
Testing Polynomials for Vanishing on Cartesian
Products of Planar Point Sets
Boris Aronov
Department of Computer Science and Engineering, Tandon School of Engineering, New York
University, Brooklyn, NY 11201, USA
boris.aronov@nyu.edu

Esther Ezra
School of Computer Science, Bar Ilan University, Ramat Gan, Israel
ezraest@cs.biu.ac.il

Micha Sharir
School of Computer Science, Tel Aviv University, Israel
michas@tau.ac.il

Abstract
We present subquadratic algorithms, in the algebraic decision-tree model of computation, for
detecting whether there exists a triple of points, belonging to three respective sets A, B, and C of
points in the plane, that satisfy a certain polynomial equation or two equations. The best known
instance of such a problem is testing for the existence of a collinear triple of points in A×B × C, a
classical 3SUM-hard problem that has so far defied any attempt to obtain a subquadratic solution,
whether in the (uniform) real RAM model, or in the algebraic decision-tree model. While we are still
unable to solve this problem, in full generality, in subquadratic time, we obtain such a solution, in
the algebraic decision-tree model, that uses only roughly O(n28/15) constant-degree polynomial sign
tests, for the special case where two of the sets lie on one-dimensional curves and the third is placed
arbitrarily in the plane. Our technique is fairly general, and applies to any other problem where
we seek a triple that satisfies a single polynomial equation, e.g., determining whether A×B × C
contains a triple spanning a unit-area triangle.

This result extends recent work by Barba et al. [4] and by Chan [7], where all three sets A, B,
and C are assumed to be one-dimensional. While there are common features in the high-level
approaches, here and in [4], the actual analysis in this work becomes more involved and requires
new methods and techniques, involving polynomial partitions and other related tools.

As a second application of our technique, we again have three n-point sets A, B, and C in the
plane, and we want to determine whether there exists a triple (a, b, c) ∈ A×B×C that simultaneously
satisfies two real polynomial equations. For example, this is the setup when testing for the existence
of pairs of similar triangles spanned by the input points, in various contexts discussed later in the
paper. We show that problems of this kind can be solved with roughly O(n24/13) constant-degree
polynomial sign tests. These problems can be extended to higher dimensions in various ways, and
we present subquadratic solutions to some of these extensions, in the algebraic decision-tree model.
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1 Introduction

General background. Let A, B, and C be three n-point sets in the plane. We want to
determine whether there exists a triple of points (a, b, c) ∈ A×B ×C that satisfy one or two
prescribed polynomial equations. An example of such a scenario, with a single vanishing
polynomial, is to determine whether A×B × C contains a collinear triple of points. This
classical problem is at least as hard as the 3SUM problem [14], in which we are given three
sets A, B, and C, each consisting of n real numbers, and we want to determine whether
there exists a triple of numbers (a, b, c) ∈ A×B × C that add up to zero.

The 3SUM problem itself, conjectured for a long time to require Ω(n2) time, has recently
been shown by Grønlund and Pettie [16] (with further improvements by Chan [7]) to be
solvable in very slightly subquadratic time. Moreover, in the linear decision-tree model,
in which we only count linear sign tests performed on the input points (and do not allow
any other operation to access the input explicitly), Grønlund and Pettie have improved the
running time to nearly O(n3/2) (see also [13, 15] for subsequent slight speedups), which has
been drastically further improved (still in the linear decision-tree model) to O(n log2 n) time
by Kane et al. [18].

In contrast, no subquadratic algorithm is known for the collinearity detection problem,
either in the standard real RAM model (also known as the uniform model) or in the decision-
tree model; see [4] for a discussion. In the uniform model, the problem can be solved
in O(n2) time. The primitive operation needed to test for collinearity of a specific triple
is the so-called orientation test, in which we test for the sign of a quadratic polynomial in
the six coordinates of a triple of points in A × B × C (see Eq. (1) below for the concrete
expression). Consequently, it is natural (and apparently necessary) to use the more general
algebraic decision-tree model, in which each comparison is a sign test of some constant-degree
polynomial in the coordinates of a constant number of input points; see [6, 20] and below.

The problems, in more detail

In this paper we consider several variants of testing a polynomial, or polynomials, for
vanishing on a triple Cartesian product. The main motivation for the present study is the
aforementioned collinearity testing question. We present the problem in a wider context,
where we are given three sets A, B, and C, each consisting of n points in the plane, and we
consider two scenarios:

(a) A single vanishing polynomial. Given a single constant-degree irreducible 6-variate
polynomial F , determine whether there exists a triple (a, b, c) ∈ A× B × C such that
F (a, b, c) = 0.

(b) A pair of vanishing polynomials. Given a pair F , G of constant-degree irreducible 4-
variate polynomials, determine whether there exists a triple (a, b, c = (c1, c2)) ∈ A×B×C
such that c1 = F (a, b) and c2 = G(a, b).
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We begin by studying the vanishing pair problem in (b), because our results are stronger
for this setup, and show that, as can be expected, requiring the triple (a, b, c) to satisfy two
equalities facilitates a more efficient solution. In contrast, the collinearity testing problem, as
well as more general instances of a single vanishing polynomial in (a), seem harder to solve
efficiently. As we spell out below, we can solve problems of the latter kind in subquadratic
time, in the algebraic decision-tree model, only for restricted input sets.

