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Abstract
Let Π1,Π2, . . . ,Πc be graph properties for a fixed integer c. Then, (Π1,Π2, . . . ,Πc)-Partition is
the problem of asking whether the vertex set of a given graph can be partitioned into c subsets
V1, V2, . . . , Vc such that the subgraph induced by Vi satisfies the graph property Πi for every
i ∈ {1, 2, . . . , c}. Minimization and parameterized variants of (Π1,Π2, . . . ,Πc)-Partition have been
studied for several specific graph properties, where the size of the vertex subset V1 satisfying Π1

is minimized or taken as a parameter. In this paper, we first show that the minimization variant
is hard to approximate for any nontrivial additive hereditary graph properties, unless c = 2 and
both Π1 and Π2 are classes of edgeless graphs. We then give FPT algorithms for the parameterized
variant when restricted to the case where c = 2, Π1 is a hereditary graph property, and Π2 is the
class of acyclic graphs.
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1 Introduction

Various combinatorial problems on graphs can be seen as problems of partitioning the vertex
set of a given graph into a fixed number of vertex subsets satisfying prescribed properties.
For example, c-Coloring is the problem of deciding whether the vertex set of a given graph
can be partitioned into c independent sets (i.e., edgeless graphs). Another example is Near-
Bipartiteness, which is the problem of deciding whether the vertex set of a given graph can
be partitioned into two subsets such that one forms an independent set and the other forms an
acyclic graph. These problems can be unified as the problem (Π1,Π2, . . . ,Πc)-Partition for
a fixed integer c, where Π1,Π2, . . . ,Πc denote graph properties: (Π1,Π2, . . . ,Πc)-Partition,
also known as Generalized Graph Coloring [1], is the problem of asking whether the
vertex set of a given graph can be partitioned into c subsets V1, V2, . . . , Vc such that the
subgraph induced by Vi satisfies the graph property Πi for every i ∈ {1, 2, . . . , c}. We
call such a vertex partition a (Π1,Π2, . . . ,Πc)-coloring of the graph. Minimization and

© Yuma Tamura, Takehiro Ito, and Xiao Zhou;
licensed under Creative Commons License CC-BY

31st International Symposium on Algorithms and Computation (ISAAC 2020).
Editors: Yixin Cao, Siu-Wing Cheng, and Minming Li; Article No. 40; pp. 40:1–40:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yuma.tamura.t5@dc.tohoku.ac.jp
https://orcid.org/0000-0002-9912-6898
mailto:takehiro@tohoku.ac.jp
mailto:zhou@tohoku.ac.jp
https://doi.org/10.4230/LIPIcs.ISAAC.2020.40
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


40:2 Minimization and Parameterized Variants of Vertex Partition Problems on Graphs

parameterized variants of (Π1,Π2, . . . ,Πc)-Partition have been also studied in the literature
for several graph properties Π1,Π2, . . . ,Πc, where the size of the vertex subset V1 satisfying
Π1 is minimized or taken as a parameter.

We here define some terms for graph properties. A graph property, or simply a property,
is a property of graphs closed under isomorphism. We sometimes regard a graph property as
a class of graphs (i.e., a set of all graphs) satisfying the property. A graph property Π is
hereditary if, for any graph G satisfying Π, every induced subgraph of G also satisfies Π. A
graph property Π is additive if, for any two graphs G and H satisfying Π, the disjoint union
of G and H also satisfies Π, where the disjoint union of G = (VG, EG) and H = (VH , EH)
is the graph whose vertex set is VG ∪ VH and edge set is EG ∪ EH . A graph property Π is
nontrivial if there exists at least one graph satisfying Π and there exists at least one graph
which does not satisfy Π.

1.1 Related Results and Known Results
Farrugia [3] showed that (Π1,Π2, . . . ,Πc)-Partition is NP-hard for any fixed nontrivial
additive hereditary graph properties Π1,Π2, . . . ,Πc, unless c = 2 and both Π1 and Π2 are
classes of edgeless graphs. Notice that if c = 2 and both Π1 and Π2 are classes of edgeless
graphs, then the problem is equivalent to 2-Coloring and hence it can be solved in linear
time for general graphs.

Kanj et al. [6] widely studied the parameterized complexity of (Π1,Π2)-Partition. They
mentioned that a simple branching technique yields a single-exponential FPT algorithm for
Parameterized (Π1,Π2)-Partition if Π1 and Π2 are hereditary graph properties such
that the membership of Π1 can be decided in polynomial time and Π2 can be characterized
by a finite set of forbidden induced subgraphs.

