean-Payoff Value

Let M = 〈S,E, sinit, w,P〉 be a finite MC. Let ρ = s0 . . . sn ∈ FpathsM(s), we define
MP : FpathsM → Q as: MP(ρ) = 1

n

∑n
i=0 w(si, si+1), where n = |ρ| > 0, the number of edges

in ρ. For π = s0 . . . ∈ PathsM, the mean-payoff function fMean : PathsM → R is defined as

fMean(π) = lim inf
n→∞

MP(s0 . . . sn) (1)

We now define several variants of window mean-payoff value functions. For π =
s0s1 . . . sn . . . ∈ PathsM, a window size `, and a position i, the window mean-payoff value of
π in position i over length ` is defined by WMP`(π(i,∞)) = max

k∈[`]
MP(π(i, k)), i.e. it is the

maximal value of the mean-payoff of an infix of π that starts at position i and with a size at
most `. For a threshold λ such that WMP`(π(i,∞)) ≥ λ, we say that the window mean-payoff
value over length ` is at least λ at position i. We define the fixed window mean-payoff function
f`WMP : PathsM → R such that, for every path π = s0s1 . . . sn . . . ∈ PathsM:

f`WMP(π) = sup{λ ∈ R | ∃k ∈ N, ∀i ≥ k : WMP`(π(i,∞)) ≥ λ} (2)

s0 s1

s2

s3

s4

s5

s6

.5, 3
.5, 10

.5, 1

.5, 0

1, 1

.5, 0

.5, 10

1, 3 1, 6

1, 01, 1

1, 51, -2

Figure 1 In the MEC M with initial state s0, the expected value of f`WMP (resp. fBWMP) is the
maximum of the value of the two-player game with the direct fixed window mean-payoff (resp.
classical mean-payoff) objective obtained over all states. Also, for ` = 3, we have EMs0 (f`WMP) <
EMs0 (fBWMP) < EMs0 (fMean).

The value f`WMP(π) corresponds to the supremum over all thresholds λ where for every
such λ, there exists a position k such that for all positions i ≥ k, the window mean-
payoff value over length ` is at least λ. We note some properties of the function f`WMP.
First, it is prefix-independent, that is, for every path π ∈ PathsM, for all n ≥ 1, we have
f`WMP(π) = f`WMP(π(n,∞)). Second, it is a strengthening of the classical mean-payoff function:
for all paths π, we have that f`WMP(π) ≤ fMean(π). And finally, f`WMP imposes strong stability
properties: if f`WMP(π) ≥ λ, then from some point on in π, it is always the case that the
observed mean-payoff from position i gets larger than λ within position i+ `. This stability
property is not enforced by classical mean-payoff function for which infixes of arbitrary
lengths can have arbitrary low mean-payoffs.

Then, we define the bounded window mean-payoff function fBWMP : PathsM → R such
that, for every path π = s0 . . . ∈ PathsM:

fBWMP(π) = sup{λ ∈ R | ∃`, k ≥ 1,∀i ≥ k : WMP`(π(i,∞)) ≥ λ} (3)

Here, the length of the window is not fixed but it needs to be bounded.
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Now, we define the direct fixed window mean-payoff function f`DirWMP : PathsM → R such
that, for every path π = s0 . . . ∈ PathsM:

f`DirWMP(π) = sup{λ ∈ R | ∀i ≥ 0 : WMP`(π(i,∞)) ≥ λ} (4)

Here the window property must hold from the beginning of the path and so it is not prefix-
independent. For every path π ∈ PathsM, we have f`DirWMP(π) ≤ f`WMP(π). Finally, we define
the direct bounded window mean-payoff function fDirBWMP : PathsM → R such that, for every
path π = s0 . . . ∈ PathsM:

fDirBWMP(π) = sup{λ ∈ R | ∃` ≥ 1,∀i ≥ 0 : WMP`(π(i,∞)) ≥ λ} (5)

i.e., variant where the length of the window is not fixed.
The following proposition relates some of the variants defined above in a Markov chainM.

I Proposition 3. Let π ∈ PathsM. Then, we have: sup`≥1 f`WMP(π) = fBWMP(π) ≤ fMean(π).