We note that the vanishing pair problem in (b) is a special case of a more general question,
in which F and G are 6-variate real polynomials, and the equations that we want to satisfy
are F (a, b, c) = G(a, b, c) = 0. This general setting can also be handled by a more involved
variant of the technique presented here, using standard tools from real algebraic elimination
theory (as in [5]), but we will not consider this extension in the paper. (See also [4] for the
treatment of this issue in a different, and simpler, context.)

A special (but natural) case of the problem with two polynomial constraints is where
each of the sets A, B, C consists of n complex numbers, and we want to test the vanishing of
a single constant-degree bivariate polynomial H : C2 → C defined over the complex numbers;
this is an extension of the problem studied by Barba et al. [4] over the reals. That is, the
problem is to determine whether there is a triple (a, b, c) ∈ A×B×C such that1 c = H(a, b).
Two concrete instances of this question, involving testing for the existence of similar triangles
that are determined by A, B, and C, will be used to present our technique.

Comments on the purely one-dimensional setup. Questions of the type studied here are
(extensions to higher dimensions of) the algorithmic counterparts of the classical problems in
combinatorial geometry, studied by Elekes and Rónyai [10] and by Elekes and Szabó [11],
and later improved in [22, 21]. We comment on this connection in some detail in the full
version of the paper [3]. In the setup studied in [10, 11, 22, 21], all three sets A, B, C are one-
dimensional. This purely one-dimensional setup has recently been studied by Barba et al. [4],
both for the algebraic decision tree model and for the uniform model, whose algorithm
in the algebraic decision tree model runs in close to O(n12/7) time. The same approach,
combined with more involved algorithmic techniques, yields an algorithm in the uniform
model that runs in O(n2(log logn)3/2/ log1/2 n) time, which has been slightly improved to
O(n2(log logn)O(1)/ log2 n) by Chan [7].

Given this apparent (polynomial) hardness of computation, our goal is thus to obtain a
significantly subquadratic solution in the algebraic decision-tree model. Here we only pay
for sign tests that involve the input point coordinates, where each such test determines the
sign of some real polynomial of constant degree in a constant number of variables. All other
operations cost nothing in this model, and are assumed not to access the input explicitly.
For example, each orientation test used in collinearity detection examines the sign of the
determinant (a quadratic polynomial in a1, a2, b1, b2, c1, c2)∣∣∣∣∣∣

1 a1 a2
1 b1 b2
1 c1 c2

∣∣∣∣∣∣ , (1)

for some triple of points (a1, a2) ∈ A, (b1, b2) ∈ B, (c1, c2) ∈ C.

1 Over the reals, H induces two polynomial equations, one for the real part and the other for the imaginary
part, so this is indeed a special case of the polynomial vanishing pair problem. Here too one may
consider the more general case where H is trivariate and we test for H(a, b, c) = 0.

SoCG 2020



8:4 Testing Polynomials for Vanishing on Products of Planar Sets

Concrete problems in the two-dimensional setup. Each of the two general questions
studied here (of one or two vanishing polynomials) arises in various concrete problems in
computational geometry. For the case of a single vanishing polynomial, collinearity testing is
a fairly famous (or should we say, notorious) example. Other problems include testing for the
existence of a triangle ∆abc, for (a, b, c) ∈ A×B ×C, that has a given area, or perimeter, or
circumscribing disk of a given radius, and so on.

We consider two simple instances of the vanishing polynomial pair problem. In the first
one, we are given sets A, B, and C, each of n points in the plane, none of which contains
the origin, and wish to determine whether there exists a triple (a, b, c) ∈ A × B × C such
that the triangle spanned by o (the origin), b and c is similar to the triangle spanned by
o, e1 = (1, 0), and a (with e1 corresponding to b and a to c). As a matter of fact, and as
easily verified, this instance can also be interpreted as having three sets A, B, C of complex
numbers, and the goal is to determine whether there exists a triple (a, b, c) ∈ A×B×C such
that c = ab. This is a single complex quadratic equation that (a, b, c) has to satisfy, which
translates to two real quadratic equations in the coordinates of a, b, c, when treated as points
in the real plane.

In the second instance, we are given sets A, B, and C, each of n points in the plane,
and a fixed triangle ∆ = ∆uvw, and we want to determine whether there exists a triple
(a, b, c) ∈ A×B × C that spans a triangle similar to ∆, with a corresponding to u, b to v,
and c to w. This instance too can be interpreted as having three sets A, B, C of complex
numbers, and the goal is to determine whether there exists a triple (a, b, c) ∈ A×B×C that
satisfies a certain single linear equation over complex numbers, determined by ∆; see the full
version [3] for these details.

We note that the first instance can also be turned into an instance that involves a single
complex linear equation, simply by replacing every z ∈ A ∪B ∪ C by ln z. As it turns out,
complex linear equations can be handled more efficiently (see below for details), but we use
these examples as showcases of the more general technique that we develop.

In the full version of this paper [3] we show that both versions of the triangle similarity
testing problem are 3SUM-hard.

I Remark 1.1. Since the underlying vanishing complex polynomial can be assumed to be
linear (in both instances), the analysis in the very recent work of Aronov and Cardinal [2]
implies that both problems can be reduced to the classical real-3SUM problem, via a random
projection technique, and then solved, in the linear decision-tree model, in O(n log2 n) time,
using the technique of Kane et al. [18].

