
Graph Realizations: Maximum Degree in Vertex
Neighborhoods
Amotz Bar-Noy
City University of New York (CUNY), NY, USA
amotz@sci.brooklyn.cuny.edu

Keerti Choudhary
Tel Aviv University, Israel
keerti.choudhary@cs.tau.ac.il

David Peleg
Weizmann Institute of Science, Rehovot, Israel
david.peleg@weizmann.ac.il

Dror Rawitz
Bar Ilan University, Ramat-Gan, Israel
dror.rawitz@biu.ac.il

Abstract
The classical problem of degree sequence realizability asks whether or not a given sequence of n
positive integers is equal to the degree sequence of some n-vertex undirected simple graph. While
the realizability problem of degree sequences has been well studied for different classes of graphs,
there has been relatively little work concerning the realizability of other types of information profiles,
such as the vertex neighborhood profiles.

In this paper, we initiate the study of neighborhood degree profiles, wherein, our focus is on
the natural problem of realizing maximum neighborhood degrees. More specifically, we ask the
following question: “Given a sequence D of n non-negative integers 0 ≤ d1 ≤ · · · ≤ dn, does there
exist a simple graph with vertices v1, . . . , vn such that for every 1 ≤ i ≤ n, the maximum degree in
the neighborhood of vi is exactly di?”

We provide in this work various results for maximum-neighborhood-degree for general n vertex
graphs. Our results are first of its kind that studies extremal neighborhood degree profiles. For
closed as well as open neighborhood degree profiles, we provide a complete realizability criteria. We
also provide tight bounds for the number of maximum neighbouring degree profiles of length n that
are realizable. Our conditions are verifiable in linear time and our realizations can be constructed in
polynomial time.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases Graph realization, neighborhood profile, extremum-degree

Digital Object Identifier 10.4230/LIPIcs.SWAT.2020.10

Funding W911NF-09-2-0053 (the ARL Network Science CTA), US-Israel BSF grant 2018043.

1 Introduction

Background and Motivation. In many application domains involving networks, it is com-
mon to view vertex degrees as a central parameter, providing useful information concerning
the relative significance (and in certain cases, centrality) of each vertex with respect to the
rest of the network, and consequently useful for understanding the network’s basic properties.
Given an n-vertex graph G with adjacency matrix Adj(G), its degree sequence is a sequence
consisting of its vertex degrees,

Deg(G) = (d1, . . . , dn).

© Amotz Bar-Noy, Keerti Choudhary, David Peleg, and Dror Rawitz;
licensed under Creative Commons License CC-BY

17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020).
Editor: Susanne Albers; Article No. 10; pp. 10:1–10:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amotz@sci.brooklyn.cuny.edu
mailto:keerti.choudhary@cs.tau.ac.il
mailto:david.peleg@weizmann.ac.il
mailto:dror.rawitz@biu.ac.il
https://doi.org/10.4230/LIPIcs.SWAT.2020.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Graph Realizations: Maximum Degree in Vertex Neighborhoods

Given a graph G or its adjacency matrix, it is easy to extract the degree sequence. An
interesting dual problem, sometimes referred to as the realization problem, concerns a
situation where given a sequence of nonnegative integers D, we are asked whether there
exists a graph whose degree sequence conforms to D. A sequence for which there exists a
realization is called a graphic sequence. Erdős and Gallai [10] gave a necessary and sufficient
condition for deciding whether a given sequence of integers is graphic (also implying an
O(n) decision algorithm). Havel and Hakimi [12, 13] gave a recursive algorithm that given a
sequence of integers computes in O(m) time a realizing m-edge graph, if such a graph exists.

Over the years, various extensions of the degree realization problem were studied as
well, cf. [1, 3, 23], concerning different characterizations of degree-profiles. The motivation
underlying the current paper is rooted in the observation that realization questions of a
similar nature pose themselves naturally in a large variety of other application contexts,
where given some type of information profile specifying the desired vertex properties (be it
concerning degrees, distances, centrality, or any other property of significance), it can be asked
whether there exists a graph conforming to the specified profile. Broadly speaking, this type
of investigation may arise, and find potential applications, both in scientific contexts, where
the information profile reflects measurement results obtained from some natural network of
unknown structure, and the goal is to obtain a model that may explain these measurements,
and in engineering contexts, where the information profile represents a specification with
some desired properties, and the goal is to find an implementation in the form of a network
conforming to that specification.

This basic observation motivates a vast research direction, which was little studied over
the last five decades. In this paper we make a step towards a systematic study of one specific
type of information profiles, concerning neighborhood degree profiles. Such profiles are of
theoretical interest in context of social networks (where degrees often reflect influence and
centrality, and consequently neighboring degrees reflect “closeness to power”). Neighborhood
degrees were considered before in [5], where the profile associated with each vertex i is the list
of degrees of all vertices in i’s neighborhood. In contrast, we focus here on “single parameter”
profiles, where the information associated with each vertex relates to a single degree in its
neighborhood. The first natural problem in this direction concern the maximum degrees in
the vertex neighborhoods. For each vertex i, let di denote the maximum vertex degree in i’s
neighborhood. Then MaxNDeg(G) = (d1, . . . , dn) is the maximum neighborhood degree
profile of G. The same realizability questions asked above for degree sequences can be posed
for neighborhood degree profiles as well. This brings us to the following central question of
our work:

Maximum Neighborhood Degree Realization
Input: A sequence D = (d1, . . . , dn) of non-negative integers.
Question: Is there a graph G of size n such that the maximum degree in the neighborhood
of i-th vertex in G is exactly equal to di ?

Our Contributions. We now discuss our contributions in detail. For simplicity, we represent
the input vector D alternatively in a more compact format as σ = (dn`

` , · · · , d
n1
1), where

ni’s are positive integers with
∑`
i=1 ni = n; here the specification requires that G contains

exactly ni vertices whose maximum degree in neighborhood is di. We may assume that
d` > d`−1 > · · · > d1 ≥ 1 (noting that vertices with max degree zero are necessarily singletons
and can be handled separately).

A. Bar-Noy, K. Choudhary, D. Peleg, and D. Rawitz 10:3

We perform an extensive study of maximum neighborhood degree profiles.
1. We obtain the necessary and sufficient conditions for σ = (dn`

` , · · · , d
n1
1) to be MaxNDeg

realizable for closed neighborhoods in Section 3. For general graphs we obtain the
following characterization.

d` ≤ n` − 1, and (d1 ≥ 2 or n1 is even)

We also study the version of the problem in which the realization is required to be
connected. Our characterization is as follows.

d` ≤ n` − 1, and (d1 ≥ 2 or σ = (12))

2. Next, we consider the open neighborhoods, wherein a vertex is not counted in its own
neighborhood. These are more involved, and are discussed in Section 4. Our results for
open neighborhood are summarised in Table 1.

Table 1 Max-neighboring-degree realizability for open neighborhood.

Graph Complete characterisation

Connected Graphs
d` ≤ min{n`, n− 1}

d1 ≥ 2 or σ = (dd, 11) or σ = (12)
σ 6= (dd`+1

` , 21)

General graphs
σ can be split1 into two profiles σ1 and σ2 such that

(i) σ1 has a connected MaxNDeg-open realization, and
(ii) σ2 = (12α) or σ2 = (dd, 12α+1), for integers d ≥ 2, α ≥ 0.

