
On the Parameterized Complexity of Maximum
Degree Contraction Problem
Saket Saurabh
The Institute Of Mathematical Sciences, HBNI, Chennai, India
University of Bergen, Norway
saket@imsc.res.in

Prafullkumar Tale
CISPA - Helmholtz Center for Information Security, Saarbrücken, Germany
prafullkumar.tale@cispa.saarland

Abstract
In the Maximum Degree Contraction problem, input is a graph G on n vertices, and integers
k, d, and the objective is to check whether G can be transformed into a graph of maximum degree at
most d, using at most k edge contractions. A simple brute-force algorithm that checks all possible
sets of edges for a solution runs in time nO(k). As our first result, we prove that this algorithm
is asymptotically optimal, upto constants in the exponents, under Exponential Time Hypothesis
(ETH).

Belmonte, Golovach, van’t Hof, and Paulusma studied the problem in the realm of Parameterized
Complexity and proved, among other things, that it admits an FPT algorithm running in time
(d + k)2k · nO(1) = 2O(k log(k+d)) · nO(1), and remains NP-hard for every constant d ≥ 2 (Acta
Informatica (2014)). We present a different FPT algorithm that runs in time 2O(dk) · nO(1). In
particular, our algorithm runs in time 2O(k) ·nO(1), for every fixed d. In the same article, the authors
asked whether the problem admits a polynomial kernel, when parameterized by k + d. We answer
this question in the negative and prove that it does not admit a polynomial compression unless
NP ⊆ coNP/poly.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Graph Contraction Problems, FPT Algorithm, Lower Bound, ETH, No
Polynomial Kernel

Digital Object Identifier 10.4230/LIPIcs.IPEC.2020.26

Related Version Full version: http://arxiv.org/abs/2009.11793.

Funding Saket Saurabh: This project has received funding from the European Research Council

 (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agree-

ment No 819416), and Swarnajayanti Fellowship (No DST/SJF/MSA01/2017-18).
Prafullkumar Tale: This research is a part of a project that has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement SYSTEMATICGRAPH (No. 725978).

Acknowledgements We want to thank the anonymous reviewers for their valuable feedback.

1 Introduction

For any graph class H, the H-Modification problem takes as input a graph G and an integer
k, and asks whether one can make at most k modifications in G such that the resulting graph
is in H. These types of modification problems are one of the central problems in graph theory
and have received a considerable attention in algorithm design. With appropriate choice
of H and allowed modification operations, H-Modification can encapsulate well studied
problems like Vertex Cover, Chordal Completion, Cluster Editing, Hadwinger
Number, etc. Some natural and well-studied graph modification operations are vertex

© Saket Saurabh and Prafullkumar Tale;
licensed under Creative Commons License CC-BY

15th International Symposium on Parameterized and Exact Computation (IPEC 2020).
Editors: Yixin Cao and Marcin Pilipczuk; Article No. 26; pp. 26:1–26:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:saket@imsc.res.in
mailto:prafullkumar.tale@cispa.saarland
https://doi.org/10.4230/LIPIcs.IPEC.2020.26
http://arxiv.org/abs/2009.11793
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 On the Parameterized Complexity of Maximum Degree Contraction Problem

deletion, edge deletion, edge addition, and edge contraction. The focus of the vast majority
of papers on graph modification problems has been to the first three operations. Consider
an example of H≤d-Modification problem where H≤d is the collection of all graphs that
has maximum degree at most d. If allowed modification operation is vertex deletion then we
know the problem as Bounded Degree Deletion (BDD) and if it is edge contraction
then as Maximum Degree Contraction (MDC). The complexity of BDD and several of
its variants has been extensively studied [7, 9, 10, 13, 15, 16, 18, 25, 31] whereas, to the best
of our knowledge, only [8] addressed MDC. In this article, we enhance our understanding of
the second problem and answer an open question stated in [8].

The contraction of edge uv in simple graph G deletes vertices u and v from G, and replaces
them by a new vertex, which is made adjacent to vertices that were adjacent to either u or v.
For a set of edges F in E(G), we denote the graph obtained from G by contracting all edges
in F by G/F . In the H-Contraction problem, an input is a graph G and an integer k,
and the aim is to decide whether there is a set F of at most k edges in G such that G/F
is in H. Early papers by Watanabe et al. [33, 34] and Asano and Hirata [6] showed that
H-Contraction is NP-Hard for simple graph classes like trees, paths, stars, etc. Brouwer
proved that it is NP-Hard even to decide whether a graph can be contracted to a path of length
four [11]. Note that this problem admits a simple polynomial time algorithm if we consider
any other modification operation. This has been a recurring theme in graph modification
problems. For the same target graph class, edge contraction problem tends to more difficult
than their counterparts where modification operation is vertex/edge addition/deletion. This
difficulty is evident even in the realm of the Parameterized Complexity and Exact Exponential
Algorithms.

In Parameterized Complexity, H-Contraction problems are studied with the number of
edges allowed to contract, k, as parameter. Heggernes et al. [24] proved that if H is the set of
acyclic graphs then H-Contraction is FPT but does not admit a polynomial kernel unless
NP ⊆ coNP/poly. The vertex deletion version of the problem, known as Feedback Vertex
Set, admits a polynomial kernel. Series of papers studied the parameterized complexity for
various graph classes like generalization and restrictions of trees [1, 3], cactus [26], bipartite
graphs [21, 23], planar graphs [20], grids [32], cliques [12], split graphs [4], chordal graphs [29],
bi-cliques [30], degree constrained graph classes [8, 19], etc. Krithika et al. [27] and Gunda
et al. [22] studied H-Contraction problems from the lenses of FPT approximation and
lossy kernelization. Agarwal et al. [2] broke the 2n-barrier for Path Contraction whereas
Fomin et al. [17] showed that brute-force algorithms for Hadwinger Number problem and
various other H-Contraction problem are optimal under ETH.

Belmonte et al. [8] studied the parameterized complexity of H-Contraction for three
different classes H: the class of graphs with maximum degree at most d, the class of d-regular
graphs, and the class of d-degenerate graphs. They classified the parameterized complexity
of all three problems with respect to the parameters k, d, and d+ k. The first problem, also
known as MDC, is defined as follows.

Maximum Degree Contraction Parameter: k + d

Input: Graph G, integers k, d
Question: Does there exist a subset F of E(G) of size at most k such that every vertex
in G/F has degree at most d?

The authors proved that MDC is FPT when parameterized by k + d, W[2]-Hard when
parameterized by k (even when restricted to split graphs), and para-NP-Hard when paramet-
erized by d. Note that the problem is trivially solvable in polynomial time when d ≤ 1 and
NP-Hard for every constant d ≥ 2.

S. Saurabh and P. Tale 26:3

Consider brute-force algorithm for MDC that given an instance (G, k, d), where graph G
has n vertices, enumerates all subsets of edges of size at most k in G and for each subset
contracts all edges in it to check whether the resulting graph has degree at most d. This
algorithm runs in time nO(k). Our first results states that this algorithm is optimal, up to
constants in the exponents, under ETH.