I Example 4. Consider the example in Figure 1 where the MDP Γ is a single MEC. The
probabilities appear in black and the weights in red. The strategy that chooses the blue
action in s0 and in s2 maximizes the expected value of the classical mean-payoff function
fMean in Γ from s0. The expected value of this strategy is 5. However, clearly, while playing
this strategy, we run the risk of having a mean-payoff of 0 for arbitrarily long period (while
looping between s0 and s2). So it may not be the best strategy if we aim at some stability
property in the mean-payoff. In this example, the strategy that maximizes the expected
value of f`WMP for ` = 3, is the strategy that plays the brown action in state s0 and then
alternates between the brown and green action in s1.

4 Algorithms and Hardness for Prefix-independent Objectives

The fixed window mean-payoff function for length ` can be solved in time that is polynomial
in the size of the MDP and in `:

I Theorem 5. Given an MDP Γ with maximum weight W , a window length ` and a
threshold λ ∈ Q, whether EΓ

sinit
(f`WMP) ≥ λ can be decided in O(poly(|Γ|, `, log2W )) time and

deterministic polynomial memory strategies suffice to play optimally.

To establish this result, we first study the case of a single MEC M = (T,A). By
Proposition 2, for every strategy σ, each path of Γ[σ] will almost surely end up in an MEC.
Since f`WMP is prefix-independent, the value of a path only depends on its behavior in the
MEC in which it ends up. Since M is strongly connected (as it is an MEC), for every
s, s′ ∈ T , there exists a strategy σ(s,s′) ∈ strat(M) such that every path starting from s

reaches s′ almost surely, in the Markov chain M [σ(s,s′)]. Therefore, for all s, s′ ∈ T , we have
EΓ
s (f`WMP) = EΓ

s′(f`WMP), i.e. the optimal expected value is the same from all states in the
MEC. We denote by λ`M this optimal value. Now, the following lemma interestingly relates
λ`M to the maximum over all states s of the optimal adversarial value from s (which is the
value of V f`DirWMP

s ), that is when the stochastic behavior in M is replaced by an adversary:

I Lemma 6. LetM = (T,A) be an MEC that is also an MDP. Then λ`M = max
s∈T

V
f`DirWMP
s (GM ).

Proof sketch. Let v ∈ T be a state that maximizes the value of the 2P that is, V f`DirWMP
v (GM ) =

maxs∈T V
f`DirWMP
s (GM ). When a strategy σ is fixed in M , using classical probability arguments

(Borel-Cantelli) every possible finite sequence of states (with respect to the strategy σ) is

FSTTCS 2019
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visited infinitely often almost surely. In particular, the worst sequence of states in terms of
maximizing the fixed window mean-payoff (that is the sequence that Player 2 chooses in the
two-player game GM ) is visited infinitely often almost surely. Hence, the expected window
mean-payoff in the MEC M is at most the value of the 2P GM from v, that is V f`DirWMP

v (GM ).
Now, consider a strategy in the MEC M that consists in reaching v and then playing

according to an optimal deterministic strategy of Player 1 in the two-player game GM
from v. Then, every path in M consistent with that strategy has a window mean-payoff
of at least V f`DirWMP

v (GM ). Thus the expected value of the window mean-payoff is at least
V

f`DirWMP
v (GM ). J

To solve the two-player game, we rely on the following result from [9]:

I Theorem 7. Given a 2P with maximum weight W , a window length `, and a threshold
λ ∈ Q, in a two-player window mean-payoff game, for both the fixed window and the direct
fixed window mean-payoff objectives, it can be decided in O(poly(|G|, `, log2W )) time if
Player 1 has a winning strategy. For both players, an optimal strategy may need memory that
is linear in |G| and ` and such strategies can be constructed in time O(poly(|G|, `, log2W )),
and deterministic strategies suffice to play optimally.

I Example 8. Consider again the example of Figure 1. Lemma 6 tells us that we need
to compute the two-player game value of the direct fixed window objective for ` = 3 at
each state of the MEC. We can check that this value is equal to 2 for all states but s0 and
s2 in which the game values are equal to 1 and 2/3 respectively. Now, to obtain the best
expected value for f`WMP with ` = 3 from s0, we must play a strategy that first reaches almost
surely any state s /∈ {s0, s2} and then switches to an optimal strategy for the two-player
game from s.

As we know how to deal with an MEC, we now consider the general case.