3. Enumerating realizable maximum neighborhood degree profiles: The simplicity of above
characterizations enables us to enumerate and count the number of realizable profiles.
This gives a way to sample uniformly a random MaxNDeg realizable profile. In contrast,
counting and sampling are open problems for the traditional degree sequence realizability
problem. In the full version of this paper, we show that the number of realizable profiles
of length n is d(2n−1 + (−1)n)/3e for general graphs and 2n−3 for connected graphs. In
comparison, the total number of non-increasing sequences of length n on the numbers
1, . . . , n− 1 is Θ(4n/

√
n).

Through this work, we make the first crucial step by obtaining a closed form charac-
terization for maximum-neighborhood-degree profiles, and solving the realization problem
for such profiles with an efficient algorithm. As was done with degree sequences, we solve
the problem for both connected graphs as well as general graphs. Our conditions are veri-
fiable in linear time and our realizations are computable in polynomial time. Finally, in
contrast to the degree-sequence case, we are able to count the number of distinct realizable
maximum-neighborhood-degree sequences.

Further Related Work. Many works have addressed related questions such as finding all
the (non-isomorphic) graphs that realize a given degree sequence, counting all the (non-
isomorphic) realizing graphs of a given degree sequence, sampling a random realization for a
given degree sequence as uniformly as possible, or determining the conditions under which

1 A profile σ = (dn`

` , · · · , dn1
1) is said to be split into two profiles σ1 = (dp`

` , · · · , d
p1
1) and σ2 = (dq`

` , · · · , d
q1
1)

if ni = pi + qi for each i ∈ [1, `].

SWAT 2020

10:4 Graph Realizations: Maximum Degree in Vertex Neighborhoods

a given degree sequence defines a unique realizing graph (a.k.a. the graph reconstruction
problem), see [6, 8, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 24]. Other works such as [7, 9, 17]
studied interesting applications in the context of social networks.

To the best of our knowledge, the MaxNDeg realization problems have not been explored
so far. There are only two related problems that we are aware of. The first is the shotgun
assembly problem [18], where the characteristic associated with the vertex i is some description
of its neighborhood up to radius r. The second is the neighborhood degree lists problem [5],
where the characteristic associated with the vertex i is the list of degrees of all vertices in
i’s neighborhood. We point out that in contrast to these studies, our MaxNDeg problem
applies to a more restricted profile (with a single number characterizing each vertex), and
the techniques involves are totally different from those of [5, 18]. Several other realization
problems are surveyed in [2, 4].

2 Preliminaries

Let H be an undirected graph. We use V (H) and E(H) to respectively denote the vertex
set and the edge set of graph H. For a vertex x ∈ V (H), let degH(x) denote the degree
of x in H. Let NH [x] = {x} ∪ {y | (x, y) ∈ E(H)} be the (closed) neighborhood of x in
H. For a set W ⊆ V (H), we denote by NH(W), the set of all the vertices lying outside set
W that are adjacent to some vertex in W , that is, NH(W) = (

⋃
w∈W N [w]) \W . Given a

vertex v in H, the maximum degree in the neighborhood of v, namely MaxNDegH(v), is
defined to be the maximum over the degrees of all the vertices in the neighborhood of v.
Similarly, the maximum degree in the open neighborhood (NH [v] \ v) of vertex v, namely
MaxNDeg−H(v) is the maximum over the degrees of all the vertices present in the open
neighborhood of v. Given a set of vertices A in a graph H, we denote by H[A] the subgraph
of H induced by the vertices of A. For a set A and a vertex x ∈ V (H), we denote by A ∪ x
and A \ x, respectively, the sets A ∪ {x} and A \ {x}. When the graph is clear from context,
for simplicity, we omit the subscripts H in all our notations. Finally, given two integers i ≤ j,
we define [i, j] = {i, i+ 1, . . . , j}.

32

2

2 1

(a)

32

2

2 1

(b)

Figure 1 A comparison of the MaxNDeg realization of (34, 21) and a MaxNDeg− realization
of (33, 22).

Next we formally define the realizable profiles.

I Definition 1. A profile σ = (dn`

` , · · · , d
n1
1) satisfying d` > d`−1 > · · · > d1 > 0 is

said to be MaxNDeg realizable if there exists a graph G on n = n1 + · · · + n` vertices
that for each i ∈ [1, `] contains exactly ni vertices whose MaxNDeg is di. Equivalently,
|{v ∈ V (G) : MaxNDeg(v) = di}| = ni.

I Definition 2. A profile σ = (dn`

` , · · · , d
n1
1) is said to be MaxNDeg− realizable if there

exists a graph G on n = n1 + · · · + n` vertices that for each i ∈ [1, `] contains exactly ni
vertices whose MaxNDeg− is di. Equivalently, |{v ∈ V (G) : MaxNDeg−(v) = di}| = ni

A. Bar-Noy, K. Choudhary, D. Peleg, and D. Rawitz 10:5

The figure depicts a MaxNDeg realization of (34, 21). (The numbers in the vertices
represent their degrees.) Note that in the open neighborhood model, the corresponding
MaxNDeg− profile becomes (33, 22).

3 Realizing maximum neighborhood degree profiles

In this section, we provide a complete characterization of MaxNDeg profiles. For simplicity,
we first discuss the uniform scenario of σ = (dk). Observe that a star graphK1,d is MaxNDeg
realization of the profile (dd+1). We show in the following lemma that, by identifying together
vertices in different copies of K1,d, it is always possible to realize the profile (dk), whenever
k ≥ d+ 1.

I Lemma 3. For any positive integers d and k, the profile σ = (dk) is MaxNDeg realizable
whenever k ≥ d+ 1. Moreover, we can always compute in O(k) time a connected realization
that has an independent set, say S, of size d such that all vertices in S have degree at most
2, and at least two vertices in S have degree 1.

Proof. Let α be the smallest integer such that k ≤ 2 + α(d − 1). We first construct a
caterpillar2 T as follows. Take a path P = (s0, s1, . . . , sα, sα+1) of length α + 1. Connect
each internal vertex si (here i ∈ [1, α]) with a set of d− 2 new vertices, so that the degree of
si is d. (See Figure 2). Note that the MaxNDeg of each vertex v ∈ T is d.

Now if k = 2 +α(d− 1), then T serves as our required realizing graph. If k < 2 +α(d− 1),
then α ≥ 2 since k ≥ d+ 1. The tree T is “almost” a realizing graph for the profile, except
that it has too many vertices. Let r = 2+α(d−1)−k denote the number of excess vertices in
T that need to be removed. The r vertices can be removed as follows. Take any two distinct
internal vertices si and sj on P , and let s1

i , . . . , s
d−2
i and s1

j , . . . , s
d−2
j , respectively, denote

the neighbors of si and sj not lying on P . Let G be the graph obtained by merging vertices
s`i and s`j into a single vertex for ` ∈ [1, r]. (See Figure 2). Since the number of vertices
was decreased by r, G now contains exactly n vertices. The degree of vertices s1, s2, . . . , sα
remains d, and the degree of all other vertices is at most 2, therefore MaxNDeg(v) = d for
each v ∈ G, so G is a realization of the profile σ.

Finally, in the resultant graph G, the end points of P (i.e. s0 and sα+1) have degree 1,
and there are d − 2 other vertices, namely s1

i , . . . , s
d−2
i (or s1

j , . . . , s
d−2
j), that have degree

bounded by 2. Therefore we set S to these d vertices. It is easy to verify that S is indeed an
independent set. J

s0 s1 s2 s3 s4

s1
1 s2

1 s3
1 s1

2 s2
2 s3

2 s1
3 s2

3 s3
3

Figure 2 A caterpillar for d = 5 and α = 3. If k = 12, then r = 2, and we merge (i) s1
1, s

1
2, and

(ii) s2
1, s

2
2.