Many FPT algorithms have been developed for various problems, which can be seen
as Parameterized (Π1,Π2)-Partition with specific graph properties Π1 and Π2, such
as Feedback Vertex Set [5], Independent Feedback Vertex Set [7, 11], and G-
Bipartization [10]. On the other hand, Parameterized (Π1,Π2)-Partition is fixed-
parameter intractable even if Π1 is the class of all graphs: the problem is W [P ]-complete if
Π2 is the class of d-degenerate graphs for any d ≥ 2 (this corresponds to d-Degenerate
Vertex Deletion) [9], and the problem is W [2]-hard if Π2 is the class of wheel-free graphs
(this corresponds to Wheel-Free Deletion) [8].

From the viewpoint of approximation, there is a polynomial-time 2-approximation algo-
rithm for Feedback Vertex Set [2], which is equivalent to Min (Π1,Π2)-Partition if Π1
is the class of all graphs and Π2 is the class of acyclic graphs. However, if we change Π1 to
the class of edgeless graphs, then the problem is equivalent to Independent Feedback
Vertex Set and it is hard to approximate even for planar bipartite graphs [14].

1.2 Our Contribution
In this paper, we study the approximability of Min (Π1,Π2, . . . ,Πc)-Partition and the
fixed-parameter tractability of Parameterized (Π1,Π2)-Partition.

We first study the approximability. It is already NP-hard to decide if a given
graph has at least one (Π1,Π2, . . . ,Πc)-coloring for nontrivial additive hereditary graph
properties Π1,Π2, . . . ,Πc [3]. In this paper, we give inapproximability results of Min
(Π1,Π2, . . . ,Πc)-Partition even for the case where we know that a given graph has at least
one (Π1,Π2, . . . ,Πc)-coloring. We show that Min (Π1,Π2, . . . ,Πc)-Partition, any fixed
c ≥ 2, is hard to approximate for any fixed nontrivial additive hereditary graph properties,
unless c = 2 and both Π1 and Π2 are classes of edgeless graphs. In addition, we show
that Min (Π1,Π2)-Partition for planar bipartite graphs remains hard to approximate if
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each of Π1 and Π2 has a minimal forbidden induced subgraph that is planar and bipartite.
Interestingly, as we will discuss in Section 3.2, Min (Π1,Π2, . . . ,Πc)-Partition can be solved
in polynomial time for bipartite graphs if c ≥ 3 and Π1,Π2, . . . ,Πc are nontrivial additive
hereditary graph properties. We note that various well-known graph properties are additive
and hereditary: for example, the classes of acyclic graphs, interval graphs, planar graphs,
and more generally, H-free graphs for a graph family H.

We then investigate the fixed-parameter tractability of Parameterized (Π1,Π2, . . . ,Πc)-
Partition when restricted to c = 2 and Π2 is the class of acyclic graphs. We first develop an
FPT algorithm for the problem if Π1 is a hereditary graph property; we also show that the
running time can be improved for bounded degeneracy graphs. Note that this result cannot
be covered by [6], because the class of acyclic graphs is characterized by the infinite forbidden
cycles. We then give an FPT algorithm for the case where Π1 is the class of graphs with
maximum degree ∆, for a fixed ∆. We also develop a faster FPT algorithm when restricted
to ∆ = 1.

Proofs for the claims marked with (∗) are omitted from this extended abstract.

2 Preliminaries

In this paper, we assume that graphs are simple, finite, undirected, and unweighted. Let
G = (V,E) be a graph. We sometimes denote by V (G) and E(G) the vertex set and edge
set of G, respectively. For a vertex subset V ′ of G, let G[V ′] be the subgraph of G induced
by V ′. We denote simply by G − V ′ the induced subgraph G[V \ V ′]. We say that an
induced subgraph H of G is proper if V (G) \ V (H) 6= ∅. For a vertex v in G and a vertex
subset V ′ ⊆ V , we denote by N(v, V ′) the set of all neighbors of v in G[V ′ ∪ {v}], that is,
N(v, V ′) = {w ∈ V ′ : vw ∈ E}.

We have already defined the terms graph property, hereditary, additive, and nontrivial in
Introduction. Recall that we sometimes regard a graph property as a class of graphs (i.e., a
set of all graphs) satisfying the property. For a property Π, a graph is said to be a forbidden
induced subgraph for Π if it does not satisfy Π. A forbidden induced subgraph H is said to be
minimal if any proper induced subgraph of H satisfies Π. A minimal forbidden set F(Π) of Π
is a set of all minimal forbidden induced subgraphs for Π. Any additive hereditary property
can be characterized by a (possibly infinite) minimal forbidden set F(Π) such that every
graph in F(Π) is connected. Moreover, if the property is nontrivial, every graph in F(Π) has
at least two vertices. For example, F(Π) = {K2} if Π is the class of edgeless graphs, and
F(Π′) = {C3, C4, C5, . . .} if Π′ is the class of acyclic graphs, where Kn is a complete graph
of n vertices and Cn is a cycle of n vertices.