I Theorem 1. Unless ETH fails, there is no algorithm that given any instance (G, k, d) of
Maximum Degree Contraction runs in time no(k) and correctly determines whether it
is a Yes instance.

Belmonte et al. [8] presented an FPT algorithm for MDC that runs in time (d+ k)2k · nO(1).
As for any non-trivial instance d + k is smaller than n, we can conclude that there is no
algorithm that given any instance (G, k, d) of MDC runs in time (d + k)o(k) · nO(1) and
correctly determines whether it is a Yes instance, unless ETH fails.

We remark that that the lower bound in Theorem 1 does not hold when d is a fixed
constant and not a part of input. Hence, it is possible that MDC admits an algorithm that
runs in time ko(k) · nO(1) for a constant value of d. Belmonte et al. [8] proved that MDC
problem admits linear vertex kernels on connected graphs when d = 2. This linear kernel
leads to an FPT algorithm1 running in time 2O(k) · nO(1) . This hints that it is possible to
design a better FPT algorithm for small values of d. Our second result shows that this is
indeed the case.

I Theorem 2. There is an algorithm that given an instance (G, k, d) of Maximum Degree
Contraction runs in time 2O(dk) · nO(1) and correctly determines whether it is a Yes
instance.

We note that the reduction used in [8] to prove that MDC is NP-Hard for any constant d ≥ 2
implies that there is no 2o(dk) algorithm for this problem.

Next, we look at the kernelization of MDC. Belmonte et al. [8] left it as an open question
to determine whether MDC admits a polynomial kernel when parameterized by k + d. Our
last result answers this question in negative.

I Theorem 3. Unless NP ⊆ coNP/poly, Maximum Degree Contraction, parameterized
by k + d, does not admit a polynomial compression.

It is known that the Bounded Degree Deletion problem admits a kernel with O(d3k)
vertices [16]. Hence, H≤d-Modification is another example for which changing the modi-
fication operations from vertex deletion to edge contraction changes the compressibility
drastically.

Due to space constraints, we omit formal proofs of Theorem 1 and 3. These proofs can
be found in the full version of the paper. In Section 2, we present some preliminaries.
In Section 3, we give a reduction from (k × k)-Permutation Independent Set to MDC.
We present an FPT algorithm using universal sets and branching techniques in Section 4. In
Section 5, we present a sketch of reduction from Red Blue Dominating Set to MDC. We
conclude this article with an open question in Section 6.

2 Preliminaries

For a positive integer q, we denote set {1, 2, . . . , q} by [q].

1 The algorithm colors vertices in the reduced instance with two colors and contracts each connected
component in the colored subgraphs.

IPEC 2020

26:4 On the Parameterized Complexity of Maximum Degree Contraction Problem

Graph Theory. In this article, we consider simple graphs with a finite number of vertices. For
an undirected graph G, sets V (G) and E(G) denote its set of vertices and edges, respectively.
Unless otherwise specified, we use n to denote the number of vertices in the input graph G.
We denote an edge with two endpoints u, v as (u, v). Two vertices u, v in V (G) are adjacent
to each other if there is an edge (u, v) in E(G). The open neighborhood of a vertex v, denoted
by NG(v), is the set of vertices adjacent to v and its degree degG(v) is |NG(v)|. The closed
neighborhood of a vertex v, denoted by NG[v], is the set N(v) ∪ {v}. We omit the subscript
in the notation for neighborhood and degree if the graph under consideration is clear. For
a subset S of V (G), we define N [S] =

⋃
v∈S N [v] and N(S) = N [S] \ S. For a subset F of

edges, a subset of vertices V (F) denotes the collection of endpoints of edges in F . We say a
set of edges F spans a set of vertices S if S ⊆ V (F). For a subset S of V (G), we denote the
graph obtained by deleting S from G by G− S and the subgraph of G induced on the set
S by G[S]. For two subsets S1, S2 of V (G), edge set E(S1, S2) denotes the edges with one
endpoint in S1 and another one in S2. We say S1, S2 are adjacent if E(S1, S2) is non empty.
For an integer q, a q-coloring of graph G is a function φ : V (G)→ [q]. A proper coloring of G
is a q-coloring φ of V (G) for some integer q such that for any edge (u, v), φ(u) 6= φ(v). There
is a proper coloring of the graph with ∆(G) + 1 many colors which can found in polynomial
time. A set of vertices S is said to be independent set if no two vertices in S are adjacent to
each other. A set of edges F is called matching if no two edges in F share an endpoint. A
graph is called connected if there is a path between every pair of distinct vertices. A subset
S of V (G) is said to be a connected set if G[S] is connected. A spanning tree of a connected
graph is its connected acyclic subgraph, which includes all the vertices of the graph.

Graph Contraction. The contraction of an edge uv in G deletes vertices u and v from
G, and adds a new vertex which is adjacent to vertices that were adjacent to either u or
v. This process does not introduce self-loops or parallel edges. The resulting graph is
denoted by G/e. For a graph G and edge e = uv, we formally define G/e in the following
way: V (G/e) = (V (G) ∪ {w})\{u, v} and E(G/e) = {xy | x, y ∈ V (G) \ {u, v}, xy ∈
E(G)} ∪ {wx| x ∈ NG(u) ∪NG(v)}. Here, w is a new vertex. An edge contraction reduces
the number of vertices in a graph by exactly one. Several edges might disappear because of
one edge contraction. For a subset of edges F in G, graph G/F denotes the graph obtained
from G by contracting each connected component in the sub-graph G′ = (V (F), F) to a
vertex.

We now formally define a contraction of graph G to another graph H.

I Definition 4 (Graph Contraction). A graph G is said to be contractible to graph H if there
is a function ψ : V (G)→ V (H) such that following properties hold.
1. For any vertex h in V (H), set W (h) := {v ∈ V (G) | ψ(v) = h} is not empty and graph

G[W (h)] is connected.
2. For any two vertices h, h′ in V (H), edge hh′ is present in H if and only if E(W (h),W (h′))

is not empty.
We say graph G is contractible to H via mapping ψ. For a vertex h in H, set W (h) is called
a witness set associated with or corresponding to h. We define the H-witness structure of
G, denoted by W, as a collection of all witness sets. Formally, W = {W (h) | h ∈ V (H)}. A
witness structure W is a partition of vertices in G. If a witness set contains more than one
vertex, then we call it big witness set, otherwise it is small witness set.

If graph G has a H-witness structure, then graph H can be obtained from G by a series of
edge contractions. For a fixed H-witness structure, let F be the union of spanning trees of all
witness sets. By convention, the spanning tree of a singleton set is the empty set. To obtain

S. Saurabh and P. Tale 26:5

graph H from G, it is sufficient to contract edges in F . Hence, H = G/F . For a G/F -witness
structure W of G, there is a unique function ψ : V (G)→ V (G/F) corresponding to it. We
say graph G is k-contractible to H if the cardinality of F is at most k. In other words, H
can be obtained from G by at most k edge contractions.