2 A caterpillar is a tree in which all the vertices are within distance one of a central path.

SWAT 2020

10:6 Graph Realizations: Maximum Degree in Vertex Neighborhoods

3.1 An incremental procedure for computing MaxNDeg realizations
We explain here our main building block, procedure AddLayer, that will be useful in
incrementally building graph realizations in a decreasing order of maximum degrees. Given
a partially computed connected graph H and integers d and k satisfying d ≥ 2 and k ≥ 1,
the procedure adds to H a set W of k new vertices such that MaxNDeg(w) = d, for each
w ∈W . The reader may assume that MaxNDeg(v) ≥ d, for each existing vertex v ∈ V (H).
The procedure takes in as an input a sufficiently large vertex list L (of size d− 1) that forms
an independent set in H, and whose vertices have small degree (that is, at most d − 1).
Moreover, in order to accommodate its iterative use, each invocation of the procedure also
generates and outputs a new list, to be used in the further iterations.

Procedure AddLayer. The input to procedure AddLayer (H,L, k, d) is a connected graph
H and a list L = (a1, . . . , ad−1) of vertices in H whose degree is bounded above by d−1. The
first step is to add to H a set of k new vertices W = {w1, w2, . . . , wk}. Next, the new vertices
are connected to the vertices of L and to themselves so as to ensure that MaxNDeg(w) = d

for every w ∈W . Depending upon whether or not k < d, there are two separate cases. (Refer
to Algorithm 1 for pseudocode).

Algorithm 1 AddLayer (H,L, k, d).

1 Let the list L be (a1, a2, . . . , ad−1).
2 Add to H a set W = {w1, . . . , wk} of k new vertices.
3 case (k < d) do
4 Set count = k and i = d− 1.
5 while (count 6= 0) do
6 Let r = min{d− deg(ai), count}.
7 Add edges (ai, wcount−t) to H for t ∈ [0, r − 1].
8 Decrement i by 1 and count by r.
9 foreach j ∈ [d− 1, . . . , 2, 1] do

10 If deg(ai) = d then break the for loop.
11 If (j < i) then add edge (aj , ai) to H.
12 If (j > i) then add an edge between ai and an arbitrary vertex in N(aj) ∩W .
13 Set L to be prefix of (w1, w2, . . . , wk, a1, a2, . . . , ai−1) of size d− 2.
14 case (k ≥ d) do
15 Use Lemma 3 to compute over independent set (W ∪ {a1}) the graph, say H̄,

realizing the profile (dk+1) such that degH̄(a1) = 1.
16 Add edges between a1 and any arbitrary d− deg(a1) vertices in set

{a2, a3, . . . , ad−1}.
17 Let b1, . . . , bd−1 ∈ H̄ \ a1 be such that 1 = degH̄(b1) ≤ · · · ≤ degH̄(bd−1) ≤ 2.
18 Set L = (b1, b2, . . . , bd−2).
19 Output L.

Let us first consider the case k ≤ d− 1. In this case we add edges from vertices in W to
a subset of vertices from L such that those vertices in L will have degree d and therefore
will imply MaxNDeg(w) = d, for every w ∈ W . We initialize two variables, count and i,
respectively, to k and d− 1. The variable count holds, at any instant of time, the number of
vertices in W that still need to be connected to vertices in L. While count > 0, the procedure
performs the following steps:

A. Bar-Noy, K. Choudhary, D. Peleg, and D. Rawitz 10:7

(i) compute r = min{d− deg(ai), count}, the maximum number of vertices in W that can
be connected to vertex ai;

(ii) connect ai to following r vertices inW : wcount−(r−1), wcount−(r−2), . . . , wcount−1, wcount;
and

(iii) decrease count by r, and i by 1.

When count = 0, the vertices ai, ai+1, . . . , ad−1 are connected to at least one vertex in W
(this implies d− i ≤ k). It is also easy to verify that at this stage, deg(ad−1) = deg(ad−2) =
· · · = deg(ai+1) = d, and deg(ai) ≤ d. Since the input graph H was connected, in the
beginning of the execution deg(ai) ≥ 1, and by connecting ai to at least one vertex in W ,
specifically to w1, its degree is increased at least by one. So at most d− 2 edges need to be
added to ai to ensure that its degree is exactly d. The procedure performs the following
operation for each j ∈ [d− 1, d− 2, . . . , 2, 1] (in the given order) until deg(ai) = d:
(i) if j < i then add edge (aj , ai) to H, and
(ii) if j > i then add an edge between ai and an arbitrary neighbor of aj lying in W .

Since deg(ai) = deg(ai+1) = · · · = deg(ad−1) = d, and deg(w) ≤ 2 for every w ∈W , it follows
that MaxNDeg(w) = d, for each w ∈ W . In the end, we set a new list L containing the
first d − 2 vertices in the sequence (w1, w2, . . . , wk, a1, a2, . . . , ai−1). This is possible since
k + i − 1 ≥ d − 2 due to the fact that d − i ≤ k. (Later on we bound the degrees of the
vertices in the new list.)

Now we consider the case k ≥ d. The procedure uses Lemma 3 to compute over the
independent set W ∪ {a1} a graph H̄ realizing the profile (dk+1) such that degH̄(a1) = 1.
Notice that in the beginning of the execution, deg(a1) ∈ [1, d − 1], and it is increased by
one by adding H̄ over the set W ∪ {a1}. So now deg(a1) ∈ [2, d]. To ensure deg(a1) = d,
at most d − 2 more edges need to be added to a1. Edges are added between a1 and any
arbitrary d− deg(a1) vertices in set {a2, a3, . . . , ad−1}. This ensures that every w ∈W has
MaxNDeg(w) = d. By Lemma 3, H̄ \ {a1} contains an independent set of d− 1 vertices,
say b1, . . . , bd−1, such that 1 = degH̄(b1) ≤ degH̄(b2) ≤ · · · ≤ degH̄(bd−1) ≤ 2. In the end, the
procedure creates a new list L = (b1, b2, . . . , bd−2).

For sake of better understanding, in the rest of paper, we denote by Hold, Lold and
Hnew, Lnew respectively the graph and the list before and after the execution of Procedure
AddLayer. Observe that V (Hnew) = V (Hold) ∪W .

The following two lemmas follow from the description of algorithm.

I Lemma 4. Each w ∈W satisfies MaxNDeg(w) = d, and N(w) ⊆W ∪ Lold.

I Lemma 5. Each a ∈ Lold \ Lnew satisfies degHnew
(a) ≤ d, and each a ∈ Lold ∩ Lnew

satisfies degHnew
(a) ≤ degHold

(a) + 1.

It is also easy to verify that the total execution time of Procedure AddLayer is O(k+ d).

The Inheritance Property. Till now, we showed that given an independent list of d − 1
vertices of degree at most d− 1 in a graph H, we can add k ≥ 1 vertices to H such that the
MaxNDeg of these k vertices is d. In order to iteratively use this algorithm to add vertices
of smaller MaxNDeg values (� d) we require that the list Lnew computed by Procedure
AddLayer should satisfy following three constraints:
(i) The size of Lnew should be d− 2;
(ii) the vertices of Lnew should form an independent set; and most importantly,
(iii) the vertices in Lnew should have degree at most d− 2.