In the remainder of this paper, we regard a partition of the vertex set of a graph G as
a (vertex) coloring of G. Let C = {1, 2, . . . , c} be a color set, where c is a positive integer.
Then, a coloring of G is simply a mapping f : V (G) → C. A vertex v ∈ V (G) is said
to be assigned to the color i if v ∈ f−1(i). For properties Π1,Π2, . . . ,Πc, a coloring f of
G is called a (Π1,Π2, . . . ,Πc)-coloring of G if G[f−1(i)] satisfies Πi for every i ∈ C. We
say that a (Π1,Π2, . . . ,Πc)-coloring f of G is optimal if |f−1(1)| is minimum among all
(Π1,Π2, . . . ,Πc)-colorings of G. We define OPT(G) as follows:

OPT(G) = min{|f−1(1)| : f is a (Π1,Π2, . . . ,Πc)-coloring of G}

if G has a (Π1,Π2, . . . ,Πc)-coloring; otherwise we let OPT(G) = +∞. For fixed properties
Π1,Π2, . . . ,Πc, we define Min (Π1,Π2, . . . ,Πc)-Partition as the problem of computing
OPT(G) for a given graph G. We also study the problem parameterized by the solution
size k: Parameterized (Π1,Π2, . . . ,Πc)-Partition is the problem of determining whether
OPT(G) ≤ k or not.

ISAAC 2020
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3 Inapproximability

In this section, we study the inapproximability of Min (Π1,Π2, . . . ,Πc)-Partition. We say
that an algorithm for Min (Π1,Π2, . . . ,Πc)-Partition is ρ(n)-approximation if it returns
a value z for a given graph G with n vertices such that z ≤ ρ(n) · OPT(G) and G has a
(Π1,Π2, . . . ,Πc)-coloring f satisfying |f−1(1)| = z. Then, OPT(G) ≤ z ≤ ρ(n) · OPT(G)
always holds, and hence the algorithm must compute OPT(G) if either OPT(G) = 0 or
OPT(G) = +∞ holds. In this section, we give inapproximability results that hold even if we
know that a given graph G satisfies both OPT(G) 6= 0 and OPT(G) 6= +∞. We say that a
graph G is promised if both OPT(G) 6= 0 and OPT(G) 6= +∞ hold.

3.1 General graphs
The main result of this subsection is the following theorem.

I Theorem 1. Let Π1 and Π2 be any two fixed nontrivial additive hereditary graph properties.
Let G be a promised graph of n vertices, and let ε be any fixed constant such that 0 < ε ≤ 1.
Under the assumption that P 6= NP, Min (Π1,Π2)-Partition admits no polynomial-time
approximation algorithm for G within a factor n1−ε unless both Π1 and Π2 are classes of
edgeless graphs.

Note that if both Π1 and Π2 are classes of edgeless graphs, Min (Π1,Π2)-Partition is
solvable in polynomial time, because the problem is equivalent to 2-Coloring.

We can construct an approximation-preserving reduction from Min (Π1,Π2)-Partition
to Min (Π1,Π2, . . . ,Πc)-Partition for any fixed c ≥ 3, and obtain the following corollary.

I Corollary 2 (∗). Let c ≥ 3 be a fixed constant, and let Π1,Π2, . . . ,Πc be any fixed nontrivial
additive hereditary graph properties. Let G be a promised graph of n vertices, and let ε be any
fixed constant such that 0 < ε ≤ 1. Under the assumption that P 6= NP, Min (Π1,Π2, . . . ,Πc)-
Partition admits no polynomial-time approximation algorithm for G within a factor n1−ε.

In the remainder of this subsection, we prove Theorem 1 by giving a gap-producing
reduction from Positive 1-in-3-SAT. For this purpose, we define gadgets in Section 3.1.1
and explain how to construct a promised graph for our reduction in Section 3.1.2.

For a given 3-CNF formula φ, 1-in-3-SAT is the problem of asking whether there exists
a satisfying truth assignment of φ such that each clause in φ has exactly one true literal.
The problem is called Positive 1-in-3-SAT if φ contains only positive literals. Positive
1-in-3-SAT is known to be NP-complete [13].

3.1.1 Gadgets
An end-block of a graph G is a maximal 2-connected component of G that contains at most
one cut-vertex of G. If G has no cut-vertex, then G itself is an end-block. Let F(Π1) be a
minimal forbidden set for Π1, and let B1 be an end-block having the smallest number of
vertices among all end-blocks of all graphs in F(Π1). We denote by F1 a minimal forbidden
induced subgraph in F(Π1) that contains B1. Similarly, we define B2 and F2 for F(Π2).

We first define a forcing gadget X`, which forces some particular vertex vp to be assigned
to the color 1. (See also Figure 1(a).) Let ` ≥ 2 be an integer, and F 1

2 , F
2
2 , . . . , F

`
2 be ` copies

of F2. For i ∈ {1, 2, . . . , `}, let vi be a vertex that is not a cut-vertex of F i2 and is chosen
from the vertices in the end-block Bi2 of F i2. Note that such a vertex vi exists, because Bi2
has at least two vertices and at most one cut-vertex of F i2. We identify v1, v2, . . . , v` as a
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B1
2

Bi
2

B`
2

vp

{F i
2 . . .