Proof sketch of Theorem 5. Our algorithm for solving the general case proceeds as follows:
(i) it decomposes Γ into MECs, (ii) for each MEC M , it computes the value λ`M as described
in Lemma 6, (iii) it constructs a new MDP ΓMEC that is identical to Γ except that every
MEC M ∈ MEC(Γ) is now compacted into a single state sM , the transition relation is defined
accordingly to mimic the transition relation of Γ over its MECs, the value of each transition
that self-loops on sM is assigned the value λ`M , as computed in point (ii), and the other
transitions have the same value as in Γ, (iv) it computes the optimal expected (classical)
mean-payoff value for the new MDP ΓMEC. It should be clear that the optimal expected
mean-payoff of ΓMEC is equal to the optimal expected window mean-payoff value in Γ.

Now we analyze the complexity of this algorithm. The MEC decomposition of Γ of step
(i) can be done in quadratic time [10] in the size of Γ yielding at most |S| MECs. By Theorem
7, given a threshold λ, for every MEC M and for each state s in M , it can be decided in
time O(poly(|M | · ` · log2W )) whether Player 1 has a winning strategy for the direct fixed
window mean-payoff game from s. To find the maximal expected window mean-payoff in
M , we do a binary search over a set Λ = {pq | q ∈ [`], p ∈ [q ·W ]0} with |Λ| = O(W · `2)
different possible values of λ and decide the two-player game starting from each state in
M for each such λ. Furthermore, the construction of ΓMEC can be done in time O(|Γ|).
Finally, the maximal expected value of the (classical) mean-payoff in ΓMEC can be computed
in polynomial time (see e.g. [16]) using linear programming. Thus all the steps can be done
in time O(poly(|Γ|, `, log2W )).
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We construct the optimal strategy σ from steps (i) − (iii) by combining them with
a deterministic memoryless strategy that optimizes the expected value of the (classical)
mean-payoff in ΓMEC (step (iv)). When this memoryless strategy prescribes to stay in an
MEC M , we apply inside M the strategy defined in the proof of Lemma 6. The memory
used by the strategy σ is polynomial in |Γ| and ` as announced. J

The algorithm above relies on solving two-player games for the direct fixed window
mean-payoff objective. We next show that this step cannot be improved without improving
the algorithms for those games. Indeed, the following relative hardness result holds: solving
the two-player game for the direct fixed window mean-payoff objective can be reduced in
log-space to computing the expected value of the fixed window mean-payoff function.

I Theorem 9. Given a 2P G with an initial state sinit and a window length `, we can construct
in log-space an MDP ΓG with an initial state s′init such that EΓG

s′
init

(f`WMP) = V
f`DirWMP
sinit (G).

Proof sketch. Consider a weighted two-player game G = 〈S,E,Act, sinit, w〉. We construct
an MDP Γ from G such that EΓ

sinit(f
`
WMP) = V

f`DirWMP
sinit (G).

We first construct another game Greset = 〈S,E′, Act, sinit, w′〉 from G where E′ =
E ∪ {(s, a, sinit) | (s, a, sinit) /∈ E, s ∈ S \ {sinit} and a ∈ Act(s)} and w′(e) = w(e) for e ∈ E
and w′(e) = (W + 1) · ` for e ∈ E′ \ E. Note that the game graph of Greset is strongly
connected. In the game Greset, since Player 2 may “reset” the game at any time by taking
an edge to sinit, the maximum of the value over all starting states of the two-player game is
achieved at the state sinit. Moreover, the weight on these new edges being high enough, it is
not in the interest of Player 2 to take one of them more than once. It follows that the values
of the two-player game, starting from sinit, for the direct fixed window objective are the same
in G and Greset.

Now considering Greset as an MDP Γ = 〈S,E′, Act, sinit, w′,P〉, such that for all e ∈ E′,
we have P(e) > 0, we note that Γ is actually an MEC. The result follows from Lemma 6. J

We now consider the prefix-independent version of the bounded window mean-payoff
objective. For that case, we provide a UP ∩ coUP solution.

I Theorem 10. Given an MDP Γ and a threshold λ ∈ Q, deciding whether EΓ
sinit

(fBWMP) ≥ λ
is in UP ∩ coUP and deterministic memoryless strategies suffice to play optimally.

Since fBWMP is prefix-independent, similar to the fixed case, we first consider a single
MEC M . All the states in the MEC M have the same value λM , and surprisingly, this value
is the maximum over all states s of M of the optimal adversarial value from s (i.e. when
the stochastic behavior is replaced by an adversary), for the classical mean-payoff value
V fMean
s (GM ):

I Lemma 11. Let M = (T,A) be an MEC that is also an MDP. Then λM = max
s∈T

V fMean
s (GM ).