Our results. After setting up the technical machinery that our analysis requires, in Sections 2
and 3, we first consider, in Section 4, the problem of testing for a vanishing pair of polynomials,
which includes the triangle similarity testing problems. We show that such problems can
be solved, in the algebraic decision-tree model, with O(n24/13+ε) polynomial sign tests, for
any ε > 0 (with the constant of proportionality depending on ε), where each test involves
a polynomial of constant degree in a constant number of variables, which in general might
be more involved than just orientation tests. For the analysis, we need to assume that the
pair of polynomials F , G have “good fibers” (which they do in the triangle similarity testing
problems) – see Sections 2 and 4 for details.

We then consider, in Section 5, the problem of ‘2× 1× 1-dimensional’ collinearity testing,
meaning that A is an arbitrary set of points in the plane, but each of B and C lies on some
respective constant-degree algebraic curve γB , γC . We show that this restricted problem can
be solved in the algebraic decision-tree model with O(n28/15+ε) polynomial sign tests, for any
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ε > 0 (where again the constant of proportionality depends on ε). The technique extends
naturally to similar problems involving a single vanishing polynomial, such as determining
whether A×B × C spans a unit-area triangle.

We still do not have a subquadratic solution, even in the algebraic decision-tree model, to
the unconstrained (referred to as 2× 2× 2-dimensional) collinearity testing problem, or even
for the more restricted 2× 2× 1-dimensional scenario, where only C is constrained to lie on
a given curve. The techniques that we use for the 2× 1× 1 version can be extended to the
general unconstrained (or less constrained) case, but they actually result in a superquadratic
algorithm; see the full version of the paper for more details. As shown by Erickson and
Seidel [12], if the only sign tests that we allow in the decision tree are orientation tests, then
Ω(n2) tests are needed in the worst case. The solution presented here uses other sign tests,
making it more powerful (and more efficient).

We also consider, in the full version, extensions of both problems to higher dimensions.
Specifically, we study collinearity testing in d dimensions, where we assume that each of
B and C lies on a hyperplane. Our solution is based on projections of the input onto
lower-dimensional subspaces, and achieves the same asymptotic performance as in the plane.
This result is presented in Section 6. More general extensions to higher dimensions are
discussed in the appendix of the full version [3].

I Remark 1.2. We are not aware of a simple extension of the analysis in the earlier work of
Barba et al. [4] or of Chan [7] to the problems studied in this paper. A main technique in our
arsenal is to consider the Cartesian product of polynomial partitionings, which we believe
to be essential, mainly for the triangle similarity problems and their higher-dimensional
extensions, as well as to higher-dimensional extensions of collinearity testing.

The 2 × 1 × 1 case of problems involving a single vanishing polynomial, considered
in Section 5, has an alternative subquadratic, albeit less efficient, solution, using simpler
considerations, which somewhat resemble the analysis in [4]. We sketch this alternative
technique in the full version of the paper [3]

We also comment that Chan [7] addresses several related geometric 3SUM-hard problems,
among which is a variant of dual collinearity testing: Given three sets A, B, and C of
line segments in the plane, where the segments in A are pairwise disjoint, and so are the
segments in B, decide whether there exist a triple of segments in A×B × C that meet at a
common point. Although Chan’s technique results in a slightly subquadratic algorithm in
the RAM model, and is also claimed to yield a truly subquadratic algorithm in the algebraic
decision-tree model, the disjointness assumptions significantly restrict the problem, so, to
quote [7], “it remains open whether there is a subquadratic algorithm for the degeneracy
testing for n lines in R2.”

2 Preliminaries

Our analysis relies on planar polynomial partitioning and on properties of Cartesian products
of pairs of them. For a polynomial f : Rd → R, for any d ≥ 2, the zero set of f is
Z(f) := {x ∈ Rd | f(x) = 0}. We refer to an open connected component of Rd \ Z(f) as a
cell. The classical Guth-Katz result is:

I Proposition 2.1 (Polynomial partitioning; Guth and Katz [17]). Let P be a finite set of
points in Rd, for any d ≥ 2. For any real parameter D with 1 ≤ D ≤ |P |1/d, there exists
a real d-variate polynomial f of degree O(D) such that Rd \ Z(f) has O(Dd) cells, each
containing at most |P |/Dd points of P .

SoCG 2020



8:6 Testing Polynomials for Vanishing on Products of Planar Sets

Agarwal, Matoušek, and Sharir [1] presented an algorithm that efficiently computes2 such
a polynomial f , whose expected running time is O(nr + r3), where r = Dd.

Note that the number of points of P on Z(f) can be arbitrarily large. For planar polyno-
mial partitions, though, this can be handled fairly easily, by partitioning the algebraic curve
Z(f) into subarcs, each containing at most |P |/D2 points (as do the complementary cells).
We state this property formally and spell out the easy details in the full version of the paper.