(a)

X`
X`

X`

F1

vq

(b)

Figure 1 (a) The forcing gadget X` and (b) the forbidding gadget Y `, where some parts of
gadgets are omitted.

x x′

B′
1B1

F1 \B1

B′
2B2

F2 \B2

y

Figure 2 The relay gadget R`. The striped and dotted parts are constructed from F1 and F2,
respectively. The vertex y is adjacent to the vertices x and x′.

single vertex vp, that is, the resulting graph X` consists of ` copies of F2 sharing vp. We call
vp the root of X`. Then, we can force the root vp to be assigned to the color 1, as in the
following sense.

I Proposition 3 (∗). For any (Π1,Π2)-coloring f of the forcing gadget X` such that
|f−1(1)| < `, vp is assigned to the color 1.

We then define a forbidding gadget Y `, which forbids some particular vertex vq to be
assigned to the color 1. (See also Figure 1(b).) For a graph G = (V,E) and a vertex subset
V ′ ⊆ V , planting V ′ with the forcing gadget X` is the operation as follows: we first make
|V ′| copies of X`, and then identify each vertex in V ′ with the root vp of the copies. We
choose an arbitrary vertex of F1, say vq, and we plant V (F1) \ {vq} with X`. We define the
resulting graph as the forbidding gadget Y `, and call vq the root of Y `. Then, we can forbid
the root vq to be assigned to the color 1, as in the following sense.

I Proposition 4 (∗). For any (Π1,Π2)-coloring f of the forbidding gadget Y ` such that
|f−1(1)| < `, vq is assigned to the color 2.

We now define a relay gadget R`, which was used in [3]. (See also Figure 2.) This gadget
will be used to propagate the color assignment: the vertex x in Figure 2 is assigned to the
color 1 if and only if the vertex x′ in Figure 2 is assigned to the color 1. Let y1 be the
cut-vertex in B1 of F1; if B1 has no cut-vertex, that is, B1 = F1, then y1 is chosen arbitrarily
from F1. Let x1 be an arbitrary vertex in B1 which is adjacent to y1. Let F ′1 be the graph
obtained by adding a copy of B1, denoted by B′1, such that the copy of y1 in B′1 is identified
with y1. (See the striped part in Figure 2, where y = y1 and x = x1.) In addition, let x′1
be the copy of x1 in B′1. In the same way, we define y2, x2, F ′2, B′2 and x′2 for F2. (See the
dotted part in Figure 2, where y = y2, x = x2 and x′ = x′2.) We then merge F ′1 and F ′2
by identifying y1 with y2, x1 with x2, and x′1 with x′2, respectively. We label the identified

ISAAC 2020
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ci,1

ci,2ci,3

D1,2

D2,3

D1,3

Figure 3 Image of the clause gadget C`i , where the striped and dotted parts represent the inner
and outer parts, respectively.

ci,1

ci,2ci,3

F2

R`
1

F1

R`
2

F ′
2

s1

s′1

s2

s′2

(a) The case of |V (F2)| > 2.

ci,1

ci,2ci,3

F1

R`
1

F2

R`
2

F ′
1

s1

s′1

s2

s′2

(b) The case of |V (F2)| = 2.

Figure 4 The inner part in the clause gadget C`i .

vertices as y, x, and x′. For the resulting graph, we plant V (F ′1) \ {y, x, x′} with the forcing
gadget X`, and plant V (F ′2) \ {y, x, x′} with the forbidding gadget Y `. This completes the
construction of the relay gadget R`. The relay gadget propagates the color assignment, as in
the following sense.

I Proposition 5 (∗). For any (Π1,Π2)-coloring f of the relay gadget R` such that |f−1(1)| < `,
x is assigned to the color 1 if and only if x′ is assigned to the color 1.

Finally, we define a clause gadget C`i , which corresponds to a clause ci of a given 3-CNF
formula. The clause gadget contains three vertices ci,1, ci,2 and ci,3 which correspond to the
three literals in ci. (See also Figure 3.) The construction of C`i differs between two cases
|V (F2)| > 2 and |V (F2)| = 2. However, we will explain only the case of |V (F2)| > 2 and give
illustrations for the other case, because the case of |V (F2)| = 2 can be obtained by simply
swapping F1 and F2 for the case of |V (F2)| > 2. (See also Figure 4 and 5.)

The clause gadget C`i consists of an inner part and an outer part, as illustrated in Figure 3.
The inner part is constructed as follows. (See also Figure 4(a).) Let s1 and s′1 be any two

d′d R`
1 F1 R`

2 F2 R`
3 F ′

1 R`
4

t1 t′1t2 t′2t3 t′3

(a) The case of |V (F2)| > 2.

d′d R`
1 F2 R`

2 F1 R`
3 F ′

2 R`
4

t1 t′1t2 t′2t3 t′3

(b) The case of |V (F2)| = 2.