Proof sketch. Let v be a state such that V fMean
v (GM ) = maxs∈T V fMean

s (GM ).
Consider an optimal strategy σ2 for Player 2 (that can be chosen among deterministic

memoryless strategies). Now, let σ ∈ strat(M) (note that σ may be a randomised strategy),
` ≥ 1 and s be a state in the Markov chain M [σ]. Any path π compatible with strategies
σ and σ2 must ensure V fMean

v (GM ) ≥ fMean(π) ≥ f`WMP(π) (the last inequality is given by
Proposition 3). Hence, in the MC M [σ], there is a non-zero probability to reach a sequence of
states whose window mean-payoff is below V fMean

v (GM ) from s. This is true for every state s in
M [σ]. It follows that for every path π ∈ PathsM

[σ]
, almost surely a sequence of states whose
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window mean-payoff is at most V fMean
v (GM ) is visited infinitely often. Therefore, the fixed

window mean-payoff for length ` of a path inM [σ] is almost surely at most V fMean
v (GM ). This is

true for every ` ≥ 1. Hence, by Proposition 3, we have that the bounded window mean-payoff
of a path in M [σ] is at most V fMean

v (GM ) almost surely. Thus, EM [σ](fBWMP) ≤ V fMean
v (GM ).

This holds for every strategy σ ∈ strat(M). Therefore, λM ≤ V fMean
v (GM ).

Now, consider an optimal strategy σ1 ∈ strat1(GM ) for Player 1 in GM . Let ρ be a
cycle of mean-payoff m that is minimal among all the cycles compatible with σ1. Note that
V fMean
v (GM ) equals m. Every path π ∈ PathsM

[σ1]
has a bounded window mean-payoff of at

least m since every cycle appearing in π has a mean-payoff of at least m, and for every ε, there
exists ` > 0 such that a direct fixed window mean-payoff of m− ε can be ensured for every
window of length ` along π. Thus λM ≥ m = maxs∈T V fMean

s (GM ) and hence the result. J

I Example 12. Consider again the example of Figure 1. Lemma 11 tells us that we need to
compute the two-player game value of the classical mean-payoff objective fMean at each state
of the MEC. We can check that this value is equal to 2.5 for all states (by taking the brown
action from s1) but s0 and s2 at which the game value is equal to 1 . Now, to obtain the
best expected value for fBWMP, we must play a strategy that first reaches almost surely, from
s0, any other state s /∈ {s0, s2}, (e.g. always play brown) and then switches to the optimal
strategy for the two-player game from s for the classical mean-payoff objective.

We can now prove our main theorem for the bounded window mean-payoff objective.

Proof sketch for Theorem 10. The algorithm for this case follows exactly the algorithm
in four steps (i), (ii), (iii), and (iv) of the algorithm for the proof of Theorem 5, with the
difference, that step (ii) computes λM instead of λ`M , and we use Lemma 11 to this end.
The complexity of the algorithm is no more polynomial but in UP ∩ coUP because step (ii)
requires solving a mean-payoff game [18, 14]. To construct an optimal strategy, we follow the
same recipe as in the proof of Theorem 5. In this case, the strategies are deterministic and
memoryless (mean-payoff games can be played optimally with memoryless strategies) and so
deterministic memoryless strategies are sufficient to obtain the optimal expected value of the
function fBWMP. J

The following theorem shows that a polynomial time solution to our problem would lead
to a polynomial time algorithm to solve mean-payoff games. The proof uses a reduction
similar to the one used in the proof of Theorem 9.

I Theorem 13. Given a two-player game G with an initial state sinit, we can construct in
log-space an MDP ΓG with an initial state s′init such that EΓG

s′
init

(fBWMP) = V fMean
sinit

(G).

Finally, we show that in an MDP, the expected bounded window mean-payoff equals the
supremum of the fixed window mean-payoff over all window lengths and over all strategies,
which match the intuition behind these definitions.

I Theorem 14. For every MDP Γ, we have sup
σ∈strat(Γ)

EΓ[σ](fBWMP) = sup
`

sup
σ∈strat(Γ)

EΓ[σ](f`WMP).