SWAT 2020

10:8 Graph Realizations: Maximum Degree in Vertex Neighborhoods

In order to ensure these constraints on Lnew, we further impose the constraint that the
list Lold is a valid list; this is formally defined as below.

I Definition 6 (Valid List). A list L = (a1, a2, . . . , at) in a graph G is said to be “valid” with
respect to G if the following two conditions hold:
(i) for each i ∈ [1, t], deg(ai) ≤ i, and
(ii) the vertices of L form an independent set in G.

We next prove the inheritance property of our procedure.

I Lemma 7 (Inheritance property). If the input list Lold in Procedure AddLayer is valid,
then the output list Lnew is valid as well.

Proof. We first consider the case k ≤ d− 1. Let i be the smallest index such that vertices
ai, ai+1, . . . , ad−1 are adjacent to some vertex of W in Hnew. (That is, i is the index when
Procedure AddLayer exits the while loop). Recall that in the graph Hnew, w1 ∈ W is a
neighbor of ai. Also, to increase the degree of ai to d, we connect ai to some/all vertices in
a1, . . . , ai−1, and some/all neighbors of ai+1, . . . , ad−1 lying in W . Therefore the vertex set
W ∪ {a1, . . . , ai−1} is independent in Hnew. Also, its size at least d− 1, as we showed that
k ≥ d− i. Since the list Lold = (a1, a2, . . . , ad−1) is valid in the beginning of the execution of
Procedure AddLayer, it follows that in Hold, deg(aj) ≤ j for j ∈ [1, d− 1]. So by Lemma 5,
in Hnew, (i) deg(aj) ≤ j + 1 for j ∈ [1, i− 1], (ii) deg(w1) = 1, and (iii) the degree of each
other vertex in W \ w1 is at most 2. Consequently, (w1, · · · , wk) is a valid list of length at
least d− i ≥ 1. Since deg(aj) ≤ j + 1 for j ∈ [1, i− 1], the list (w1, · · · , wk, a1, . . . , ai−1) is
valid and has length at least d− 1. Truncating this to length d− 2 again gives us a valid list.

We now consider the case k ≥ d. By Lemma 3, H[W ∪{a1}] = H̄ contains an independent
set {b1, b2, . . . , bd−1} ⊆W such that deg(b1) = 1 and deg(bj) ≤ 2 for j ∈ [2, d− 1]. Therefore,
(b1, b2, . . . , bd−2) is a valid list of length d− 2 in Hnew. J

The following proposition summarizes the above discussion.

I Proposition 8. For any integers d ≥ 2, k ≥ 1, and any connected graph H containing a
valid list L of size d− 1, procedure AddLayer adds to H in O(k + d) time, a set W of k
new vertices such that MaxNDeg(w) = d, for every w ∈W . All the edges added to H lie
in W × (W ∪ L). Moreover, degH(a) ≤ d, for every a ∈ L, and the updated graph remains
connected and contains a new valid list of size d− 2.

3.2 The main algorithm
We now present the main algorithm for computing the realizing graph using Procedure
AddLayer.

Let σ = (dn`

` , · · · , d
n1
1) be any profile satisfying d` ≤ n`− 1 and d1 ≥ 2. The construction

of a connected graph realizing σ is as follows (refer to Algorithm 2 for pseudocode). We first
use Lemma 3 to initialize G to be the graph realizing the profile (dn`

`). Recall G contains
an independent set, say W = {w1, w2, . . . , wd`

}, satisfying the condition that the degree of
the first two vertices is one, and the degree of the remaining vertices is at most two. Set
L`−1 = (w1, w2, . . . , wd`−1−1) (notice that d`−1 − 1 ≤ d`). It is easy to verify that this list is
valid. Next, for each i = `− 1 to 1, perform the following steps:
(i) Taking as input the valid list Li of size di−1, execute Procedure AddLayer (G,Li,ni,di)

to add ni new vertices to G. The procedure returns a valid list Li−1 of size di − 2.
(ii) Truncate the list Li−1 to contain only the first di−1−1(≤ di−2) vertices. The truncated

list remains valid since any prefix of a valid list is valid.

A. Bar-Noy, K. Choudhary, D. Peleg, and D. Rawitz 10:9

Algorithm 2 MaxNDeg realization of σ = (dn`
` , . . . , dn1

1).

Input: A sequence σ = (dn`

` , · · · , d
n1
1) satisfying d` ≤ n` − 1 and d1 ≥ 2.

1 Initialize G to be the graph obtained from Lemma 3 that realizes the profile (dn`

`).
2 Let L`−1 be a valid list in G of size d`−1 − 1.
3 for (i = `− 1 to 1) do
4 Li−1 ← AddLayer (G,Li, ni, di).
5 Truncate list Li−1 to contain only the first di−1 − 1(≤ di − 2) vertices.
6 Output G.

Proof of Correctness. Let V` denote the set of vertices in graph G initialized in step 1,
and for i ∈ [1, `− 1], let Vi denote the set of ni new vertices added to graph G in iteration i
of the for loop. Also for i ∈ [1, `], let Gi be the graph induced by vertices Vi ∪ · · · ∪ V`. The
following lemma proves the correctness.

I Lemma 9. For any i ∈ [1, `], graph Gi is a MaxNDeg realization of profile (dn`

` , · · · , d
ni
i),

and for any j ∈ [i, `] and any v ∈ Vj, degGi
(v) ≤MaxNDegGi

(v) = dj.

Proof. We prove the claim by induction on the iterations of the for loop. The base case
is for index `, and by Lemma 3 we have that degG`

(v) ≤ MaxNDegG`
(v) = d`, for every

v ∈ V`. For the inductive step, we assume that the claim holds for i+ 1, and prove the claim
for i. Consider any vertex v in Gi. We have two cases.
1. v ∈ Vi : In this case by Proposition 8 we have that degGi

(v) ≤MaxNDegGi
(v) = di.

2. v ∈ Vj , for j > i : We first show that for any vertex w ∈ NGi [v], degGi
(w) ≤ dj . If w ∈ Vi,

then we already showed degGi
(w) ≤ di. So let us consider the case w ∈ Vi+1 ∪ · · · ∪ V`.

Now if w ∈ Li participates in Procedure AddLayer (G,Li, ni, di), then by Proposition 8,
in the updated graph degGi

(w) ≤ di � dj . If w 6∈ Li, then the degree of w is unaltered
in the ith iteration, and thus degGi

(w) = degGi+1(w) ≤ MaxNDegGi+1(v) = dj by the
inductive hypothesis. It follows that MaxNDeg(v) remains unaltered due to iteration i,
and thus MaxNDegGi

(v) = MaxNDegGi+1(v) = dj . J

The execution time of the algorithm is O
(∑`

i=1(ni + di)
)
. This is also optimal. Indeed,

any connected graph realizing σ must contain Ω(n1 + n2 + · · ·+ n`) edges as the degrees of
all vertices must be non-zero. Also, the graph must contain at least one vertex of each of the
degrees d1, d2, . . . , d`, and therefore must have Ω(d1 + d2 + · · ·+ d`) edges. In other words,
any realizing graph must contain Ω

(∑`
i=1(ni + di)

)
edges, and thus the computation time

must be at least Ω
(∑`

i=1(ni + di)
)
. The following theorem is immediate from the above

discussions.