Figure 5 The gadget D which will be used in the outer part of the clause gadget C`i .
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distinct vertices of F1, and let s2 and ci,1 be any two distinct vertices of F2. In addition,
we make a copy F ′2 of F2, and let s′2, ci,2 and ci,3 be any three distinct vertices of F ′2. We
plant V (F1) \ {s1, s

′
1} with X`, V (F2) \ {s2, ci,1} with Y `, and V (F ′2) \ {s′2, ci,2, ci,3} with

Y `, respectively. Then, we connect F2, F1 and F ′2 via relay gadgets R`1 and R`2 as shown in
Figure 4(a), where we identify s2 with x′ in R`1, s1 with x in R`1, s′1 with x′ in R`2, and s′2
with x in R`2.

The outer part consists of three copies D1,2, D1,3, D2,3 of a gadget D, defined as follows.
(See also Figure 5(a) for the construction of D.) Let t1 and t′1 be any two distinct vertices of
F2, and let t2 and t3 be any two distinct vertices of F1. We make a copy F ′1 of F1, and let t′2
and t′3 be the vertices of F ′1 corresponding to t2 and t3, respectively. We plant V (F2)\{t1, t′1}
with Y `, V (F1) \ {t2, t3} with X`, and V (F ′1) \ {t′2, t′3} with X`. Then, we connect F1, F2
and F ′1 via four relay gadgets R`1, . . . , R`4 as shown in Figure 5(a), in the same manner as the
inner part, where x in R`1 is renamed d, and x′ in R`4 is renamed d′. Let D be the resulting
graph.

We are now ready to construct the clause gadget C`i . (See also Figure 3.) We first prepare
three copies D1,2, D1,3, D2,3 of D, and then identify ci,j with d of Dj,k, and ci,k with d′ of
Dj,k, where j, k ∈ {1, 2, 3} and j < k, respectively. Then, we have the following proposition.

I Proposition 6 (∗). Suppose that |F2| > 2. For any (Π1,Π2)-coloring f of the clause gadget
C`i such that |f−1(1)| < `, exactly one of ci,1, ci,2 and ci,3 is assigned to the color 1.

Therefore, the vertex in {ci,1, ci,2, ci,3} assigned to the color 1 will correspond to the true
literal of the clause for the case of |F2| > 2. On the other hand, for the case of |F2| = 2, this
correspondence holds for the color 2: the vertex in {ci,1, ci,2, ci,3} assigned to the color 2
will correspond to the true literal of the clause.

I Proposition 7 (∗). Suppose that |F2| = 2. For any (Π1,Π2)-coloring f of the clause gadget
C`i such that |f−1(1)| < `, exactly one of ci,1, ci,2 and ci,3 is assigned to the color 2.

3.1.2 Reduction
We construct the corresponding graph for Min (Π1,Π2)-Partition from a given instance
φ of Positive 1-in-3-SAT. Let α and β be the numbers of variables and clauses in φ,
respectively. We first prepare α vertices v1, v2, . . . , vα, and β copies C`1, C`2, . . . , C`β of the
clause gadget; the value ` will be defined later, but now we assume that ` is a polynomial
in the input size of φ. Each vertex vj corresponds to a variable xj of φ, and each clause
gadget C`i corresponds to a clause ci of φ. We next prepare 3β copies of the relay gadget R`.
If a variable xj appears as a k-th literal of a clause ci, where k ∈ {1, 2, 3}, then we identify
the vertex vj with x in R`, and identify the vertex ci,k of C`i with x′ in R`. This completes
the construction of the corresponding graph G`φ for Min (Π1,Π2)-Partition. G`φ can be
constructed in polynomial time if ` is polynomial in the input size of φ.

Let p = |V (F1)| and q = |V (F2)|. Note that both p and q are fixed constants, which do
not depend on the given instance of Positive 1-in-3-SAT. Let γ be an arbitrary integer
such that γ ≥ 80pqβ. We denote by nφ,` the number of vertices in G`φ.

I Lemma 8 (∗). G`φ is promised, and it holds that nφ,` ≤ γq`.

We now give the key lemma for our reduction.1

1 As we will see later, γ ≤ ` holds, and hence Lemma 9 implies that there exists no graph G`φ such that
γ ≤ OPT(G`φ) < `.

ISAAC 2020
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I Lemma 9 (∗). The following (I) and (II) hold:

(I) if OPT(G`φ) < `, then φ has a satisfying truth assignment; and
(II) if OPT(G`φ) ≥ γ, then φ has no satisfying truth assignment.