5 Algorithms and Hardness for Direct Variants

We start with the direct fixed window objective. Surprisingly the complexity of solving
this objective is substantially higher than its prefix-independent conterpart. Our algorithm
is exponential in ` and in the number of bits to encode W . As shown later, the higher
complexity is explained by the fact that the problem is PSpace-Hard.
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I Theorem 15. Given an MDP Γ with an initial state sinit, a window length ` and a
threshold λ ∈ Q, whether EΓ

sinit
(f`DirWMP) ≥ λ can be decided in time O(poly(|S| ·W ` · `2)) and

deterministic exponential memory strategies suffice to play optimally.

Proof sketch. As f`DirWMP is prefix-dependent, it is not sufficient to know the expected value
of this function in the MECs of Γ. Instead, we construct a new MDP Γ` which is a finite
state structure that maps each infinite path π of Γ to the minimal mean-payoff encountered
in a window of size ` along this path. The state space of Γ` is S′ = S × ([W ]0)`−1 ×Λ where
Λ = {pq | q ∈ [`], p ∈ [q ·W ]0} and the initial state s′init = (sinit, [W, . . . ,W ],W ). Informally,
a state t = (s, [w1, . . . , w`−1], λt) ∈ S′ summarizes all finite paths ρ = s0 . . . s in Γ where the
last `− 1 weights encountered are w1, . . . , w`−1, and λt keeps track of the minimum window
mean-payoff seen so far in π for window size `. Moreover, in MDP Γ` every edge exiting t
has a weight equal to λt. In this way, for each π′ ∈ PathsΓ` , the sequence of weights seen
along π′ is a non-increasing series of values belonging to the finite set Λ. Thus, eventually
the sequence reaches a value λ which never changes again, this λ is the direct fixed window
mean-payoff of the corresponding path in Γ and because every edge exiting t has a weight
equal to λt, we see that λ is also the mean-payoff of π′ in Γ`. Now, it remains to compute
the optimal expected mean-payoff in Γ` which can be done in polynomial time in the size of
Γ` using linear programming, see e.g.[16]. This optimal expected mean-payoff in Γ` is equal
to the optimal expected direct fixed window mean-payoff for window size ` in Γ. Note that
although the algorithm is exponential in ` and in the number of bits used to represent W , it
is fixed parameter tractable, if we consider W and ` as parameters.

Since optimal expected mean-payoff in an MDP can be achieved using memoryless
deterministic strategies and the size of Γ` is exponential in the size of the original MDP Γ,
an optimal strategy with memory exponential in the size of Γ exists. J

We now provide the following hardness result:

I Theorem 16. Given an MDP Γ with an initial state sinit, a window length ` and a λ ∈ Q,
deciding whether EΓ

sinit
(f`DirWMP) ≥ λ is PSpace-Hard.

Proof. We show a reduction from the threshold probability problem for shortest path
objectives [12]. An instance of the threshold probability problem is given by an MDP
Γ = (S,E,Act, sinit, w,P) where w.l.o.g., we have that w assigns positive weights on the edges,
T ⊆ S is a set of target states, and for a strategy σ, the truncated sum TST : Paths(Γ[σ]) −→
N ∪∞ up to T from the initial state sinit is defined as

TST (ρ) =
{ ∑n−1

i=0 w(ei) if ∃n such that ρ(n) ∈ T and ∀i ≤ n− 1, we have ρ(i) 6∈ T
∞ if ∀i ≥ 0, ρ(i) 6∈ T,

where ei = (ρ(i), a, ρ(i+ 1)), a ∈ Act; for a threshold L ∈ N, and a probability threshold p,
the problem asks to decide if there exists a strategy σ such that PΓ[σ],sinit [{ρ ∈ Paths(Γ

[σ]) |
TST (ρ) ≤ L}] ≥ p. The problem is known to be PSpace-Complete, even for acyclic MDPs
[12]. The target set T is assumed to be made of absorbing states (i.e., with self-loops); the
acyclicity is to be interpreted over the rest of the underlying graph.