Maximum Degree Contraction. In this subsection, we state an observation related to
MDC. We say a set of edges F is a solution to instance (G, k, d) if the number of edges in F
is at most k and the maximum degree of graph G/F is at most d. The number of edges that
we are allowed to contract, k, is also called solution size. The following observation specifies
how a solution behaves locally.

I Observation 5. Consider a Yes instance (G, k, d) of MDC and let v be a vertex of degree
at least d+ 1 in G. Then, for any solution F to (G, k, d), there are at least two vertices in
N [v] that are in the same witness set in the G/F -witness structure of G.

Proof. Let G is contractible to a graph G/F , via mapping ψ. Assume, for the sake of
contradiction, that no two vertices in N [v] are in the same witness set. This implies
|N [v]| = |ψ(N [v])|, where ψ(NG[v]) =

⋃
u∈NG[v] ψ(u). As ψ(NG[v]) ⊆ NG/F (ψ(v)) and

|N [v]| > d+ 1, vertex ψ(v) is adjacent with d+ 1 or more vertices in G/F . This contradicts
the fact that the maximum degree of vertices in G/F is at most d. Hence, our assumption
was wrong and there are at least two vertices in N [v] that are in some big-witness set in
G/F -witness structure of G. J

3 A Lower Bound for the Algorithm

We present a reduction from (k × k)-Permutation Independent Set (PIS) problem to
Maximum Degree Contraction problem. In the (k × k)-PIS problem we are given a
graph H on a vertex set [k]× [k]. In other words, the vertex set is formed by a k × k table.
We denote vertices in the table by v[i, j] for 1 ≤ i, j ≤ k. The question is whether there exists
an independent set X in H that contains exactly one vertex from each row and each column
of the table. In other words, for every i, j ∈ [k] there is exactly one element of X that has i
on the first coordinate and j on the second coordinate. Note that without loss of generality
we may assume that each row and each column of the table forms an independent set.

Reduction. The reduction accepts an instance, say (H, k), of (k × k)-Permutation Inde-
pendent Set as an input. Here, H is a graph with vertex set formed by a k × k table. The
reduction modifies a copy of the graph H in the following way.

It adds a vertex corresponding to each row in the table and makes it adjacent with all
vertices in that row. Let R = {r1, r2, . . . , rk} be the set of vertices corresponding to rows.
It adds a vertex corresponding to each column in the table and makes it adjacent with
all vertices in that column. Let C = {c1, c2, . . . , ck} be the set of vertices corresponding
to columns.
It adds set S = {s1, s2, . . . , sk} of k vertices. For every i in [k], it makes si adjacent with
every vertex in V (H) ∪ C and with ri.
For every vertex ri in R, it adds k2 pendant vertices and makes them adjacent with ri.
For every vertex cj in C, it adds (k2 − k + 1) pendant vertices and makes them adjacent
with cj .

See Figure 1 for an illustration. Let G be the graph obtained from a copy of graph H with
the above modifications. The algorithm returns (G, k, k2 + k) as instance of MDC.

IPEC 2020

26:6 On the Parameterized Complexity of Maximum Degree Contraction Problem

Figure 1 Dotted (blue) lines and thin (green) lines show the adjacency of vertices in R and C,
respectively. Contracting the thick (red) edge (v[2, 3], s2) represents selecting vertex v[2, 3] into the
independent set. For the sake of clarity, we do not depict all edges present in the graph.

We present intuition of the proof of correctness. We describe how a solution, if it exists,
to (G, k, d) leads to a solution to (H, k). We hope that this will also provide some intuition as
to how a solution to (H, k) leads to a solution to (G, k, d). Note that S,C,R are independent
sets in G. Every vertex in R∪C ∪S has degree d+ 1 and every vertex in V (G) \ (R∪C ∪S)
has degree strictly less than d. We first argue that any solution for (G, k, d) can only contain
edges in E(G) that have one endpoint in V (H) and another endpoint in S. Then, we
prove that for every i ∈ [k] a solution must pick an edge incident to some vertex in the ith

row and on si to reduce the degree of vertex ri. We prove a similar statement for every
column. Hence, for every i ∈ [k], a solution contains an edge of the form (v[i, j], si) for
some j ∈ [k]. As there are at most k edges in a solution, every edge is of this form. For
i1, i2, j1, j2 ∈ [k], let (v[i1, j1], si1) and (v[i2, j2], si2) be two edges in a solution. We argue
that if (v[i1, j1], v[i2, j2]) is an edge in G (and hence in H) then degrees of vertices obtained
by contracting (v[i1, j1], si1) and (v[i2, j2], si2) are more than d. As this is true for any two
arbitrary edges in the solution, their endpoints in V (H) form an independent set in H.

We present a formal proof of correctness of this reduction in the full version of the
paper. This reduction combined with the fact that unless ETH fails, (k × k)-Permutation
Independent Set can not be solved in time ko(k) [28] proves Theorem 1.

4 A Different FPT Algorithm

In this section, we present a different FPT algorithm for Maximum Degree Contraction.
We introduce a variation of the problem called Labeled-Maximum Degree Contraction
(Labeled-MDC). We present an FPT algorithm for Labeled-MDC and use it as a
subroutine to present an FPT algorithm for MDC.

Informally, an instance of Labeled-MDC is an instance of MDC along with a labeling
of vertices in the graph. Every vertex has a red or blue label. We are only interest in a
solution that satisfies the following properties: (1) every edge has red labelled endpoints,
and (2) for any red-labelled maximal connected component, a solution either spans none or
all the vertices in that component. We remark that because of the second condition, this
problem is not a restricted version of MDC. We formally define Labeled-MDC as follows.

S. Saurabh and P. Tale 26:7

Labeled-MDC Parameter: k + d

Input: Graph G, a partition Vr, Vb of V (G), and integers k, d
Question: Does there exist a subset F of E(G) of size at most k such that (a) every
vertex in G/F has degree at most d; (b) V (F) ⊆ Vr; and (c) for a connected component
C of G[Vr], if C ∩ V (F) 6= ∅ then C ⊆ V (F).

We say a set of edges F is a solution to instance (G, (Vr, Vb), k, d) if the number of edges
in F is at most k, the maximum degree of graph G/F is at most d, V (F) ⊆ Vr and for a
connected component C of G[Vr], if C ∩ V (F) 6= ∅ then C ⊆ V (F).

It is easy to see that if (G, (Vr, Vb), k, d) is a Yes instance of Labeled-MDC then
(G, k, d) is a Yes instance of MDC. Let U be the family of all subsets of V (G). If (G, k, d) is
a Yes instance of MDC then (G, (Vr, V (G) \ Vr), k, d) is a Yes instance of Labeled-MDC
for some set Vr in U . We use universal sets to construct a ‘small’ family of subsets of V (G)
that suffices for our purpose. We assume that there is a unique integer in [n] for every vertex
in V (G). We use a subset of [n] and a corresponding subset of V (G) interchangeably.

I Definition 6 (Universal Sets). An (n, l)-universal set is a family U of subsets of [n] such
that for any S ⊆ [n] of size l, the family {A ∩ S | A ∈ U} contains all subsets of S.