I Theorem 10. There exists an algorithm that given any profile σ = (dn`

` , . . . , d
n1
1) satisfying

d` ≤ n` − 1 and d1 ≥ 2 computes in optimal time a connected MaxNDeg realization of σ.

3.3 A complete characterization for MaxNDeg realizable profiles

The necessary conditions for MaxNDeg realizability is as follows.

I Lemma 11. A necessary condition for a profile σ = (dn`

` , · · · , d
n1
1) to be MaxNDeg

realizable is d` ≤ n` − 1.

SWAT 2020

10:10 Graph Realizations: Maximum Degree in Vertex Neighborhoods

Proof. Suppose σ is MaxNDeg realizable by a graph G. Then G must contain a vertex,
say w, of degree d` in G. Since d` is the maximum degree in G, the MaxNDeg of all the
d` + 1 vertices in N [w] must be d`. Thus n` ≥ d` + 1. J

Consider a profile σ = (dn`

` , · · · , d
n1
1) realizable by a connected graph. If d1 = 1, then

the graph must contain a vertex, say v, of degree 1, and the vertices in N [v] must also have
degree 1. The only possibility for such a graph is a single edge graph on two vertices. Thus
in this case σ = (12). If d1 ≥ 2, then by Lemma 11, for σ to be realizable in this case we need
that n` ≥ d` + 1. Also, by Theorem 10, under these two conditions σ is always realizable.
We thus have the following theorem.

I Theorem 12. For a profile σ = (dn`

` , · · · , d
n1
1) to be MaxNDeg realizable by a connected

graph the necessary and sufficient condition is that either
(i) n` ≥ d` + 1 and d1 ≥ 2, or
(ii) σ = (12).

Now if d1 = 1, then n1 must be even, since the vertices v with MaxNDeg(v) = 1 must
form a disjoint union of exactly n1/2 edges. So for general graphs we have the following
theorem.

I Theorem 13. For a profile σ = (dn`

` , · · · , d
n1
1) to be MaxNDeg realizable by a general

graph the necessary and sufficient conditions are that d` ≥ n` − 1, and either n1 is even or
d1 ≥ 2.

3.4 Discussion
We briefly discuss the reasons behind the innateness in our incremental construction. Let us
consider the MaxNDeg profile σ = (dn`

` , · · · , d
n1
1) for a graph G = (V,E). For 1 ≤ i ≤ `, let

Wi ⊆ V be the set of vertices whose MaxNDeg in G is at least di. Note that for any vertex
v ∈Wi, a vertex having maximum degree in NG[v] (say x) must be contained inWi. Moreover,
all the neighbors of x must also lie in Wi. It follows that the degree of x remains unaltered
when restricted to the induced subgraph G[Wi], and MaxNDegG(v) = MaxNDegG[Wi](v).
Hence, MaxNDeg profiles satisfy the following nice substructure property, which justifies
our incremental algorithm for computing their realizations.

I Substructure Property. The induced graph Gi = G[Wi] is a MaxNDeg realization of the
partial profile (dn`

` , · · · , d
ni
i), for each 1 ≤ i ≤ `.

Observe that in the case of MaxNDeg− profiles, unfortunately, the nice sub-structure
property does not always hold, which in turn increases the complexity of the problem. For
example, for the graph considered in Figure 1, the profile σ = (33, 22) is MaxNDeg−
realizable, however, the subsequence (33) is not MaxNDeg− realizable.

4 Realizing maximum open neighborhood-degree profiles

4.1 Pseudo-valid List
We begin by stating the following lemmas that are an extension of Lemma 3 and Proposition 8
presented in Section 3 for MaxNDeg profiles.

A. Bar-Noy, K. Choudhary, D. Peleg, and D. Rawitz 10:11

I Lemma 14. For any positive integers d and k, the profile σ = (dk) is MaxNDeg−
realizable whenever k ≥ d+ 2. Moreover, we can always compute in O(k) time a connected
realization that contains an independent set having
(i) two vertices of degree 1, and
(ii) d− 2 other vertices of degree at most 2.

I Proposition 15. For any integers d ≥ 2, k ≥ 1, and any connected graph H containing a
valid list L of size d− 1, procedure AddLayer adds to H in O(k + d) time, a set W of k
new vertices such that MaxNDeg−(w) = d, for every w ∈W . All the edges added to H lie
in W × (W ∪ L). Moreover, degH(a) ≤ d, for every a ∈ L, and the updated graph remains
connected and contains a new valid list of size d− 2.

It is important to note that though the Proposition 15 holds for the open-neighborhoods
it can not be directly used to incrementally compute the realizations. This is because for the
profiles σ = (dd`+1

`) unlike the scenario of MaxNDeg realization, there is no MaxNDeg−
realization that contains a valid list (See Lemma 18 for further details). This motivates us to
define pseudo-valid lists.

I Definition 16. A list L = (a1, a2, . . . , at) in a graph H is said to be “pseudo-valid” with
respect to H if
(i) for each i ∈ [1, t], deg(ai) = 2, and
(ii) the vertices of L form an independent set.

Note that the only deviation that prevents L from being a valid list is that deg(a1) is 2
instead of 1.

We next state two lemmas that are crucial in obtaining MaxNDeg− realizations in the
scenarios n` = d` and n` = d` + 1.

I Lemma 17. For any integers d > d̄ ≥ 2, the profile σ = (dd, d̄1) is MaxNDeg− realizable.
Moreover, in O(d) time we can compute a connected realization that contains a valid list of
size d− 1.

Proof. The construction of G is as follows. Take a vertex z and connect it to d− 1 other
vertices v1, . . . , vd−1. Next take another vertex y and connect to v1, . . . , vd̄−1 (recall 2 ≤ d̄ <
d). Also connect z to y. In the resulting graph G, deg(z) = d, deg(y) = d̄, and deg(vi) ≤ 2
for i ∈ [1, d − 1]. Also, vd−1 is not adjacent to y as d̄ < d, thus deg(vd−1) = 1. Therefore,
MaxNDeg−(z) = d̄, MaxNDeg−(y) = d, and MaxNDeg−(vi) = d, for i ∈ [1, d− 1]. It is
also easy to verify that (vd−1, . . . , vd̄−1, . . . , v2, v1) is a valid list in G. J

I Lemma 18. For any integer d ≥ 2, the profile σ = (dd+1) is MaxNDeg− realizable.
Moreover, a connected realization that contains an independent set having d− 1 vertices of
degree 2 can be compute in O(d) time. However, none of the graphs realizing σ can contain a
vertex of degree 1.

Proof. The construction of graph G realizing σ is very similar to the previous lemma. Take
two vertex-sets, namely, U = {u1, u2} and W = {w1, . . . , wd−1}. Add to G the edge (u1, u2),
and for each i ∈ [1, d − 1], add to G the edges (u1, wi) and (u2, wi). This ensures that
deg(u1) = deg(u2) = d and deg(wi) = 2 for i ∈ [1, d− 1]. So G contains d+ 1 vertices with
MaxNDeg− equal to d. Also, W is an independent set of size d− 1 in G and deg(wi) = 2,
for every vertex wi ∈W .

SWAT 2020

10:12 Graph Realizations: Maximum Degree in Vertex Neighborhoods

Next, let H be any MaxNDeg− realizing graph of σ. Then H must contain two vertices,
say x and y, of degree d, since a single vertex of degree d in H can guarantee MaxNDeg− = d

for at most d vertices. Next notice that N [x] = N [y], because otherwise H will contain more
than d+ 1 vertices. This implies that all the vertices in H, other than x and y, are adjacent
to both x and y. Therefore, each of the vertices in H must have degree at least two. J

The next lemma shows that AddLayer outputs a valid list, even when the input list is
pseudo-valid.