We are ready to prove Theorem 1. We set

` = γd(2−ε)/εe · qd(1−ε)/εe,

then ` is a polynomial in the input size of φ. Assume for a contradiction that Min (Π1,Π2)-
Partition admits a polynomial-time approximation algorithm within a factor n1−ε for some
fixed 0 < ε ≤ 1, where n is the number of vertices in a given graph. Let APX(G`φ) be the
value computed by the approximation algorithm. Then, we have

OPT(G`φ) ≤ APX(G`φ) ≤ n1−ε
φ,` · OPT(G`φ). (1)

We then give the following lemma, which will be used to yield a contradiction.

I Lemma 10. APX(G`φ) < ` if and only if φ has a satisfying truth assignment.

Proof. We first prove the only-if direction. Suppose that APX(G`φ) < ` holds. By the left
inequality of (1) we have OPT(G`φ) < `. Then, Lemma 9(I) says that φ has a satisfying truth
assignment.

We then prove the if direction, by taking a contraposition. Suppose that APX(G`φ) ≥ `
holds. By the right inequality of (1) we have n1−ε

φ,` · OPT(G`φ) ≥ `. Then, by Lemma 8, we
have

OPT(G`φ) ≥ `

n1−ε
φ,`

≥ `

(γq`)1−ε = `ε

(γq)1−ε ≥
(γ(2−ε)/ε · q(1−ε)/ε)ε

(γq)1−ε = γ.

Then, Lemma 9(II) says that φ has no satisfying truth assignment. J

We have assumed that APX(G`φ) can be computed in polynomial time. Then, Lemma 10
yields a contradiction unless P = NP, because it implies that we can solve Positive
1-in-3-SAT in polynomial time. This completes the proof of Theorem 1. J

3.2 Planar Bipartite Graphs
In this subsection, we study Min (Π1,Π2)-Partition for planar bipartite graphs. Notice
that any bipartite graph G has a (Π1,Π2)-coloring (i.e., OPT(G) 6= +∞) if both properties
Π1 and Π2 are nontrivial, additive and hereditary.

The main result of this subsection is the following theorem, which can be obtained by
modifying the arguments in Sections 3.1.1 and 3.1.2.

I Theorem 11 (∗). Let Π1 and Π2 be any two fixed nontrivial additive hereditary graph
properties, each of which contains a minimal forbidden induced subgraph that is planar
and bipartite. Let G be a planar bipartite graph of n vertices which is promised, and let
ε be any fixed constant such that 0 < ε ≤ 1. Under the assumption that P 6= NP, Min
(Π1,Π2)-Partition admits no polynomial-time approximation algorithm for G within a
factor n1−ε unless both Π1 and Π2 are classes of edgeless graphs.

In contrast to Theorem 1, Theorem 11 cannot be generalized for c ≥ 3. In fact, it
always holds that OPT(G) = 0 for any c ≥ 3 and any bipartite graph G if Π1,Π2, . . . ,Πc are
nontrivial additive hereditary properties, because G has a (Π2,Π3, . . . ,Πc)-coloring.
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Theorem 11 immediately yields the following corollary.

I Corollary 12. Let Π1 and Π2 be any two classes of graphs listed below:

edgeless graphs,
cluster graphs (P3-free graphs),
cographs (P4-free graphs),
star graphs,
path graphs,
acyclic graphs,

outerplanar graphs,
series-parallel graphs,
interval graphs,
chordal graphs, or
graphs of bounded maximum degree.

Let G be a planar bipartite graph of n vertices which is promised, and let ε be any fixed
constant such that 0 < ε ≤ 1. Then, under the assumption that P 6= NP, Min (Π1,Π2)-
Partition admits no polynomial-time approximation algorithm for G within a factor n1−ε

unless both Π1 and Π2 are classes of edgeless graphs.

4 FPT Algorithms

In this section, we focus on the fixed-parameter tractability of Parameterized (Π1,Π2)-
Partition when the graph property Π2 is the class of acyclic graphs.

4.1 Hereditary Properties
We first consider the case where the graph property Π1 is hereditary.

I Theorem 13. Let Π1 be any hereditary graph property, and let Π2 be the class of acyclic
graphs. Given a graph G and a nonnegative integer k, suppose that one can decide in t(k)
time whether a subgraph H with at most k vertices of G satisfies Π1. Then, Parameterized
(Π1,Π2)-Partition for G can be solved in 2O(k2)(t(k) + n+m) time, where n and m are
the numbers of vertices and edges in G, respectively.

In this subsection, we also prove that the running time above can be improved for bounded
degeneracy graphs. A graph G is d-degenerate if any subgraph of G has a vertex of degree at
most d. It is known that many graph classes have bounded degeneracy: for example, planar
graphs, graphs of bounded maximum degree, and bounded treewidth graphs.