I Proposition 7 ([5]). For any n, l ≥ 1 one can construct an (n, l)-universal set of size
2O(l) · log(n) in time 2O(l) · n log(n).

In the following lemma, we argue that an FPT algorithm for Labeled-MDC leads to an
FPT algorithm for MDC.

I Lemma 8. Suppose there is an algorithm that given an instance (G, (Vr, Vb), k, d) of
Labeled-MDC runs in time f(k, d) · nO(1) and correctly determines whether it is a Yes
instance. Then, there is an algorithm that given an instance (G, k, d) of MDC runs in time
2O(dk) · f(k, d) · nO(1) and correctly determines whether it is a Yes instance.

Proof. Let A be an algorithm that given an instance (G, (Vr, Vb), k, d) of Labeled-MDC
runs in time f(k, d) · nO(1) and correctly determines whether it is a Yes instance. We first
describe an algorithm for MDC that uses A as a subroutine. For the input (G, k, d), the
algorithm constructs a (U, 2k + kd)-universal family U using Proposition 7. For every set Vr

in U , the algorithm runs Algorithm A with input (G, (Vr, V (G) \ Vr), k, d). The algorithm
returns Yes if Algorithm A returns Yes for one of these inputs otherwise it returns No.
This completes the description of the algorithm. The running time of the algorithm follows
from the description and Proposition 7. In the remaining proof, we argue the correctness
of the algorithm. More precisely, we prove that (G, k, d) is a Yes instance of MDC if and
only if there is a subset Vr in U such that (G, (Vr, V (G) \ Vr), k, d) is a Yes instance of
Labeled-MDC.

Suppose that (G, k, d) is a Yes instance of MDC and let F be a solution to it. Note
that |V (F)| ≤ 2k. We first argue that the number of vertices in N(V (F)) is at most kd.
Let W be the G/F -witness structure of G and ψ : V (G)→ V (G/F) be the corresponding
function. Consider an arbitrary vertex v in N(V (F)). As v is not in V (F), ψ(v) corresponds
to a small witness set in W. As v is in N(V (F)), ψ(v) is adjacent to a vertex in G/F that
corresponds to a big witness set in W. As |F | ≤ k, there are at most k big witness sets in
W. Since the maximum degree of G/F is at most d, there are at most kd small witness
sets in W that are adjacent with some big witness set. Hence, there are at most kd vertices
in N(V (F)). As U is a (n, 2k + dk)-universal set and |N [V (F)]| ≤ 2k + dk, there exists a
set A in U such that the family {A ∩ N [V (F)] | A ∈ U} contains all subsets of N [V (F)].
This implies, there exists a set, say Vr, such that Vr ∩N [V (F)] = V (F). We argued that
(G, (Vr, V (G) \ Vr), k, d) is a Yes instance of Labeled-MDC.

IPEC 2020

26:8 On the Parameterized Complexity of Maximum Degree Contraction Problem

Note that G/F has maximum degree at most d and V (F) ⊆ Vr. We need to prove that
for a connected component C of G[Vr] if C ∩ V (F) 6= ∅ then C ⊆ V (F). Assume that there
exits a connected component C of G[Vr] such that C∩V (F) 6= ∅ and C \V (F) 6= ∅. As C is a
connected component and C ∩ V (F) 6= ∅, there exists a vertex v in C \ V (F) that is adjacent
with some vertex in V (F). Hence, there is a vertex in N(V (F))∩Vr. This contradicts the fact
that Vr ∩N [V (F)] = V (F). Hence, our assumption is wrong and C \ V (F) is an empty set.
This implies (G, (Vr, V (G) \ Vr), k, d) is a Yes instance of Labeled-MDC. As mentioned
before, it is easy to see that if (G, (Vr, Vb), k, d) is a Yes instance of Labeled-MDC then
(G, k, d) is a Yes instance of MDC. This concludes the proof of the lemma. J

In the remaining section, we present a recursive algorithm for Labeled-MDC. We start
with the following simple reduction rules.

I Reduction Rule 9. For an instance (G, (Vr, Vb), k, d), if the maximum degree of vertices
in G is at most d and k ≥ 0 then return a Yes instance.

It is easy to see that the first reduction rule is safe. Recall that a set of edges F is
called solution to (G, (Vr, Vb), k, d) if the number of edges in F is at most k, the maximum
degree of graph G/F is at most d, V (F) ⊆ Vr, and for a connected component C of G[Vr],
if C ∩ V (F) 6= ∅ then C ⊆ V (F). Consider a connected component C of G[Vr]. If |C| = 1
then no solution edge can be incident to it. Also, if |C| ≥ 2k + 1 then because of the last
property and the fact that |V (F)| ≤ 2k, no solution edge can be incident to vertices in C.
These simple observations prove that the following reduction rule is safe.

I Reduction Rule 10. For an instance (G, (Vr, Vb), k, d), if there is a connected component,
say C, of G[Vr] such that |C| = 1 or |C| ≥ 2k + 1 then move C from Vr to Vb i.e. return
instance (G, (Vr \ C, Vb ∪ C), k, d).

By Observation 5, vertex v in Vb can be adjacent to at most d+ k vertices in Vr. The
following reduction rule ensures that the neighbors of v in Vr are not spread across many
connected components.

I Reduction Rule 11. For an instance (G, (Vr, Vb), k, d), if there exists a vertex, say v, in
Vb for which NG(v) intersects with d+ 1 different connected components of G[Vr] then return
a No instance.

I Lemma 12. Reduction Rule 11 is safe.

Proof. Assume that (G, (Vr, Vb), k, d) is a Yes instance. Let F be its solution and it contracts
G to G/F via mapping ψ. Suppose C1, C2, . . . , Cd+1 are connected components of G[Vr]
such that Ci ∩N(v) 6= ∅ for i ∈ [d+ 1]. For every i, consider a vertex, say ui, in Ci ∩N(v).
Let U = {u1, u2, . . . , ud+1}. Define ψ(U) =

⋃
u∈U ψ(u). For i, j ∈ [d + 1], i 6= j implies

ψ(ui) 6= ψ(uj) as Ci and Cj are two different connected components of G[Vr] and V (F) ⊆ Vr.
This implies |ψ(U)| = |U | = d + 1. As V (F) ⊆ Vr and v ∈ Vb, F does not contain an
edge incident on v. Hence, ψ(v) 6= ψ(ui) for any i ∈ [d + 1]. As ψ(U) ⊆ NG/F (ψ(v)) and
|ψ(U)| ≥ d+ 1, vertex ψ(v) is adjacent with d+ 1 or more vertices in G/F . This contradicts
the fact that the maximum degree of vertices in G/F is at most d. Hence, our assumption
was wrong and (G, (Vr, Vb), k, d) is a No instance. J

The algorithm exhaustively applies the reduction rules mentioned above. On a reduced
instance, the algorithm creates multiple instances using the following subroutine. For an
instance (G, (Vr, Vb), k, d), a subset R of Vr, and a (d + 1)-coloring of R, the subroutine

S. Saurabh and P. Tale 26:9

creates a new instance by contracting each colored component of R into a single vertex, and
(re-)label it blue. We need the notion of ‘valid coloring’ to filter out colorings that will not
produce a ‘smaller’ instance. For graph H, a vertex coloring φ : V (H)→ [d+ 1] is said to be
a valid coloring if every monochromatic connected component is of size at least two. We now
describe the subroutine.