Let Γ = (S,E,Act, sinit, w,P), where S = T ] V , and T is a set of target vertices. The
acyclicity of that MDP implies that, from the initial state sinit 6∈ T , it takes at most |S| − 1
steps to reach a vertex in T . Let W be the maximum weight appearing in Γ. We assume
that L ≤W · (|S| − 1), otherwise the problem is trivial.
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We construct a new MDP Γ′ = (S′, E,Act′, sinit, w′,P′) where S′ = S ∪ {sfinal1 , sfinal2},
Act′ = Act ∪ {loop, α, β}. The set of edges E′ = {(v, a, s) | (v, a, s) ∈ E, v ∈ V , s ∈ S} ∪
{(t, α, sfinal1) | t ∈ T} ∪ {(t, β, sfinal2) | t ∈ T} ∪ {(sfinal1 , loop, sfinal1)} ∪ {(sfinal2 , loop, sfinal2)}
∪ {(v, β, sfinal2) | v ∈ V and there is no outgoing edge from v in Γ}. The probability function
P′ is defined as:

P′(v, a, s) = P(v, a, s) such that (v, a, s) ∈ E, v ∈ V , s ∈ S;
P′(t, α, sfinal1) = 1 for t ∈ T ;
P′(t, β, sfinal2) = 1 for t ∈ T ;
P′(sfinalj , loop, sfinalj ) = 1 for j ∈ {1, 2};
P′(v, β, sfinal2) = 1 for (v, β, sfinal2) ∈ E′ and v ∈ V ;

The weight function w′ is defined as follows.
w′(v, a, s) = −w(v, a, s) such that (v, a, s) ∈ E, v ∈ V , s ∈ S;
w′(t, α, sfinal1) = L, for t ∈ T ;
w′(t, β, sfinal2) = W · (|S| − 1), for t ∈ T ;
w′(sfinal1 , loop, sfinal1) = 0;
w′(sfinal2 , loop, sfinal2) = − 1

|S| , and
w′(v, β, sfinal2) = W · (|S| − 1) for (v, β, sfinal2) ∈ E′ and v ∈ V .

Let ` = |S|. Starting from sinit, since the weights on all the edges on the paths leading to a
state in t ∈ T are negative, the direct fixed window mean-payoff will consider paths until they
reach sfinalj for j ∈ {1, 2} given that the weights on the edges outgoing from t are positive.

We now call a path to be good if t appears in the path for some t ∈ T , and the sum of
the edges from sinit to t is at least −L, otherwise the path is bad. Note that for a good path,
choosing α leads to a direct fixed window mean-payoff of 0, while choosing β leads to direct
fixed window mean-payoff of − 1

|S| . On the other hand, for a bad path, choosing α gives
a direct fixed window mean-payoff of at most − 1

|S| , while choosing β gives a direct fixed
window mean-payoff of − 1

|S| . Therefore, for an optimal strategy, the direct fixed window
mean-payoff for a good path is 0, and for a bad path, it is − 1

|S| .
We have |Γ′| = O(poly(|Γ|)). Furthermore, the expected value of the direct fixed window

mean-payoff, EΓ
sinit(f

`
DirWMP) ≥ p · 0 + (1− p) · − 1

|S| = −(1− p) · 1
|S| iff there is a solution to

the threshold probability problem.
Note that since ` = |S|, deciding whether the expected value of the direct fixed window

mean-payoff for an MDP is greater than or equal to some threshold is PSpace-hard even
when ` is given in unary. Thus, we cannot expect to have an algorithm that is polynomial in
the value of ` unless P=PSpace5. J

We now consider the bounded case. In fact, the function fDirBWMP is equivalent to fBWMP:

I Lemma 17. For every path π in an MDP, we have that fDirBWMP(π) = fBWMP(π).

Proof sketch. It is easy to see that fDirBWMP(π) ≤ fBWMP(π). Now for every ε > 0, a window
mean-payoff value of fBWMP(π)−ε can be ensured from the beginning of the path π by
considering appropriately large window length. Since fDirBWMP(π) is the supremum of the
window mean-payoff values that can be ensured with arbitrarily large window lengths, the
result follows. J

5 The reduction does not work for Markov chains since we cannot get a threshold for the window mean-
payoff that separates the cases when there is a solution to the threshold probability problem for shortest
path objective and when a solution to the problem does not exist. That is, if the sum of path from s′

init
to t is below L and the edge corresponding to action α is taken in t, we do not know how much below 0
will the window mean-payoff be.
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As a direct corollary of Lemma 17, Theorem 10 and Theorem 13, we obtain:

I Theorem 18. Given an MDP Γ and a λ ∈ Q, we have EΓ
sinit

(fDirBWMP) = EΓ
sinit

(fBWMP),
and whether EΓ

sinit
(fDirBWMP) ≥ λ can be decided in UP ∩ coUP, and it is as hard as solving

two-player mean-payoff games.