I Lemma 19. In procedure AddLayer, the list Lnew is valid even when the list Lold is
pseudo-valid and the parameter d satisfies d ≥ 3.

Proof. We borrow notations from the proof of Lemma 7. As before, we have two separate
cases depending on whether or not k < d. We first consider the case k ≤ d − 1. We
showed in Lemma 7 that (w1, · · · , wk, a1, . . . , ai−1) is a valid list of length at least d−1 when
degHold

(a1) = 1. We now consider the scenario when Lold is pseudo-valid, and degHold
(a1) = 2.

The list Lnew is still valid if k ≥ 2, since the degree of a1 in Hnew is at most 3 and its position
in Lnew is also 3 or greater. So the non-trivial case is k = 1. In such a case i = d− 1, as the
only vertex w1 belonging to W is connected to ad−1 in Algorithm 1. Also, degHold

(ad−1) = 2,
and ad−1 is connected to vertex w1, so to ensure that deg(ad−1) = d, in the for loop in
step 9 of Algorithm 1, it is connected to only d− 3 vertices, namely, a2, a3, . . . , ad−2. Since
ad−1 is never connected to vertex a1, degHnew

(a1) = degHold
(a1) = 2. This shows that the

sequence (w1, · · · , wk, a1, . . . , ai−1) = (w1, a1, . . . , ad−2) is a valid list of length exactly d− 1.
Truncating it to length d− 2 again yields a valid sequence. In case k ≥ d, a1’s degree does
not play any role, so the argument from the proof of Lemma 7 works as is. J

I Remark 20. The condition d ≥ 3 is necessary in Lemma 19 because in a pseudo-valid
list all the vertices have degree 2. However, Procedure AddLayer works only in the case
when the degree of each vertex in the list is at most d− 1, which does not hold true for a
pseudo-valid list when d = 2. So we provide a different analysis for the profile (dd+1, 2k).

4.2 MaxNDeg− realization of the profile σ = (dd+1, 2k)
The following lemmas shows that σ = (dd+1, 21), for d ≥ 3, is not MaxNDeg− realizable
when d ≥ 3; and σ = (dd+1, 2k) is MaxNDeg− realizable when d ≥ 3 and k ≥ 2.

I Lemma 21. For any integer d ≥ 3, the profile σ = (dd+1, 21) is not MaxNDeg− realizable.

Proof. Let us assume on the contrary that σ is MaxNDeg− realizable by a graph G, and
let w ∈ V (G) be a vertex such that MaxNDeg−(w) = 2. The graph G must contain at
least two vertices, say x and y, of degree d, since a single vertex of degree d can guarantee
MaxNDeg− of d for at most d vertices in the graph. Consider the following two cases.
(i) N [x] = N [y]: In this case the MaxNDeg− of all the vertices in N [x] = N [y] is at

least d ≥ 3, as they are adjacent to either x or y. Thus w /∈ N [x], which implies that
V (G) = N [x]∪{w} since |N [x]| = d+1 and |V (G)| = d+2. Also, w cannot be adjacent
to any vertex in N [x], because if w is adjacent to a vertex w0 ∈ N [x], then deg(w0)
must be 3, in contradiction to the assumption MaxNDeg−(w) = 2. Thus the only
possibility left is that w is a singleton vertex, which is again a contradiction.

(ii) N [x] 6= N [y]: In this case the vertex set of G is equal to N [x] ∪ N [y] since size of
N [x]∪N [y] must be at least d+2 (as |N [x]∩N [y]| ≤ d) and is also at most |V (G)| = d+2.
This implies that all the vertices of G are adjacent to either x or y, which contradicts
the fact that MaxNDeg−(w) = 2, since deg(x) = deg(y) = d ≥ 3. J

A. Bar-Noy, K. Choudhary, D. Peleg, and D. Rawitz 10:13

I Lemma 22. For any integers d ≥ 3 and k ≥ 2, the profile σ = (dd+1, 2k) is MaxNDeg−
realizable. Moreover, we can compute a connected realization in O(d+ k) time.

Proof. The construction of G is as follows. Take a vertex u1 and connect it to d other
vertices v1, . . . , vd. Next, take another vertex u2 and connect it to vertices v2, . . . , vd, and a
new vertex vd+1. Finally, take a path (a1, a2, . . . , aα) on α = k− 2 new vertices, and connect
a1 to vd+1. In the graph G, deg(u1) = deg(u2) = d, and deg(vi), deg(aj) ≤ 2, for i ∈ [1, d+ 1]
and j ∈ [1, k − 2]. Vertices u1 and u2 has maximum degree in their neighborhood 2, thus
MaxNDeg−(u1) = MaxNDeg−(u2) = 2. Each vi is adjacent to u1, u2, for i ∈ [1, d + 1],
so its MaxNDeg− is d. And, the MaxNDeg− of vertices on the path (a1, a2, . . . , aα) is 2,
since they have a neighbor of degree 2. J

4.3 Algorithm
We now explain the construction of a graph realizing the profile σ = (dn`

` , · · · , d
n1
1) 6=

(dd`+1
` , 21) that satisfies the conditions
(i) d` ≤ min{n`, n− 1}, and
(ii) d1 ≥ 2 ,

where n = n1 + · · ·+ n`. If σ is equal to (dd`+1
` , 2k), for some k ≥ 2, we use Lemma 22 to

realize σ. If not, then depending upon the value of n`, we initialize G differently as follows
(refer to Algorithm 3 for the pseudocode).
1. If n` ≥ d` + 2, we use Lemma 14 to initialize G to be a MaxNDeg− realization of

the profile (dn`

`). Recall G contains an independent set, say W = {w1, w2, . . . , wd`
},

satisfying the condition that the degree of first two vertices is one, and the degree of
the remaining vertices is at most two. We set L`−1 to be the list (w1, w2, . . . , wd`−1−1)
(notice d`−1 − 1 < d`). It is easy to verify that this list is valid.

2. If n` = d` + 1, then a realization of (dd`+1
`) does not contains a valid list. So we use

Lemma 18 to initialize G to be a MaxNDeg− realization of the profile (dd`+1
`) that

contains a pseudo-valid list. This is possible since we showed G contains an independent
set, say W = {w1, w2, . . . , wd`−1}, such that degree of each w ∈W is two. We set L`−1
to be the list (w1, w2, . . . , wd`−1−1) (again notice d`−1 − 1 < d` − 1).

3. If n` = d`, then the sequence dd`

` is not realizable (see Lemma 25). So we initialize G to
be the graph realization of (dn`

` , d`−1) as obtained from Lemma 17. We set L`−1 be a
valid list in G of size d`−1 − 1. Also we decrement n`−1 by one as G already contain a
vertex whose MaxNDeg− is d`−1.

Next for each i = `− 1 to 1 we perform following steps.
(i) We take as an input the valid list Li of size di − 1, and execute Procedure AddLayer

(G,Li, ni, di) to add ni new vertices to G. The procedure returns a valid list Li−1 of
size di − 2.

(ii) Truncate list Li−1 to contain only the first di−1 − 1(≤ di − 2) vertices. The truncated
list remains valid since it is a prefix of a valid list.