Polynomial partitioning for Cartesian products of point sets in the plane. Solymosi and
De Zeeuw [23] studied polynomial partitioning for Cartesian products of planar point sets.
Given two finite sets P1 and P2 of points in the plane, a natural strategy to construct a
partitioning polynomial for P1 × P2 ⊂ R2 × R2, a space that we simply regard as R4, is to
construct suitable bivariate partitioning polynomials ϕ1 for P1 and ϕ2 for P2, as provided in
Proposition 2.1, and then take their product ϕ(x, y, z, w) := ϕ1(x, y)ϕ2(z, w).

I Corollary 2.2 (Polynomial partitioning of Cartesian product [23]). The partition of P1,2 :=
P1×P2 just described results in overall O(D4) relatively open cells of dimensions 2, 3, and 4,
each of which contains at most |P1,2|/D4 points of P1,2. The zero- and one-dimensional cells
do not contain any point of P1,2.

The analysis in [23] also bounds the number of partition cells intersected by a two-
dimensional algebraic surface S in R4, provided it has “good fibers.” We define this notion:

I Definition 2.3 (Good fibers). (i) A two-dimensional algebraic surface S in R4 has good
fibers if, for every point p ∈ R2, the fibers ({p}×R2)∩S and (R2×{p})∩S are finite. (ii) A
two-dimensional algebraic surface S in R3 has good fibers if, for every point p ∈ R2, except
for O(1) exceptional points, the fiber ({p} × R) ∩ S is finite (it is one-dimensional for an
exceptional point p), and for every point q ∈ R, the fiber (R2 ×{q})∩ S is a one-dimensional
variety (i.e., an algebraic curve).

Note that in this definition we are only concerned with one specific decomposition of the
underlying space into a product of two subspaces.

I Proposition 2.4 (Cells intersected by a surface [23]). Let S be a constant-degree two-
dimensional algebraic surface in R4 that has good fibers. Then S intersects at most O(D2)
two-, three-, and four-dimensional cells in the partitioning induced by P1,2.

Both Corolloary 2.2 and Proposition 2.4 have three-dimensional counterparts (for Carte-
sian products of a plane and a curve), presented in the full version of this paper.

3 Hierarchical Polynomial Partitioning

Even though we work in the algebraic decision-tree model, we still need to account for the
cost of constructing the various polynomial partitionings (as it requires explicit access to
the input points), which, if done by a straightforward application of the technique of [1],
would be too expensive, as a naïve implementation of our technique needs to use polynomials
of high, non-constant degree. We circumvent this issue by constructing a hierarchical
polynomial partitioning, akin to the constructions of hierarchical cuttings of Chazelle [8]
and Matoušek [19] from the 1990s. The material is rather technical, and we only state the
resulting theorems, giving details in the full version.

2 This polynomial forms a partition approximating the one in Proposition 2.1, and the constant of
proportionality in the degree bound of [1] is slightly larger.
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Roughly, we gain efficiency by constructing a hierarchical tree of partitions using constant-
degree polynomials, until we reach subsets of the input point set of the desired size.

The actual hierarchical partitions that we will need are within a Cartesian product
of either two planes or a plane and a one-dimensional curve, and are obtained by taking
suitable Cartesian products of partitions constructed within each of these subspaces. We
show that, up to nε factors, we achieve the same combinatorial properties as in a single-shot
construction with a higher-degree polynomial, at a lower algorithmic cost. Specifically, we
have the following results:

I Theorem 3.1 (One set in the plane). Let P be a set of n points in the plane, let 1 ≤ r ≤ n
be an integer, and let ε > 0.
(i) There is a hierarchical polynomial partition for P with O((n/r)1+ε) bottom-level cells,
each of which is associated with at most r points of P which it contains. The hierarchy can
be constructed in expected O(n logn) time.
(ii) Any constant-degree algebraic curve γ reaches at most O((n/r)1/2+ε) cells at all levels of
the hierarchy.3 These cells can be computed within the same asymptotic time bound.

I Theorem 3.2 (Cartesian product of two planar point sets). Let P1, P2 be two sets of points
in the plane, each of size n, put P1,2 = P1×P2 ⊂ R4. Let 1 ≤ r ≤ n be an integer and ε > 0.
(i) There is a hierarchical polynomial partition for P1,2 with O((n/r)2+ε) bottom-level cells,
each of which is associated with a subset of at most r2 points of P1,2, which is the Cartesian
product of a set of at most r points from P1 and a set of at most r points from P2, which it
contains. The hierarchy can be constructed in expected O(n logn) time.
(ii) Any constant-degree two-dimensional algebraic surface S with good fibers reaches (in the
same sense as in Theorem 3.1) at most O((n/r)1+2ε) cells at all levels of the hierarchical
partition of P1,2. These cells can be computed within the same asymptotic time bound.

I Theorem 3.3 (Cartesian product of a planar point set and a 1D set). Let P be a set of
n points in the plane, and let Q be a set of n points lying on a constant-degree algebraic
curve γ ⊂ R2. Let 1 ≤ r, s ≤

√
n be real parameters.

(i) There is a hierarchical polynomial partition for P × Q ⊂ R2 × γ into O(n2+ε/(rs)1+ε)
bottom-level cells, for any ε > 0, each of which is associated with a subset of at most rs
points of P ×Q, which is the Cartesian product of a set of at most r points from P and a set
of at most s points from Q. The hierarchy can be constructed in expected O(n logn) time.
(ii) Any constant-degree two-dimensional surface S with good fibers reaches (in the same
sense as above) at most O

(
n3/2+ε

r1/2+εs1+ε

)
cells at all levels of the hierarchical partition of P ×Q.