Subroutine Colorwise-Contraction. This subroutine takes as an input an instance
(G, (Vr, Vb), k, d) of Labeled-MDC, a non-empty subset R of Vr, and a valid coloring
φ of G[R]. It returns another instance of Labeled-MDC. It initializes G′ = G, V ′r = Vr,
V ′b = Vb, and k′ = k. For a monochromatic connected component C of G[R], the subroutine
finds a spanning tree of G[C] and contracts all edges in it. Let vC be the vertex obtained
at the end of this series of edge contractions. It updates V ′r = Vr \ C, V ′b = Vb ∪ {vC}
and reduces k by |C| − 1. The subroutine repeats this procedure for every monochromatic
connected component of G[R]. It returns (G′, (V ′r , V ′b), k′, d) as instance of Labeled-MDC.
This completes the description of the subroutine.

It is easy to verify that (V ′r , V ′b) is a partition of V (G′). As φ is a valid coloring of G[R], a
union of spanning trees of all monochromatic connected components of G[R] contains at least
|R|/2 edges. Hence, the subroutine contracts at least |R|/2 edges. This small observation
will be helpful to get a bound on the running time of the algorithm.
I Remark 13. k′ ≤ k − |R|/2.

Let CC[(G, (Vr, Vb), k, d);R;φ] denote the instance returned by the subroutine when the
input is (G, (Vr, Vb), k, d), R, and φ. In the following lemma, we prove if the original instance
is a Yes instance than at least one of the reduced instances is a Yes instance.

I Lemma 14. Consider a Yes instance (G, (Vr, Vb), k, d) of Labeled-MDC. Let R be a
union of some connected components of G[Vr]. Suppose there is solution F to (G, (Vr, Vb), k, d)
such that R ⊆ V (F). Then, there is a valid coloring φ : R → [d + 1] of G[R] for which
CC[(G, (Vr, Vb), k, d);R;φ] is a Yes instance.

Proof. Let H = G/F . Consider the H-witness structure W of G and let G be contracted
to H via ψ. Define a subset WR of W as the collection of witness sets that intersects R.
Formally, WR = {W ∈ W | W ∩R 6= ∅}. Let WR = {W1,W2, . . . ,Wq}. For every i ∈ [q], let
hi be the vertex corresponding to Wi. In other words, Wi = {v ∈ V (G) | ψ(v) = hi}. Let
RH = {h1, h2, . . . , hq}.

Let F1 be the collection of edges in F that are incident to some vertex in R. Hence,
R ⊆ V (F1). As R is a union of connected components in G[Vr] and V (F1) ⊆ V (F) ⊆ Vr,
we can conclude that R = V (F1) =

⋃
i∈[q] Wi. Hence, {W1,W2, . . . ,Wq} is a partition of R.

As there is a solution edge incident to every vertex in R, every witness set in WR is a big
witness set. This implies for every i ∈ [q], there is a subset Fi of F such that Wi = V (Fi). As
the maximum degree of vertices in graph H is at most d, there is a proper (d+ 1)-coloring,
say γ, of H. For i, j ∈ [q], if (hi, hj) is an edge in H then γ(hi) 6= γ(hj). Define a coloring
φ : R→ [d+ 1] as follows. For v ∈ R, φ(v) = γ(hi) where v ∈Wi. As {W1,W2, . . . ,Wq} is a
partition of R, function φ is well defined. Since Wi is a big witness set, φ is a valid coloring.

By the construction of φ, any witness set in W is monochromatic. Since γ is a proper
coloring of H, any two witness sets adjacent to each other have distinct colors. Hence, every
witness set in WR is a monochromatic connected component of coloring φ. As algorithm
constructs every valid coloring of R, it also consider this coloring and create instance
(G′, (V ′r , V ′b), k′, d) = CC[(G, (Vr, Vb), k, d), R;φ]. For every i ∈ [q], let F ◦i be edges in a
spanning tree of G[Wi]. Define F ◦ =

⋃
i∈[q] F

◦
i . As Wi = V (Fi), graphs G/F1 and G/F ◦ are

identical. Also, |F ◦i | ≤ |Fi| which implies |F ◦| ≤ |F1|. Define F ? = (F \ F1) ∪ F ◦. It is easy
to verify that F ? is also a solution to (G, (Vr, Vb), k, d).

IPEC 2020

26:10 On the Parameterized Complexity of Maximum Degree Contraction Problem

We now argue that F ? \ F ◦ is a solution to (G′, (V ′r , V ′b), k′, d). By the description of the
algorithm, k′ = k−|F ◦|. As |F ?| ≤ |F | ≤ k and F ◦ ⊆ F ?, we have |F ?\F ◦| ≤ |F ?|−|F ◦| ≤ k′.
Note that G/F ? = (G/F ◦)/(F ? \ F ◦) = G′/(F ? \ F ◦) as G′ = G/F ◦. This implies the
maximum degree of G′/(F ? \ F ◦) is at most d. The only thing that remains to argue is that
V (F ? \ F ◦) is contained in V ′r . By construction, F \ F1 = F ? \ F ◦. As F1 is the set of edges
in F that were incident to R, we can conclude that no edge in F ? \ F ◦ is incident to R.
Recall that V ′r = Vr \R. Hence, V (F ? \ F ◦) ⊆ V ′r . This implies that F ? \ F ◦ is a solution to
(G′, (V ′r , Vb), k′, d) and concludes the proof of the lemma. J

In the above lemma, instead of considering any arbitrary subset Vr we only consider a
subset that is the union of one or more connected components of G[Vr]. This suffices for our
purpose as the algorithm calls the subroutine only on such subsets of Vr. Also, note that we
do not need to know the solution F explicitly to apply the above lemma. It suffices to know
that such a solution exists. We are now able to present an algorithm for Labeled-MDC

Algorithm for Labeled-MDC. The algorithm takes as input an instance (G, (Vr, Vb), k, d)
of Labeled-MDC and returns Yes or No. If k < 0 then the algorithm returns No. If
k = 0 then it finds the maximum degree of G. If it is at most d then the algorithm returns
Yes otherwise it returns No. The algorithm exhaustively applies Reduction Rules 9, 10, and
11. If the reduced instance is a trivial Yes (resp. No) instance then the algorithm returns
Yes (resp. No). Otherwise, it creates multiple instances and makes recursive calls on these
instances. The algorithm returns Yes if one of the recursive calls returns Yes, otherwise; it
returns No.