I Theorem 14. Let Π1 be any hereditary graph property, and let Π2 be the class of acyclic
graphs. Given a d-degenerate graph G and a nonnegative integer k, suppose that one can
decide in t(k) time whether a subgraph H with at most k vertices of G satisfies Π1. Then,
Parameterized (Π1,Π2)-Partition for G can be solved in 2O(h(k,d))(t(k) + n+m) time,
where h(k, d) = max{d3 +3d2 +3d, (d+1) log k+log(d+1)}·k, and n and m are the numbers
of vertices and edges in G, respectively.

For many natural properties, one can decide in kO(1) or 2O(k) time whether a subgraph H
with at most k vertices satisfies Π1: for example, the classes of edgeless graphs, planar graphs,
and proper c-colorable graphs for a fixed c. Thus, Parameterized (Π1,Π2)-Partition is
solvable in 2O(k2)(n+m) time for general graphs and in 2O(k log k)(n+m) time for bounded
degeneracy graphs, when Π1 is such a natural hereditary property and Π2 is the class of
acyclic graphs.

To prove Theorems 13 and 14, we use the idea of a compact representation of minimal
feedback vertex sets [4, 12]. Recall that a feedback vertex set S of a graph G is a vertex
subset of G such that G − S is acyclic. A compact representation for a set of minimal
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feedback vertex sets of a graph G is a set C of pairwise disjoint subsets of V (G) such that
choosing exactly one vertex from every set in C results in a minimal feedback vertex set of G.
We say that a minimal feedback vertex set S of G is contained in a compact representation
C if S can be obtained from C by this operation. A compact representation C is called a
k-compact representation if the number of sets in C is at most k. We can efficiently enumerate
k-compact representations of minimal feedback vertex sets in G, as follows:

I Theorem 15 ([12]). Given a graph G with m edges and an integer k, there exists an
algorithm which enumerates k-compact representations of G in O(23.1km) time such that any
minimal feedback vertex set of size at most k is contained in some k-compact representation.
Moreover, the number of k-compact representations output by the algorithm is at most
O(23.1k).

An instance (G, k) of Parameterized (Π1,Π2)-Partition is a yes-instance if and only if
there is a (Π1,Π2)-coloring f of G such that f−1(1) forms a minimal feedback vertex set of size
at most k of G, because Π1 is hereditary. Therefore, Parameterized (Π1,Π2)-Partition
can be rephrased as the problem of asking whether there exists a minimal feedback vertex
set S of G such that |S| ≤ k and G[S] satisfies Π1. A compact representation C is called
good if C contains such a minimal feedback vertex set S. Given a graph and a k-compact
representation C, one can determine whether C is good or not, by the following lemma.

I Lemma 16 (∗). Let G = (V,E) be a graph with m edges. Given a k-compact representation
C of minimal feedback vertex sets in G, assume that each set in C has at most α vertices.
Then, one can determine whether C is good in O(αk(t(k) +m)) time.

Therefore, our strategy is to enumerate k-compact representations of minimal feedback
vertex sets in G by Theorem 15, and then check whether each enumerated k-compact
representation C is good. Note that, however, the number α of vertices of each set in C is
not always bounded by a function of k. Therefore, we kernelize each enumerated k-compact
representation C to prove Theorems 13 and 14.

We now explain how to kernelize a k-compact representation C of minimal feedback vertex
sets in G. A set in C is said to be singleton if the set consists of exactly one vertex, otherwise
multiple. Then, the following proposition holds.

I Proposition 17 ([4]). Let C1 and C2 be any two distinct multiple sets in a compact
representation C of minimal feedback vertex sets in a graph G. Then, any two vertices
v1 ∈ C1 and v2 ∈ C2 are not adjacent in G.

Let X be the set of the vertices of all singleton sets in C. For a multiple set C in C and a
subset X ′ ⊆ X, let CX′ be the subset of C such that N(u,X) = X ′ holds (on G) for every
vertex u in CX′ . We iterate the following reduction rule for C until the rule is not applicable.

Reduction Rule. If there is a multiple set C in C such that |CX′ | ≥ 2 for some X ′ ⊆ X,
then choose an arbitrary vertex u from CX′ and remove all vertices of CX′ \ {u} from C.

I Lemma 18. Let C be a k-compact representation of minimal feedback vertex sets in a
graph G. By applying Reduction Rule to C, one can obtain a k-compact representation C∗ of
minimal feedback vertex sets in G such that
(a) each set in C∗ has at most 2k vertices of G; and
(b) C is good if and only if C∗ is good.

Proof. We first prove the claim (a). Suppose that C has a multiple set C with at least 2k + 1
vertices. Since |X| ≤ k, two vertices u, u′ ∈ C exist such that N(u,X) = N(u′, X) on G.
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Then, we apply Reduction Rule to C and obtain another k-compact representation. Thus, we
can obtain a k-compact representation C∗ such that each set in C∗ has at most 2k vertices by
iterating Reduction Rule.