These cells can be computed within the same asymptotic time bound.

4 Testing for a Vanishing Pair of Polynomials

In this section we study problems of type (b), where A, B, and C are three sets of n points in
the plane, and we seek a triple (a, b, c) ∈ A×B × C that satisfies two polynomial equations.
To simplify the presentation, we assume that they are of the form c1 = F (a, b), c2 = G(a, b),
for c = (c1, c2), where F and G are constant-degree 4-variate polynomials with good fibers,
in the following sense: For any pair of real numbers κ1, κ2, the two-dimensional surface
π(κ1,κ2) := {(a, b) ∈ R4 | F (a, b) = κ1, G(a, b) = κ2} has good fibers.

We fix a parameter g � n (whose value will be set later), and apply Theorem 3.2(i)
to the sets A, B, with r = g, to construct, in expected O(n logn) time two hierarchical
planar polynomial partitionings, one for A and one for B, and combine them to obtain, a

3 A curve γ is said to reach a cell τ if it intersects τ and all its ancestral cells – see the full version.

SoCG 2020



8:8 Testing Polynomials for Vanishing on Products of Planar Sets

hierarchical four-dimensional polynomial partitioning for A×B, so that each bottom-level
cell ζ contains a Cartesian product Aζ ×Bζ with |Aζ |, |Bζ | ≤ g, and the overall number of
cells is O((n/g)2+ε), for any prescribed ε > 0.

Let τ (resp., τ ′) be a bottom-level cell at the hierarchical partition of A (resp., of B). Put
Aτ := A∩τ and Bτ ′ := B∩τ ′. The high-level idea of the algorithm is to sort lexicographically
each of the sets Hτ,τ ′ := {(F (a, b), G(a, b)) | (a, b) ∈ Aτ ×Bτ ′}, over all pairs of cells (τ, τ ′).
We then search with each c = (c1, c2) ∈ C through the sorted lists of those sets Hτ,τ ′ that
might contain (c1, c2). We show that each c ∈ C has to be searched for in only a small
number of sets. As in all works on this type of problems, starting from [16], sorting the
sets explicitly is too expensive. We overcome this issue by considering the problem in the
algebraic decision-tree model, and by using an algebraic variant of Fredman’s trick, extending
those used in the previous algorithms for one-dimensional point sets [4, 16]. (Also, rather
than carrying out the sorting in the lexicographical order, we do it in a primary round, in
which we only sort the values of F (a, b), followed by secondary rounds, in which we sort the
values of G(a, b), for each maximal block of equal values of F . For clarity of presentation, we
only focus on F in the discussion below, while G is treated analogously and implicitly.)

Consider the step of sorting {F (a, b) | (a, b) ∈ Aτ × Bτ ′}. It has to perform various
comparisons of pairs of values F (a, b) and F (a′, b′), for a, a′ ∈ Aτ , b, b′ ∈ Bτ ′ .

We consider Aτ ×Aτ as a set of g2 points in R4, and associate, with each pair (b, b′) ∈
Bτ ′ × Bτ ′ , the 3-surface σb,b′ = {(a, a′) ∈ R4 | F (a, b) = F (a′, b′)}. Let Στ ′ denote the set
of these surfaces. The arrangement A(Στ ′) has the property that each of its cells ζ (of
any dimension) has a fixed sign pattern with respect to all these surfaces. That is, each
comparison of F (a, b) with F (a′, b′), for any (a, b), (a′, b′) ∈ Aτ ×Bτ ′ , has a fixed outcome
for all points (a, a′) ∈ ζ (for a fixed pair b, b′). In other words, if we locate the points of
Aτ ×Aτ in A(Στ ′), we have available the outcome of all the comparisons needed to sort the
set {F (a, b) | (a, b) ∈ Aτ ×Bτ ′}.

Doing what has just been described is still too expensive (takes Ω(n2) steps, in the
algebraic decision-tree model) if implemented naïvely, processing each pair τ × τ ′ separately.
We circumvent this issue, in the algebraic decision-tree model, by forming the unions
P :=

⋃
τ Aτ × Aτ , and Σ :=

⋃
τ ′ Στ ′ ; we have |P |, |Σ| = O(g2 · (n/g)1+ε) = O(n1+εg1−ε).

By locating each point of P in A(Σ), we get all the signs that are needed to sort all the sets
{F (a, b) | (a, b) ∈ Aτ ×Bτ ′}, over all pairs τ , τ ′ of cells, and the actual sorting costs nothing
in our model, once the answers to all the relevant comparisons are known.

Searching with the points of C. We next search the structure with every c = (c1, c2) ∈ C.
We only want to visit subproblems (τ, τ ′) where there might exist a ∈ τ and b ∈ τ ′, such that
F (a, b) = c1 and G(a, b) = c2. To find these cells, and to bound their number, we consider
the two-dimensional surface πc=(c1,c2) := {(a, b) ∈ R4 | F (a, b) = c1, G(a, b) = c2}, and our
goal is to enumerate the bottom-level cells τ × τ ′ in the hierarchical partition of A × B
crossed by πc. By assumption, πc has good fibers, so, by Theorem 3.2(ii) (with r = g), we
can find, in time O((n/g)1+ε), the O((n/g)1+ε) cells τ × τ ′ that πc intersects.