We now describe the procedure used by the algorithm to create new instances. Let
(G, (Vr, Vb), k, d) be the instance on which reduction rules are not applicable. The algorithm
finds a vertex, say v, in G such that degG(v) ≥ d+ 1. It considers the following two cases.
1. (Vertex v is in Vr) Let R be the connected component of G[Vr] that contains v. The

algorithm constructs all valid colorings φ : R→ [d+ 1] of G[R]. For each coloring, the
algorithm calls subroutine Colorwise-Contraction with input (G, (Vr, Vb), k, d), R, and
φ. The algorithm calls itself with the instances returned by this subroutine as the input.

2. (Vertex v is in Vb) Let C1, C2, . . . , Cq be the connected components of G[Vr] such that
N(v)∩Ci 6= ∅ for every i ∈ [q]. For a non-empty subset I ⊆ [q], define RI :=

⋃
i∈I Ci. For

every non-empty subset I ⊆ [q], the algorithm proceeds as follows. If |RI | ≥ 2k + 1, the
algorithm discards this choice of I and moves to the next one. Otherwise, the algorithm
constructs all valid coloring φ : RI → [d+ 1] of G[RI]. For each coloring, the algorithm
calls subroutine Colorwise-Contraction with input (G, (Vr, Vb), k, d), RI , and φ. The
algorithm calls itself with the instance returned by this subroutine as input.

This completes the description of the algorithm.
In the following lemma, we prove that the algorithm described above is correct and runs

in the desired time.

I Lemma 15. There is an algorithm that given an instance (G, (Vr, Vb), k, d) of Labeled-
MDC runs in time 2(d+2)k · (d+ 1)2k · nO(1) and correctly determines whether it is a Yes
instance.

Proof. We argue that the algorithm described above solves Labeled-MDC in the desired
time. We prove this lemma by the induction over the solution size k.

Consider the base case when the solution size is zero. Here, the algorithm finds a maximum
degree of the graph and depending on its value returns Yes or No. It is easy to see that
the lemma holds in this case. Assume that the lemma is true when the solution size is at
most k − 1.

S. Saurabh and P. Tale 26:11

We first prove that given a Yes instance the algorithm returns Yes. Suppose
(G, (Vr, Vb), k, d) is a Yes instance of Labeled-MDC and let F be its solution. Note
that this implies that F is a solution to (G, k, d). If the algorithm returned Yes because
Reduction Rule 9 returned a Yes instance then the lemma is vacuously true. By Lemma 12,
Reduction Rule 11 is not applicable on the input. Consider the instance obtained by the
exhaustive application Reduction Rules 9 and 10 on the input instance. For notational
convenience, we denote this reduced instance by (G, (Vr, Vb), k, d). As Reduction Rule 9 is
not applicable, there is a vertex in G that has degree at least d+ 1. Let v be the vertex of
degree at least d+ 1 found by the algorithm. By Observation 5, V (F) intersects with N [v].

Consider the case when v is in Vr and let R be the connected component of G[Vr] that
contains v. Since V (F) ⊆ Vr, we have R ∩ V (F) 6= ∅. As F is a solution to (G, (Vr, Vb), k, d),
R ∩ V (F) 6= ∅ implies R ⊆ V (F). Instance (G, (Vr, Vb), k, d), subset R of Vr, and solution F
satisfies the premise of Lemma 14. Hence, there is a valid coloring φ : R→ [d+ 1] of G[R]
such that CC[(G, (Vr, Vb), k, d), R;φ] is a Yes instance. As R 6= ∅, Remark 13 implies that
k′ < k. By the induction hypothesis, the algorithm correctly returns Yes when the input
is (G′, (V ′r , V ′b), k′, d). As one of the recursive calls returns Yes, the algorithm returns Yes
when the input is (G, (Vr, Vb), k, d) and v is in Vr.

Consider the case when v is in Vb. Let C1, C2, . . . , Cq be the connected components ofG[Vr]
such that N(v) ∩ Ci 6= ∅ for every i ∈ [q]. Recall that for a non-empty subset I ⊆ [q], RI =⋃

i∈I Ci. As V (F) intersects N [v] and V (F) ⊆ Vr, there exists a non-empty subset I ′ ⊆ [q]
such that for i ∈ [q], Ci∩N(v) 6= ∅ if and only if i ∈ I ′. As F is a solution to (G, (Vr, Vb), k, d),
Ci ∩ V (F) 6= ∅ implies Ci ⊆ V (F). Hence, RI′ ⊆ V (F). As |V (F)| ≤ 2k, |RI′ | ≤ 2k. For
every non-empty subset I ⊆ [q] for which |RI | ≤ 2k, the algorithm constructs all valid coloring
φ : RI → [d + 1] of G[RI] and calls Colorwise-Contraction. Instance (G, (Vr, Vb), k, d),
subset RI′ of Vr, and solution F satisfies the premise of Lemma 14. Hence, there is a valid
coloring φ : RI′ → [d+1] ofG[RI′] such that (G′, (V ′r , V ′b), k′, d) = CC[(G, (Vr, Vb), k, d), RI′ , φ]
is a Yes instance. As R 6= ∅, Remark 13 implies that k′ < k. By the induction hypothesis,
the algorithm correctly returns Yes when the input is (G′, (V ′r , V ′b), k′, d). As one of the
recursive calls returns Yes, the algorithm returns Yes when the input is (G, (Vr, Vb), k, d)
and v is in Vb. This implies that if (G, (Vr, Vb), k, d) is a Yes instance then the algorithm
returns Yes.

We now prove that if the algorithm returns Yes on instance (G, (Vr, Vb), k, d) then it is a
Yes instance of Labeled-MDC. If the algorithm returned Yes because Reduction Rule 9
returned a Yes instance then the lemma is vacuously true. Otherwise, there is a newly
created instance, say (G′, (V ′r , V ′b), k′, d), on which the recursive call of the algorithm returned
Yes. Let R be the subset of Vr and φ be its valid coloring such that Colorwise-Contraction
returned this instance when input was (G, (Vr, Vb), k, d), R, and φ. Let F ◦ be the edges
in G contracted by the subroutine to contract G′. In other words, F ◦ is a collection of
spanning trees of connected monochromatic components of G[R]. Note that |F ◦| = k − k′.
The algorithm calls Colorwise-Contraction only on non-empty subsets R. Hence, by
Remark 13, k′ < k. By the induction hypothesis, (G′, (V ′r , V ′b), k′, d) is a Yes instance of
Labeled-MDC. It is easy to see that if F ′ is a solution to (G′, (V ′r , V ′b), k′, d) then F ′∪F ◦ is
a solution to (G, (Vr, Vb), k, d). This concludes the proof of the correctness of the algorithm.

We now bound the running time of the algorithm. The algorithm can apply all the
reduction rules in polynomial time. It creates new instances only when none of the reduction
rules are applicable. As Reduction Rules 10 is not applicable, any connected component of
G[Vr] has at least two and at most 2k vertices. In Case (1), the algorithm creates at most
(d+ 1)|R| many instances. By Remark 13 and the induction hypothesis, the time taken by
the algorithm in this case is

(d+ 1)|R| · 2(d+2)(k−|R|/2) · (d+ 1)2(k−|R|/2) · nO(1) ≤ 2(d+2)k · (d+ 1)2k · nO(1).