6 Solving Window Mean-Payoff Objectives for Markov Chain

We focus on the bounded window objective and the direct fixed window objective for MCs,
as MCs are special cases of MDPs, and for these two objectives, we show strict improvement
in the complexity of the algorithms compared to MDPs. We start with the bounded window
mean-payoff function, for which we provide a polynomial time solution while the case of
MDPs is at least as hard as mean-payoff games (Theorem 13).

I Theorem 19. Given an MCM and a threshold λ ∈ Q, whether EMsinit
(fBWMP) ≥ λ can be

decided in polynomial time.

We first outline the case of a BSCC B since by Proposition 1, each path in an MC almost
surely ends up in a BSCC. Let λB be the expected value of fBWMP in B :

I Lemma 20. For an MC that is a BSCC B, we have λB = min
ρ∈ElemCycles(B)

MP(ρ).

Proof sketch. For every `, a path π in B will almost surely have infinitely many infixes
of length ` going around a minimum mean-cycle, leading to f`WMP(π) ≤ cB where cB =

min
ρ∈ElemCycles(B)

MP(ρ). Moreover, for each path π in B and for every ε > 0, by choosing an

appropriate window length `, we have f`WMP(π) ≥ cB − ε. By definition of fBWMP, we have
fBWMP(π) = cB almost surely. J

Proof sketch of Theorem 19. Note that EMsinit(fBWMP) =
∑

B∈BSCC(M)

Pr(♦B) · λB. Since for

each BSCC B, both mean of the minimum mean-cycle in B and the probability of reaching
B can be computed in polynomial time [15, 16], we obtain the result. J

We now consider the direct fixed window mean-payoff function. We show the following.

I Theorem 21. Given an MCM, with set S of states, a window length ` and a threshold
λ ∈ Q, whether EMsinit

(f`DirWMP) ≥ λ can be decided in O(poly(|S| · ` ·W )) time.

We first consider the inductive property of windows (see [8]). For an infinite path
π = s0 . . ., a threshold λ ∈ Q, a window length `, a position i ∈ N and l ∈ [`], we say that the
window starting at position i is closed at position i+l with respect to λ if WMP`(π(i,∞)) ≥ λ.
Otherwise, the window is open.

Inductive property of windows. Let π = s0 . . . ∈ PathsM, ` be a window length, and λ be
a threshold. Assume that a window starting at a position j is open at j′ < j + ` but closed
at j′ + 1. Then, any window starting at a position between j and j′ is closed at j′ + 1.

Note that we cannot focus only on the BSCCs here. Let f = f`DirWMP. Then, for
every path π ∈ PathsM, we have f(π) ∈ Λ with Λ = {pq | q ∈ [`], p ∈ [q · W ]0}. Let
Λ = {λ0, . . . , λn}. For every λi ∈ Λ, we construct a new Markov chain Mλi

` so that the
probability Pr(f−1(M, sinit, [λi,∞[)) is equal to the probability of not reaching a trap state in
Mλi

` . Thanks to the inductive property of windows, we only need to remember the location of
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the largest window that is still open, as well as the “amount of payoff” that is required to close
it. Hence, in the Markov chainMλi

` , the state space S′ = (S× [`−1]0× [W ·(`−1)]0)∪{trap}.
If the window cannot be closed within ` steps, then the state trap is reached. For λi ∈ Λ, we
have the following lemma.

I Lemma 22. Pr(f−1(M, sinit, [λi,∞[)) = Pr(π ∈ PathsM
λi
` | π |= ¬♦{trap})

We can now prove Theorem 21.

Proof sketch of Theorem 21. Assume w.l.o.g. that, in Λ, we have λ0 < . . . < λn. Now for
all i ≤ n − 1, we have Pr(f−1(M, sinit, λi)) = Pr(f−1(M, sinit, [λi,∞[)) −
Pr(f−1(M, sinit, [λi+1,∞[)), and EMsinit(f) =

n∑
i=0

Pr(f−1(M, sinit, λi))·λi. Note that |Λ| ≤ `·W ·`

and for each λi ∈ Λ, we have that |Mλi
` | ≤ |M| · ` ·W · `+ 1. Since reachability in Markov

chain (here to the trap state) can be decided in polynomial time and W is given in binary,
the result follows. J

If W is a parameter, we get a fixed parameter tractable algorithm.
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