Summing over all the n possible values of c, the number of crossings between the surfaces πc
and the cells τ × τ ′ is O(n2+ε/g1+ε), for any ε > 0. In other words, denoting by nτ,τ ′ the
number of surfaces πc that cross τ × τ ′, we have

∑
τ,τ ′

nτ,τ ′ = O(n2+ε/g1+ε). Thus computing

all such surface-cell crossings, over all c ∈ C, costs O(n2+ε/g1+ε) time. The cost of searching
with any specific c, in the structure of a cell τ × τ ′ crossed by πc, is O(log g) (it is simply a
binary search over the sorted lists). Hence the overall cost of searching with the elements of

C through the structure is (with a slightly larger ε) O
(
n2+ε

g1+ε

)
.
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Preprocessing: Sorting the F and G values. In order to sort the F and G values, we
follow a similar batched point location strategy as the one taken in [4]. That is, we perform
O(n1+εg1−ε) point location queries in an arrangement of O(n1+εg1−ε) algebraic 3-surfaces of
constant degree in R4. The output of this algorithm is a compact representation for the signs
F (a, b)−F (a′, b′) (where a, a′ ∈ Aτ , b, b′ ∈ Bτ ′ over all pairs of cells τ , τ ′), given as a disjoint
union of complete bipartite graphs of the form (Pα × Σβ , σ), where Pα ⊆ P , Σβ ⊆ Σ, and
σ ∈ {−1, 0, 1} is the fixed sign of all points in Pα with respect to the 3-surfaces in Σβ , where
the sign of a point (a, a′) with respect to a surface σb,b′ is positive (resp., zero, negative) if
F (a, b) > F (a′, b′) (resp., F (a, b) = F (a′, b′), F (a, b) < F (a′, b′)). We show, in the following
lemma, that the overall complexity of this representation, measured by the total size of the
vertex sets of these graphs, as well as the time to construct it, is only O

(
(ng)8/5+ε), where

the ε > 0 here is slightly larger than the prescribed ε. Interestingly, as the proof of the
lemma (in the full version) shows, this bound also holds in the uniform model. (G is handled
by similar means.)

I Lemma 4.1. One can perform batched point location of the points of P within the ar-
rangement of Σ, and obtain the above complete bipartite graph representation of the output,
in O

(
(ng)8/5+ε) randomized expected time in the uniform model, for any prescribed ε > 0,

where the constant of proportionality depends on ε and on the degree of F (and G).

The overall algorithm. Combining the cost of this preprocessing stage with that of the
construction of the hierarchical partitions for A and B, and of searching with the elements
of C in the sorted order obtained (for free) from the complete bipartite graph representation,

we get total expected running time of O
(
n logn+ (ng)8/5+ε + n2+ε

g1+ε

)
. We now choose

g = n2/13, and obtain expected running time of O
(
n24/13+ε), where the implied constant

of proportionality depends on the degrees of F and G and on ε, and the final ε is a (small)
constant multiple of the initially prescribed ε. That is, we have shown:

I Theorem 4.2. Let A, B, C be three n-point sets in the plane, and let F , G be a pair of
constant-degree 4-variate polynomials with good fibers (in the sense defined at the beginning
of this section). Then one can test, in the algebraic decision-tree model, whether there exists
a triple a ∈ A, b ∈ B, c = (c1, c2) ∈ C, such that c1 = F (a, b) and c2 = G(a, b), using only
O
(
n24/13+ε) polynomial sign tests (in expectation), for any ε > 0.

I Corollary 4.3. Let A, B, C be three sets, each of n complex numbers, and let H be a
constant-degree bivariate polynomial defined over the complex numbers, with good fibers.4
Then one can determine, in the algebraic decision-tree model, whether there exists a triple
(a, b, c) ∈ A×B ×C such that c = H(a, b), with only O

(
n24/13+ε) real-polynomial sign tests,

in expectation, for any ε > 0.

We can demonstrate this result on both instances of the triangle similarity testing problem,
and show that, if A, B, C are n-point sets in the plane, so that the origin does not belong to
A∪B ∪C, then the following holds: One can determine, in the algebraic decision-tree model,
whether there exists a triple (a, b, c) ∈ A × B × C such that the triangle ∆oe1a is similar
to the triangle ∆obc, or that the triangle ∆abc is similar to a given triangle ∆uvw, with
O
(
n24/13+ε) polynomial sign tests, in expectation, for any ε > 0. (In the full version [3] we

show that the good-fiber property holds in this setting.)

4 That is, the real and the imaginary parts of H are a pair of constant-degree 4-variate polynomials so
that the intersection of their zero sets is a two-dimensional surface with good fibers.
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I Remark 4.4. In the full version we describe a direct extension of the technique reviewed in
this section to a single vanishing polynomial (which is different from the technique presented
in the next section), and show that it results in a super-quadratic bound. In particular, this
applies to the unconstrained collinearity testing problem in the plane.