IPEC 2020

26:12 On the Parameterized Complexity of Maximum Degree Contraction Problem

As Reduction Rule 11 is not applicable, for any vertex v in Vb, there are at most d
connected components of G[Vr] that intersects N(v). In Case (2), the algorithm constructs
all valid partitions of RI only when |RI | ≤ 2k. Hence, in this case, the algorithm creates
2d · (d+ 1)|R| many instances. By Remark 13 and the induction hypothesis, the time taken
by the algorithm in this case is

2d · (d+ 1)|R| · 2(d+2)(k−|R|/2) · (d+ 1)2(k−|R|/2) · nO(1) ≤ 2(d+2)k · (d+ 1)2k · nO(1).

As |R| ≥ 2, we have 2d · 2(d+2)(−|R|/2) ≤ 1. This completes the proof of the lemma. J

The correctness of Theorem 2 immediately follows from Lemma 8 and Lemma 15.

5 No Polynomial Kernel

In this section, we present a sketch of a reduction from Red Blue Dominating Set
(RBDS). In this problem, an input is comprised of a bipartite graph H with a bipartition
(R,B) of V (H), and a positive integer l. The question is, does there exist a subset R′ of R
of size at most l such that N(R′) = B?

In this problem, an input comprises a bipartite graph H with a bipartition (R,B) of
V (H), and a positive integer l. The question is, does there exist a subset R′ of R of size at
most l such that N(R′) = B? Without loss of generality, we can assume that l + 3 < |B|
and no vertex in R is adjacent to all but one vertices in B. We know the following result
about the compression of the problem. See, for example, Theorem 15.18 in [14].

I Proposition 16. Unless NP ⊆ coNP/poly, RBDS, parameterized by |B|, does not admit a
polynomial compression.

If |R| > 2|B| then there are at least two different vertices, say r1, r2 such that N(r1) =
N(r2). It is easy to see that it is safe to delete one of these two vertices. In this case, we
can ensure, in polynomial time, that |R| ≤ 2|B| by repeating the above process. This implies
log2 |R| ≤ |B|. Hence, we get the following corollary of Proposition 16.

I Corollary 17. Unless NP ⊆ coNP/poly, RBDS, parameterized by |B|+ log2 |R|, does not
admit a polynomial compression.

For the sake of clarity, we use both |B| and log2 |R| as parameters instead of replacing
log2 |R| by the larger parameter |B|. For notational convenience, we assume that log2 |R| is
an integer. If this is not the case, one can add some isolated vertices in R to ensure that
log2 |R| is an integer. This results in at most doubling of the number of vertices in it.

We first present an overview of the reduction. Consider an instance (H,R,B, l) of RBDS.
See Figure 2 for an illustration. The reduction makes a copy of R and two copies of B, say
B1, B2. For every vertex b in B, we denote its two copies in B1, B2 by b1, b2, respectively.
For every edge (r, b), the reduction adds edges (r, b1) and (r, b2). It adds two independent
sets U1, U2. For every vertex u ∈ U1 ∪U2, it adds some pendent vertices adjacent to it. The
reduction adds all edges to make a complete bipartite graph with (B1, U1) as its bipartition.
Similarly, it adds all edges to make a complete bipartite graph with (B2, U2) as its bipartition.
For every vertex b in B, it adds a set of independent vertices Xb. For every x in Xb, it
adds some pendent vertices adjacent to it and adds edges (b1, x), (b2, x). We briefly present
an intuition behind the construction before presenting the last step. Let G be the graph
constructed so far and k, d be two integers whose values depend only on |B|, log2 |R|. Suppose
the reduction returns (G, k, d) as an instance of MDC.

S. Saurabh and P. Tale 26:13

Figure 2 (Left) Overview of the reduction. The doted lines indicate that there is a complete
bipartite graph cross two sets. (Right) The operation of replacing edges incident to vertex in B by a
tree rooted at that vertex.

We set the value of d and the number of pendant vertices such that it is ensured that the
only vertices in U1 ∪ U2 ∪Xb have degree more than d in G. We fix k and the sizes of sets
U1, U2, Xb to ensure that any solution for the reduced instance of MDC satisfy the following
properties.
1. It does not include an edge with one of its endpoints in B1 ∪B2 and another in U1 ∪ U2.
2. For any b in B, it does not include an edge with one of its endpoints in {b1, b2} and

another in Xb.
3. It spans all vertices in B1 ∪B2. In other words, B1 ∪B2 ⊆ V (F).
4. There are at most l witness sets in the G/F -witness structure of G that contain vertices

in B1 (similarly in B2).
5. For every b in B, F includes b1, b2 in the same witness set.

Property (4) ensures that the degree constraints for the vertices in U1 (similarly in U2)
are satisfied. Property (5) ensures that for every b in B, the degree constraints for the
vertices in Xb are satisfied. Because of Property (1) and (2), only the vertices in R can make
a witness set connected. Hence, each witness set should contain at least one vertex from R.
We set the budget k such that each witness set contains exactly one vertex from R. To prove
connectivity to witness set, this vertex needs to be adjacent to all vertices in that witness
set. Hence, the set of endpoints of edges in a solution to (G, k, d) contains at most l vertices
in R that dominates B. This naturally leads to a solution to (H.R,B, l).

We now present the last step in the construction. The degree of the vertices formed by
contracting a witness set can be larger than d. To avoid this, we replace star centered at b
and whose leaves are in R by a binary tree rooted at that vertex. We ensure that for every
edge incident b, there is a unique root-to-leaf path in the binary tree rooted at b and vice
versa.

We present a formal reduction and its proof of correctness in the full version of the paper.
This reduction combined with the fact that unless NP ⊆ coNP/poly, RBDS, parameterized
by |B|, does not admit a polynomial compression leads to a proof of Theorem 3.

IPEC 2020

26:14 On the Parameterized Complexity of Maximum Degree Contraction Problem

6 Conclusion

In this article, we studied Maximum Degree Contraction problem. We prove that a
simple brute force algorithm for this problem is optimal under ETH. This lower bound also
implies that the known FPT algorithm with running time (d+k)k ·nO(1) is also optimal under
the same hypothesis. We compliment this result by presenting another FPT algorithm with
running time 2O(dk) ·nO(1). While these two FPT algorithms are incomparable, our algorithm
runs faster for smaller values of d, for which the problem still remains NP-Hard. We also
prove that unless NP ⊆ coNP/poly, the problem does not admit a polynomial compression
when parameterized by k + d.

Most of the H-Contraction problems do not admit a polynomial kernel under the
same complexity conjecture. For some graph classes like trees, cactus, cliques, splits graphs,
such negative results have been complimented by establishing a lossy kernel of polynomial
size for these problems. There are also examples like Chordal Contraction, s-Club
Contraction (for s ≥ 2) for which we know that lossy kernel of polynomial size do not
exist. We conclude this article with following open question: Does Maximum Degree
Contraction admit a lossy kernel of polynomial size?