Correctness. Let V̄` denote the set of vertices in graph G initialized in steps 5, 8, or 11 of
Algorithm 3, and for i ∈ [1, `− 1], let V̄i denote the set of new vertices added to graph G in
iteration i of for loop. For i ∈ [1, `], let Gi be the graph induced by vertices V̄i ∪ · · · ∪ V̄`.

Recall that if n` = d`, then the graph is initialized in step 11 and contains n` + 1 vertices,
of which one vertex, say z, has MaxNDeg−(z) = d`−1, and the remaining vertices have
MaxNDeg− = d`. If n` = d`, then let Z = {z}, otherwise let Z = ∅. We set V` = V̄` \ Z,
V`−1 = V̄`−1 ∪Z, and Vi = V̄i for i ∈ [1, `− 2]. Thus |Vi| = ni, for i ∈ [1, `]. The next lemma
proves the correctness.

SWAT 2020

10:14 Graph Realizations: Maximum Degree in Vertex Neighborhoods

Algorithm 3 MaxNDeg− realization of σ = (dn`
` , . . . , dn1

1).

Input: A sequence σ = (dn`

` , · · · , d
n1
1) 6= (d`d`+121) satisfying d` ≤ min{n− 1, n`} and

d1 ≥ 2.

1 if σ = (dd`+1
` , 2k) for some k ≥ 2 then

2 Use Lemma 22 to compute a realization G for profile σ.
3 else
4 case n` ≥ d` + 2 do
5 Initialize G to be the graph obtained from Lemma 14 that realizes the profile

(dn`

`).
6 Set L`−1 to be a valid list in G of size d`−1 − 1.
7 case n` = d` + 1 do
8 Initialize G to be the graph obtained from Lemma 17 that realizes the profile

(dd`+1
`).

9 Set L`−1 to be a pseudo-valid list in G of size d`−1 − 1.
10 case n` = d` do
11 Initialize G to be the graph obtained from Lemma 18 that realizes the profile

(dd`

` d`−1).
12 Set L`−1 to be a valid list in G of size d`−1 − 1.
13 Decrement n`−1 by 1.
14 for (i = `− 1 to 1) do
15 Li−1 ← AddLayer (G,Li, ni, di).
16 Truncate list Li−1 to contain only the first di−1 − 1(≤ di − 2) vertices.

17 Output G.

I Lemma 23. For any i ∈ [1,`], graph Gi is a MaxNDeg− realization of profile (dn`

` ,· · · ,d
ni
i),

except for the case n` = d` in which G` is MaxNDeg− realization of profile (dn`

` , d`−1).
Moreover, for any j ∈ [i, `], we have
1. For every v ∈ Vj \ Z, degGi

(v) ≤MaxNDeg−Gi
(v) = dj.

2. If n` = d`, then degGi
(z) = d` and MaxNDeg−Gi

(z) = d`−1.

Proof. We prove the claim by induction on the iterations of the for loop. The base case
is for index `, and the claim follows from Lemmas 14, 17, and 18. Specifically, notice
that every vertex v ∈ V` that is included in G in step 5, 8, or 11 of the algorithm has
MaxNDeg−(v) = d`. In the case n` = d`, the vertex z ∈ V`−1 included in step 11 of
algorithm has MaxNDeg−(z) = d`−1. Also, in both the cases, V` ∪Z is the vertex set of G,
and degree of all the vertices in this set is bounded by d`.

For the inductive step, we assume that the claim holds for i+ 1, and prove the claim for
i. Consider any vertex v in Gi. We have two cases.
1. v ∈ Vi\Z : In this case by Proposition 15 and Lemma 19, degGi

(v) ≤MaxNDeg−Gi(v) =
di.

2. v ∈ Vj \Z, for j > i : In this case we first show that for any vertex w ∈ N(v), degGi
(w) ≤

dj . If w ∈ Vi\Z, then we already showed degGi
(w) ≤ di. So we next consider the case w ∈

(Vi+1∪· · ·∪V`)\Z. Now if w ∈ Li participates in Procedure AddLayer(G,Li, ni, di), then
by Proposition 15 in the updated graph degGi

(w) ≤ di ≤ dj . If w 6∈ Li, then the degree of
w is unaltered in the ith iteration, and thus degGi

(w) = degGi+1(w) ≤ dj by the inductive

A. Bar-Noy, K. Choudhary, D. Peleg, and D. Rawitz 10:15

hypothesis. If n` = d` and w = z ∈ Z, then also degGi
(w) = degGi+1(w) since vertex

z never participates in procedure AddLayer. It follows that MaxNDeg−(v) remains
unaltered due to iteration i, and thus MaxNDeg−Gi

(v) = MaxNDeg−Gi+1(v) = dj .

Now when n` = d`, then degG`
(z) = d` and MaxNDeg−G`

(z) = d`−1. The degree
of vertex z never changes since it does not participates in procedure AddLayer. The
MaxNDeg− of z never changes from the same reasoning as above. J

The execution time of algorithm takes O
(∑`

i=1(ni+di)
)
time, which can be easily shown

to be optimal. The following theorem is immediate from the above discussions.

I Theorem 24. There exists an algorithm that given any profile σ = (dn`

` , . . . , d
n1
1) 6=

(d`d`+121) with n = n1 + · · · + n` satisfying d` ≤ min{n − 1, n`} and d1 ≥ 2, computes in
optimal time a connected MaxNDeg− realization of σ.

4.4 Complete characterization of MaxNDeg− profiles.
We first give the sufficient conditions for a profile to be MaxNDeg− realizable.

I Lemma 25. A necessary condition for the profile σ = (dn`

` , · · · , d
n1
1) with n = n1 + · · ·+n`

to be MaxNDeg− realizable is d` ≤ min{n`, n− 1}.

Proof. Suppose σ is MaxNDeg− realizable by a graph H. Then there exists at least one
vertex, say u, of degree exactly d` in H. Now |N(u)| = d` and |N [u]| = d` + 1, which implies
that the number of vertices in H whose MaxNDeg− is d` must be at least d`, so n` ≥ d`.
Also, the number of vertices in the graph H, n, must be at least d` + 1. J

Consider a profile σ = (dn`

` , · · · , d
n1
1) realizable by a connected graph. If d1 = 1, then the

realizing graph must contain a vertex, say u, such that each vertex in N(u) has degree 1. Let
d = deg(u), and v1, . . . , vd be the neighbors of u. Then deg(v1) = · · · = deg(vd) = 1. So in this
case the realizing graph is a star graph K1,d with MaxNDeg− profile σ = (dd, 11). If d1 ≥ 2,
then by Lemma 25, for σ to be realizable in this case, we need that d` ≤ min{n`, n−1}. Also,
Lemma 21 implies that σ must not be (dd+1, 21). By Theorem 24, under these conditions σ
is always realizable. We thus have the following theorem.

I Theorem 26. The necessary and sufficient condition for a profile σ = (dn`

` , · · · , d
n1
1) 6=

(dd+1, 21) with n = n1 + · · ·+ n` to be MaxNDeg− realizable by a connected graph is
(i) d` ≤ min{n`, n− 1} and d1 ≥ 2; or
(ii) σ = (dd, 11) for some positive integer d > 1; or
(iii) σ = (12).

For general graphs we have the following theorem.