5 Collinearity Testing and Related Problems: The Case of 2 × 1 × 1
Dimensions

Let A, B, and C be three sets of points in the plane, but assume that B and C lie on
respective constant-degree algebraic curves γB and γC . Our goal is to determine whether
there exists a collinear triple of points in A × B × C, or more generally a triple (a, b, c)
satisfying some prescribed constant-degree polynomial equation5 F (a, b, c) = 0. To make the
exposition easier to follow, we mostly focus on the collinearity testing problem.

Further simplifying, we assume that γB and γC are given in the parametric forms
γB(t) = (xB(t), yB(t)) and γC(s) = (xC(s), yC(s))), for t, s ∈ R, where xB(t), yB(t), xC(s),
yC(s) are constant-degree continuous algebraic functions, and that the sets A, B, and C are
pairwise disjoint, for otherwise collinear triples exist trivially; the latter condition can be
checked efficiently. A triple (a = (a1, a2), b = (xB(t), yB(t)), c = (xC(s), yC(s))) is collinear
if and only if∣∣∣∣∣∣

1 a1 a2
1 xB(t) yB(t)
1 xC(s) yC(s)

∣∣∣∣∣∣ = 0, or

xB(t)yC(s)− yB(t)xC(s)− a1(yC(s)− yB(t)) + a2(xC(s)− xB(t)) = 0.

While the theory can be developed for this general setting, we only consider here the special
case where γC is a line, say the x-axis, so γC(s) = (s, 0), and the last equality becomes:

−yB(t)s+ a1yB(t) + a2(s− xB(t)) = 0 or s = ϕ(a, t) := a1yB(t)− a2xB(t)
yB(t)− a2

.

Here ϕ is a constant-degree algebraic function; it is a linear rational function in a.
We fix a pair of parameters g, h� n (whose values will be set later) and a parameter ε > 0,

and apply Theorem 3.3(i) to the sets A, B, with the respective parameters r = g, s = h. Let
τ (resp., τ ′) be a bottom-level cell in the resulting partition for A (resp., B). Put Aτ := A∩ τ
and Bτ ′ := B ∩ τ ′. In this analysis, somewhat abusing the notation, we regard B as a subset
of R, and denote by t the real parameter that parameterizes γB ; in particular, we write t ∈ B
(resp., t ∈ Bτ ′) instead of γB(t) ∈ B (resp., γB(t) ∈ Bτ ′). The number of bottom-level cells τ

(and sets Aτ ) is O
((

n
g

)1+ε
)
, for any ε > 0, and the number of bottom-level cells τ ′ (and

sets Bτ ′) is n/h.
The high-level idea of the algorithm is to sort each of the sets {ϕ(a, t) | (a, t) ∈ Aτ ×Bτ ′},

over all pairs (τ, τ ′) of cells, and then to search with each c = (s, 0) ∈ C (i.e., with the
corresponding real s) through the sorted lists of only those sets that might contain s; this
number is small, as argued below.

Again, sorting the sets explicitly is too expensive, and we use an instance of the algebraic
variant of Fredman’s trick, as in the previous section.

5 Note that here F is (naturally) implicit, as opposed to the preceding section, where we used two explicit
expressions c1 = F (a, b), c2 = G(a, b).
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Preprocessing for batched point location. Consider the step of sorting {ϕ(a, t) | (a, t) ∈
Aτ ×Bτ ′}, which has to perform various comparisons of pairs of values ϕ(a, t) and ϕ(a′, t′),
for a, a′ ∈ Aτ , t, t′ ∈ Bτ ′ . We perform this task globally over all pairs (τ, τ ′) of cells.

We recurse by switching between a “primal” and a “dual” setups. In the primal, we view

P =
⋃
τ Aτ × Aτ as a set of O

((
n
g

)1+ε
· g2
)

= O(n1+εg1−ε) points in R4, and associate

with each pair (t, t′) ∈ Bτ ′ × Bτ ′ , for each cell τ ′, the three-dimensional constant-degree
algebraic surface σt,t′ = {(a, a′) ∈ R4 | ϕ(a, t) = ϕ(a′, t′)}. We let Σ be the collection of all
these surfaces, over all cells τ ′, and have |Σ| = n/h · h2 = O(nh).

In the dual, we view the pairs (t, t′) ∈
⋃
τ ′ Bτ ′ ×Bτ ′ as points in the plane, and associate

with each pair (a, a′) ∈ P the curve δa,a′ = {(t, t′) ∈ R2 | ϕ(a, t) = ϕ(a′, t′)}. In each primal
problem we need to perform batched point-location queries in an arrangement of (some
subset of the) constant-degree algebraic 3-surfaces σt,t′ in R4, and in each dual problem we
need to perform batched point location queries in an arrangement of (some subset of the)
constant-degree algebraic curves δa,a′ in R2. Initially we are in the primal, with O(n1+εg1−ε)
points and O(nh) 3-surfaces.

If we could construct the full arrangement A of these surfaces and locate in it all
these points, we would get the signs of all the differences ϕ(a, t) − ϕ(a′, t′), for all (a, t),
(a′, t′) ∈ Aτ ×Bτ ′ , over all pairs (τ, τ ′) of cells, from which we would get (for free) the sorted
order of the sets {ϕ(a, t) | (a, t) ∈ Aτ × Bτ ′}, over all pairs (τ, τ ′). However, a single-step
construction of A is too expensive, so we replace it with the above “flip-flop” primal-dual
processing, each time partitioning the (current version of the) arrangement using a polynomial
of small degree, and thereby reduce the cost to that stated below.