References
1 Akanksha Agarwal, Saket Saurabh, and Prafullkumar Tale. On the parameterized complexity

of contraction to generalization of trees. Theory of Computing Systems, 63(3):587–614, 2019.
2 Akanksha Agrawal, Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Prafullkumar Tale.

Path contraction faster than 2n. SIAM Journal on Discrete Mathematics, 34(2):1302–1325,
2020.

3 Akanksha Agrawal, Lawqueen Kanesh, Saket Saurabh, and Prafullkumar Tale. Paths to trees
and cacti. In International Conference on Algorithms and Complexity, pages 31–42. Springer,
2017.

4 Akanksha Agrawal, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Split contraction:
The untold story. ACM Transactions on Computation Theory (TOCT), 11(3):1–22, 2019.

5 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM (JACM),
42(4):844–856, 1995.

6 Takao Asano and Tomio Hirata. Edge-contraction problems. Journal of Computer and System
Sciences, 26(2):197–208, 1983.

7 Balabhaskar Balasundaram, Shyam Sundar Chandramouli, and Svyatoslav Trukhanov. Approx-
imation algorithms for finding and partitioning unit-disk graphs into co-k-plexes. Optimization
Letters, 4(3):311–320, 2010.

8 Rémy Belmonte, Petr A. Golovach, Pim Hof, and Daniël Paulusma. Parameterized complexity
of three edge contraction problems with degree constraints. Acta Informatica, 51(7):473–497,
2014.

9 Nadja Betzler, Robert Bredereck, Rolf Niedermeier, and Johannes Uhlmann. On bounded-
degree vertex deletion parameterized by treewidth. Discrete Applied Mathematics, 160(1-2):53–
60, 2012.

10 Hans L Bodlaender and Babette van Antwerpen-de Fluiter. Reduction algorithms for graphs
of small treewidth. Information and Computation, 167(2):86–119, 2001.

11 Andries Evert Brouwer and Henk Jan Veldman. Contractibility and NP-completeness. Journal
of Graph Theory, 11(1):71–79, 1987.

12 Leizhen Cai and Chengwei Guo. Contracting few edges to remove forbidden induced subgraphs.
In International Symposium on Parameterized and Exact Computation, pages 97–109. Springer,
2013.

S. Saurabh and P. Tale 26:15

13 Zhi-Zhong Chen, Michael Fellows, Bin Fu, Haitao Jiang, Yang Liu, Lusheng Wang, and Binhai
Zhu. A linear kernel for co-path/cycle packing. In International Conference on Algorithmic
Applications in Management, pages 90–102. Springer, 2010.

14 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

15 Anders Dessmark, Klaus Jansen, and Andrzej Lingas. The maximum k-dependent and f-
dependent set problem. In International Symposium on Algorithms and Computation, pages
88–97. Springer, 1993.

16 Michael R Fellows, Jiong Guo, Hannes Moser, and Rolf Niedermeier. A generalization of
nemhauser and trotter’s local optimization theorem. Journal of Computer and System Sciences,
77(6):1141–1158, 2011.

17 Fedor V. Fomin, Daniel Lokshtanov, Ivan Mihajlin, Saket Saurabh, and Meirav Zehavi.
Computation of Hadwiger Number and Related Contraction Problems: Tight Lower Bounds.
In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020),
pages 49:1–49:18. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020.

18 Robert Ganian, Fabian Klute, and Sebastian Ordyniak. On structural parameterizations of
the bounded-degree vertex deletion problem. In 35th Symposium on Theoretical Aspects of
Computer Science (STACS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

19 Petr A Golovach, Marcin Kaminski, Daniël Paulusma, and Dimitrios M Thilikos. Increasing
the minimum degree of a graph by contractions. Theoretical computer science., 481:74–84,
2013.

20 Petr A Golovach, Pim van’t Hof, and Daniël Paulusma. Obtaining planarity by contracting
few edges. Theoretical Computer Science, 476:38–46, 2013.

21 Sylvain Guillemot and Dániel Marx. A faster fpt algorithm for bipartite contraction. Informa-
tion Processing Letters, 113(22-24):906–912, 2013.

22 Spoorthy Gunda, Pallavi Jain, Daniel Lokshtanov, Saket Saurabh, and Prafullkumar Tale.
On the parameterized approximability of contraction to classes of chordal graphs. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2020), 2020 (To Appear).

23 Pinar Heggernes, Pim Van’T Hof, Daniel Lokshtanov, and Christophe Paul. Obtaining a
bipartite graph by contracting few edges. SIAM Journal on Discrete Mathematics, 27(4):2143–
2156, 2013.

24 Pinar Heggernes, Pim Van’t Hof, Benjamin Lévêque, Daniel Lokshtanov, and Christophe Paul.
Contracting graphs to paths and trees. Algorithmica, 68(1):109–132, 2014.

25 Christian Komusiewicz, Falk Hüffner, Hannes Moser, and Rolf Niedermeier. Isolation concepts
for efficiently enumerating dense subgraphs. Theoretical Computer Science, 410(38-40):3640–
3654, 2009.

26 R Krithika, Pranabendu Misra, and Prafullkumar Tale. An fpt algorithm for contraction to
cactus. In International Computing and Combinatorics Conference, pages 341–352. Springer,
2018.

27 Ramaswamy Krithika, Pranabendu Misra, Ashutosh Rai, and Prafullkumar Tale. Lossy
kernels for graph contraction problems. In 36th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2016). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2016.

28 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameterized
problems. SIAM Journal on Computing, 47(3):675–702, 2018.

29 Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. On the hardness of eliminating
small induced subgraphs by contracting edges. In International Symposium on Parameterized
and Exact Computation, pages 243–254. Springer, 2013.

30 Barnaby Martin and Daniël Paulusma. The computational complexity of disconnected cut
and 2k2-partition. Journal of combinatorial theory, series B, 111:17–37, 2015.

IPEC 2020

26:16 On the Parameterized Complexity of Maximum Degree Contraction Problem

31 Naomi Nishimura, Prabhakar Ragde, and Dimitrios M Thilikos. Fast fixed-parameter tractable
algorithms for nontrivial generalizations of vertex cover. Discrete Applied Mathematics,
152(1-3):229–245, 2005.

32 Saket Saurabh, Uéverton dos Santos Souza, and Prafullkumar Tale. On the parameterized
complexity of grid contraction. In 17th Scandinavian Symposium and Workshops on Algorithm
Theory (SWAT 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

33 Toshimasa Watanabe, Tadashi Ae, and Akira Nakamura. On the removal of forbidden graphs
by edge-deletion or by edge-contraction. Discrete Applied Mathematics, 3(2):151–153, 1981.

34 Toshimasa Watanabe, Tadashi Ae, and Akira Nakamura. On the np-hardness of edge-deletion
and-contraction problems. Discrete Applied Mathematics, 6(1):63–78, 1983.

	Introduction
	Preliminaries
	A Lower Bound for the Algorithm
	A Different FPT Algorithm
	No Polynomial Kernel
	Conclusion