We next prove the claim (b). Let C′ be a k-compact representation of G obtained by
applying Reduction Rule to C once. It suffices to show that C is good if and only if C′ is good.
The if direction is straightforward, namely, if C′ is good, then C is also good. We thus prove
the only-if direction. Suppose that C is good, and let S be a minimal feedback vertex set of
G such that S is contained in C and G[S] satisfies Π1. If u ∈ S, then C′ also contains S and
hence C′ is good. Therefore, we suppose that u /∈ S and S has a vertex u′ in CX′ \ {u}. Let
S′ = (S ∪ {u}) \ {u′}. Then, S′ is contained in C, because u and u′ are in the same set C in
C. Thus, S′ is also contained in C′. Moreover, from Proposition 17 and the assumption that
N(u,X) = N(u′, X) holds, G[S′] is isomorphic to G[S]. Therefore, G[S′] satisfies Π1, and
hence C′ is good. J

Proof of Theorem 13. Let (G, k) be an instance of Parameterized (Π1,Π2)-Partition,
and let n = |V (G)| and m = |E(G)|. Using Theorem 15, we first enumerate k-compact
representations of all minimal feedback vertex sets in G in O(23.1km) time. We then
apply Reduction Rule to all enumerated k-compact representations. For each k-compact
representation C, by Lemma 18 we obtain a kernelized k-compact representation C∗ such
that each set in C∗ has at most 2k vertices of G; this can be done in O(2kkn + m) time.
For each kernelized k-compact representation C∗, by Lemma 16 we decide whether C∗ is
good in O(2k2 · (t(k) + n + m)) time. Theorem 15 says that there are at most O(23.1k)
k-compact representations of G, and hence we produce kernelized k-compact representations
in O(23.1k · (2kkn + m)) time in total and determine whether there is a good k-compact
representation of G in O(23.1k ·2k2 ·(t(k)+n+m)) time in total. Therefore, the total running
time of the algorithm is 2O(k2)(t(k) + n+m). This completes the proof of Theorem 13. J

We then prove Theorem 14. Suppose that a given graph G is d-degenerate for some
integer d ≥ 1. We apply the same algorithm (and hence the same Reduction Rule) to G.
Using the fact that G is d-degenerate, we can estimate the size of each set in a kernelized
compact representation more sharply, as follows.

I Lemma 19 (∗). Suppose that a graph G is d-degenerate for some integer d ≥ 1. Let C
be a k-compact representation of minimal feedback vertex sets in G. By applying Reduction
Rule to C, one can obtain a k-compact representation C∗ of minimal feedback vertex sets in
G such that
(a) each set in C∗ has at most 2d3+3d2+3d vertices of G if k ≤ d3 + 3d2 + 3d, otherwise it

has less than
∑d+1
i=0

(
k
i

)
vertices of G; and

(b) C is good if and only if C∗ is good.

Using Lemma 19 (instead of Lemma 18), we can prove Theorem 14 by the similar
arguments as in the proof of Theorem 13.

4.2 Graph Properties with Bounded Maximum Degree
The parameterized variant of Independent Feedback Vertex Set is equivalent to
Parameterized (Π1,Π2)-Partition when Π1 is the class of edgeless graphs and Π2 is
the class of acyclic graphs. Since the class of edgeless graphs is the class of graphs with
maximum degree zero, it is natural to consider the case where Π1 is the class of graphs with
bounded maximum degree. In this subsection, we give the following theorem for such a case.
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I Theorem 20 (∗). Let Π1 be the class of graphs with maximum degree ∆ for a fixed integer
∆, and let Π2 be the class of acyclic graphs. Given a graph G with n vertices and m edges,
Parameterized (Π1,Π2)-Partition can be solved in O(23.1km) + 2O(∆k log k)(n+m) time.

Our algorithm for Theorem 20 takes a similar strategy as in Section 4.1, but employs
the following modified reduction rule to kernelize a k-compact representation C of minimal
feedback vertex sets in a graph G. Recall that X denotes the set of the vertices of all
singleton sets in C.

Modified Reduction Rule.
Rule A: if there is a multiple set C in C containing a vertex u such that |N(u,X)| ≥ ∆+1,

then remove u from C; and
Rule B: if there is a multiple set C in C such that |CX′ | ≥ 2 for some X ′ ⊆ X, then

choose an arbitrary vertex u from CX′ and remove all vertices of CX′ \ {u}
from C.

We note that Rule B above is the same as Reduction Rule in Section 4.1. We omit the details
and analysis of the algorithm from this extended abstract.

Finally, we note that the running time of the algorithm can be improved when ∆ = 1, as
follows.

I Theorem 21 (∗). Let Π1 be the class of graphs with maximum degree one, and let Π2 be
the class of acyclic graphs. Then, Parameterized (Π1,Π2)-Partition can be solved in
O(23.1k(k2.5 + n+m)) time.
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