The output of this preprocessing is a representation of P × Σ as a disjoint union of
complete bipartite graphs, described in the following lemma (see the full version [3]):

I Lemma 5.1. The above recursive batched point-location stage takes randomized expected
time O

(
n10/7+ε′

g6/7+ε′
h4/7

)
, also in the uniform model, where ε′ is larger, by a small

constant factor, than the prescribed ε.

Searching with the points of C. We next search the structure with every s ∈ C (identified
with the point (s, 0) on the x-axis). For each s ∈ C, we only want to visit subproblems
(τ, τ ′) where there might exist a ∈ τ and t ∈ τ ′ (not necessarily from Aτ ×Bτ ′), such that
ϕ(a, t) = s. We consider the two-dimensional surface πs := {(a, t) ∈ R3 | ϕ(a, t) = s} and
show that it has good fibers (details appear in the full version [3]).

We next proceed as follows. By Theorem 3.3(ii), choosing g and h to satisfy
(
n
g

)1/2
= n

h ,

or h = n1/2g1/2, we ensure that πs reaches O
(
n1+ε

g1+ε

)
cells τ × τ ′. Summing over all the n

possible values of s, the number of crossings between the surfaces πs and the cells τ × τ ′

is O
(
n2+ε

g1+ε

)
. Denoting by nτ,τ ′ the number of surfaces πs that cross τ × τ ′, we have∑

τ,τ ′

nτ,τ ′ = O

(
n2+ε

g1+ε

)
and we can enumerate all such crossings in O(n2+ε/g1+ε) time.

The cost of searching with any specific s in the structure of a cell τ × τ ′ crossed by πs,
is O(log g). Hence the overall cost of searching with the elements of C through the structure
is O(n2+ε/g1+ε), where ε is slightly larger than the originally prescribed one.
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Combining this cost with that of the construction of the hierarchical polynomial parti-
tioning, and the point-location preprocessing stage, we get overall expected time of

O

(
n logn+ n10/7+εg6/7+εh4/7 + n2+ε

g1+ε

)
= O

(
n logn+ n12/7+εg8/7+ε + n2+ε

g1+ε

)
.

We roughly balance the two last terms by choosing g = n2/15, making the overall cost of the

procedure O
(
n2+ε

g1+ε

)
= O

(
n28/15+ε

)
.

A similar analysis, albeit somewhat more complicated, can handle the case where C is
contained in a general constant-degree algebraic curve, rather than a line.6 In summary, we
thus obtain (see the full version for more details [3]):

I Theorem 5.2. Let A, B, C be n-point sets in the plane, where B and C are each contained
in some respective constant-degree algebraic curve γB, γC , and assume B ∩ γC = ∅. Then
one can test whether A × B × C contains a collinear triple, in the algebraic decision-tree
model, using only O

(
n28/15+ε) polynomial sign tests (in expectation), for any ε > 0, where

the constant of proportionality depends on ε and on the degrees of γB, γC .

Unit area triangles and other problems. This analysis can be extended to the unit area
triangle problem, where we want to test for the existence of a triangle spanned by A×B×C
that has unit area, as well as to many other similar problems (e.g., does there exist a triangle
spanned by A×B × C that has circumradius 1, or inradius 1, or unit perimeter, and so on).
All these variants can be solved with the same technique and within the same asymptotic
performance bound as in Theorem 5.2, provided that the good-fiber property is satisfied.

6 Higher Dimensions

Collinearity in higher dimensions: The d × (d − 1) × (d − 1) case. Let A, B and C be
three sets of n points each, so that A is a set of points in Rd and each of B and C lies in
a hyperplane. The goal is to test, in the algebraic decision tree model, whether A×B × C
contains a collinear triple. Our approach is to use a recursive chain of projections, which
ultimately map the points in A, B, and C to some plane, so that B and C is each mapped
to a set of points on some respective line, collinearity is preserved, and no new collinearity
appears among the projected points. This is a variant of a projection technique described by
De Zeeuw [9]. Deferring all the details to the full version of the paper, we obtain:

I Theorem 6.1. Let A, B and C be three sets of n points each, where A is a set of
points in Rd and B, C each lies in a respective hyperplane h1, h2. Assume that h1 6= h2,
A ⊂ Rd \ (h1∪h2) and (B∪C)∩h1∩h2 = ∅. Then one can test whether A×B×C contains
a collinear triple, in the algebraic decision tree model, by a randomized algorithm that succeeds
with probability 1, and uses only O

(
n28/15+ε) polynomial sign tests (in expectation), for any

ε > 0, where the constant of proportionality depends on ε and on d.

We present in the full version [3] several initial results for more general extensions of both
the single-polynomial and the polynomial-pair vanishing problems to higher dimensions. In
the former setup, each of B and C is contained in an algebraic surface of codimension 1 and
constant degree. Unlike the bound in Theorem 6.1, the bounds that we obtain deteriorate
with d, but remain subquadratic for every d.

6 For this extension one can apply quantifier elimination (see, e.g., [5]) and use a similar batched point-
location mechanism, albeit with more complicated semi-algebraic sets (but still of constant complexity
and same dimensionality).
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