I Theorem 27. The necessary and sufficient condition for a profile σ to be MaxNDeg−
realizable by a general graph is that σ can be split into two profiles σ1 and σ2 such that
(i) σ1 has a connected MaxNDeg− realization, and
(ii) σ2 = (12α) or σ2 = (dd, 12α+1) for some integers d ≥ 2, α ≥ 0.

Proof. Suppose σ is realizable by graph G. Let C(G) be a set consisting of all those
components in G that contain a vertex of MaxNDeg− equal to 1 but is not an edge. As
a long as |C(G)| > 1, we perform following modifications to G. Take any two components
C1, C2 ∈ C(G), and let σ1 and σ2 be their MaxNDeg− profiles. For i = 1, 2, component Ci
must be of form K1,δi

and contain δi(≥ 2) vertices of MaxNDeg− equal to δi, and a single

SWAT 2020

10:16 Graph Realizations: Maximum Degree in Vertex Neighborhoods

vertex of MaxNDeg− equal to 1. Let us assume δ2 ≥ δ1. We replace C1 and C2 in G by two
different components, namely, an edge and (i) a connected MaxNDeg− realization of profile
δδ1+δ2
2 if δ2 = δ1, or (ii) a connected MaxNDeg− realization of profile (δδ2

2 , δ
δ1
1) if δ2 > δ1.

In each iteration we decrease |C(G)| by a value two. In the end if C(G)| is non-empty we
denote the only component in it by C0. Next let C̄1, . . . , C̄k be all those components in G
that contain only the vertices of MaxNDeg− strictly greater than 1. Also let σ1, . . . , σk
be their MaxNDeg− profiles. If k > 0, we replace the components C̄1, . . . , C̄k by a single
connected component, say C̄0, that realizes the profile σ1 + · · ·+ σk. It is easy to verify from
Theorem 24 that σ1 + · · ·+ σk will be MaxNDeg− realizable. The final graph G contains
(i) at most one component, namely C̄0, having all vertices of MaxNDeg− greater than 1,
(ii) at most one component, namely C0, having exactly one vertex of MaxNDeg− equal to
1, and (iii) a union of some α ≥ 0 disjoint edges. This shows that σ can be split into two
profiles σ1 and σ2 such that
(i) σ1 has a connected MaxNDeg− realization, and
(ii) σ2 = (12α) or σ2 = (dd, 12α+1) for some integers d ≥ 2, α ≥ 0.

To prove the converse notice that σ2 = (12α) is realizable by a disjoint union of α ≥ 0 edges,
and σ2 = (dd, 12α+1) is realizable by a disjoint union of α edges and the star graph K1,d.
Thus any σ that can be split into two profiles σ1 and σ2 such that
(i) σ1 has a connected MaxNDeg− realization, and
(ii) σ2 = (12α) or σ2 = (dd, 12α+1) for some integers d ≥ 2, α ≥ 0
is MaxNDeg− realizable. J

References
1 Martin Aigner and Eberhard Triesch. Realizability and uniqueness in graphs. Discrete

Mathematics, 136:3–20, 1994.
2 Amotz Bar-Noy, Keerti Choudhary, David Peleg, and Dror Rawitz. Realizability of graph

specifications: Characterizations and algorithms. In 25th SIROCCO, pages 3–13, 2018.
3 Amotz Bar-Noy, Keerti Choudhary, David Peleg, and Dror Rawitz. Efficiently realizing interval

sequences. In 30th Int. Symp. on Algorithms and Computation, ISAAC, pages 47:1–47:15,
2019.

4 Amotz Bar-Noy, Keerti Choudhary, David Peleg, and Dror Rawitz. Graph profile realizations
and applications to social networks. In 13th WALCOM, pages 1–12, 2019.

5 Michael D. Barrus and Elizabeth A. Donovan. Neighborhood degree lists of graphs. Discrete
Mathematics, 341(1):175–183, 2018.

6 Kevin E Bassler, Charo I Del Genio, Péter L Erdős, István Miklós, and Zoltán Toroczkai. Exact
sampling of graphs with prescribed degree correlations. New Journal of Physics, 17(8):083052,
August 2015.

7 Joseph K. Blitzstein and Persi Diaconis. A sequential importance sampling algorithm for
generating random graphs with prescribed degrees. Internet Mathematics, 6(4):489–522, 2011.

8 Sheshayya A. Choudum. A simple proof of the Erdös-Gallai theorem on graph sequences.
Bulletin of the Australian Mathematical Society, 33(1):67–70, 1991.

9 Brian Cloteaux. Fast sequential creation of random realizations of degree sequences. Internet
Mathematics, 12(3):205–219, 2016.

10 Paul Erdös and Tibor Gallai. Graphs with prescribed degrees of vertices [hungarian]. Matem-
atikai Lapok, 11:264–274, 1960.

11 C. Del Genio, H. Kim, Z. Toroczkai, and K.E. Bassler. Efficient and exact sampling of simple
graphs with given arbitrary degree sequence. PLOS ONE, 5:1–8, 2010.

12 S. Louis Hakimi. On realizability of a set of integers as degrees of the vertices of a linear graph
–I. SIAM J. Appl. Math., 10(3):496–506, 1962.

A. Bar-Noy, K. Choudhary, D. Peleg, and D. Rawitz 10:17

13 V. Havel. A remark on the existence of finite graphs [in Czech]. Casopis Pest. Mat., 80:477–480,
1955.

14 Ravi Kannan, Prasad Tetali, and Santosh S. Vempala. Simple markov-chain algorithms for
generating bipartite graphs and tournaments. Random Struct. & Algorithms, 14(4):293–308,
1999.

15 P.J. Kelly. A congruence theorem for trees. Pacific J. Math., 7:961–968, 1957.
16 H. Kim, Z. Toroczkai, P.L. Erdős, I. Miklós, and L.A. Székely. Degree-based graph construction.

J. Phys. A: Math. & Theor., 42:392001, 2009.
17 Milena Mihail and Nisheeth Vishnoi. On generating graphs with prescribed degree sequences for

complex network modeling applications. 3rd Workshop on Approximation and Randomization
Algorithms in Communication Networks, 2002.

18 Elchanan Mossel and Nathan Ross. Shotgun assembly of labeled graphs. CoRR, abs/1504.07682,
2015.

19 Peter V. O’Neil. Ulam’s conjecture and graph reconstructions. Amer. Math. Monthly, 77:35–43,
1970.

20 Gerard Sierksma and Han Hoogeveen. Seven criteria for integer sequences being graphic. J.
Graph Theory, 15(2):223–231, 1991.

21 Amitabha Tripathi and Himanshu Tyagi. A simple criterion on degree sequences of graphs.
Discrete Applied Mathematics, 156(18):3513–3517, 2008.

22 S.M. Ulam. A Collection of Mathematical Problems. Wiley, 1960.
23 D.L. Wang and D.J. Kleitman. On the existence of n-connected graphs with prescribed degrees

(n > 2). Networks, 3:225–239, 1973.
24 N.C. Wormald. Models of random regular graphs. Surveys in Combinatorics, 267:239–298,

1999.

SWAT 2020

	Introduction
	Preliminaries
	Realizing maximum neighborhood degree profiles
	An incremental procedure for computing MaxNDeg realizations
	The main algorithm
	A complete characterization for MaxNDeg realizable profiles
	Discussion

	Realizing maximum open neighborhood-degree profiles
	Pseudo-valid List
	MaxNDeg^- realization of the profile sigma=(d^{d+1},2^k)
	Algorithm
	Complete characterization of MaxNDeg$^-$ profiles.

