
On Girth and the Parameterized Complexity of
Token Sliding and Token Jumping
Valentin Bartier
Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, France
valentin.bartier@grenoble-inp.fr

Nicolas Bousquet
CNRS, LIRIS, Université de Lyon, Université Claude Bernard Lyon 1, France
nicolas.bousquet@univ-lyon1.fr

Clément Dallard
FAMNIT, University of Primorska, Koper, Slovenia
clement.dallard@famnit.upr.si

Kyle Lomer
Department of Computer Science, American University of Beirut, Lebanon
kjl00@mail.aub.edu

Amer E. Mouawad
Department of Computer Science, American University of Beirut, Lebanon
aa368@aub.edu.lb

Abstract
In the Token Jumping problem we are given a graph G = (V, E) and two independent sets S and
T of G, each of size k ≥ 1. The goal is to determine whether there exists a sequence of k-sized
independent sets in G, 〈S0, S1, . . . , S`〉, such that for every i, |Si| = k, Si is an independent set,
S = S0, S` = T , and |Si∆Si+1| = 2. In other words, if we view each independent set as a collection
of tokens placed on a subset of the vertices of G, then the problem asks for a sequence of independent
sets which transforms S to T by individual token jumps which maintain the independence of the sets.
This problem is known to be PSPACE-complete on very restricted graph classes, e.g., planar bounded
degree graphs and graphs of bounded bandwidth. A closely related problem is the Token Sliding
problem, where instead of allowing a token to jump to any vertex of the graph we instead require that
a token slides along an edge of the graph. Token Sliding is also known to be PSPACE-complete
on the aforementioned graph classes. We investigate the parameterized complexity of both problems
on several graph classes, focusing on the effect of excluding certain cycles from the input graph. In
particular, we show that both Token Sliding and Token Jumping are fixed-parameter tractable
on C4-free bipartite graphs when parameterized by k. For Token Jumping, we in fact show that
the problem admits a polynomial kernel on {C3, C4}-free graphs. In the case of Token Sliding, we
also show that the problem admits a polynomial kernel on bipartite graphs of bounded degree. We
believe both of these results to be of independent interest. We complement these positive results by
showing that, for any constant p ≥ 4, both problems are W[1]-hard on {C4, . . . , Cp}-free graphs and
Token Sliding remains W[1]-hard even on bipartite graphs.

2012 ACM Subject Classification Mathematics of computing → Paths and connectivity problems;
Mathematics of computing → Graph algorithms; Mathematics of computing → Combinatoric
problems

Keywords and phrases Combinatorial reconfiguration, Independent Set, Token Jumping, Token
Sliding, Parameterized Complexity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2020.44

Related Version A full version of the paper is available at [1], https://arxiv.org/abs/2007.01673.

Funding Valentin Bartier : This work is supported by ANR project GrR (ANR-18-CE40-0032).
Nicolas Bousquet: This work is supported by ANR project GrR (ANR-18-CE40-0032).

© Valentin Bartier, Nicolas Bousquet, Clément Dallard, Kyle Lomer, and Amer E. Mouawad;
licensed under Creative Commons License CC-BY

31st International Symposium on Algorithms and Computation (ISAAC 2020).
Editors: Yixin Cao, Siu-Wing Cheng, and Minming Li; Article No. 44; pp. 44:1–44:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:valentin.bartier@grenoble-inp.fr
https://orcid.org/0000-0003-0170-0503
mailto:nicolas.bousquet@univ-lyon1.fr
https://orcid.org/0000-0002-9522-3770
mailto:clement.dallard@famnit.upr.si
mailto:kjl00@mail.aub.edu
mailto:aa368@aub.edu.lb
https://doi.org/10.4230/LIPIcs.ISAAC.2020.44
https://arxiv.org/abs/2007.01673
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 On Girth and the Parameterized Complexity of Token Sliding and Token Jumping

Clément Dallard: This work is supported in part by the Slovenian Research Agency (N1-0102).
Amer E. Mouawad: This work is supported by URB project “A theory of change through the lens
of reconfiguration”

Acknowledgements The authors would like to thank the anonymous reviewer for his/her insightful
comments that allowed us to improve Lemma 2 and Theorem 4.

1 Introduction

Many algorithmic questions present themselves in the following form: given the description of
a system state and the description of a state we would “prefer” the system to be in, is it possible
to transform the system from its current state into the more desired one without “breaking”
the system in the process? Such questions, with some generalizations and specializations, have
received a substantial amount of attention under the so-called combinatorial reconfiguration
framework [7, 31, 33]. Historically, the study of reconfiguration questions predates the field
of computer science, as many classic one-player games can be formulated as reachability
questions [20, 23], e.g., the 15-puzzle and Rubik’s cube. More recently, reconfiguration
problems have emerged from computational problems in different areas such as graph
theory [8, 15, 16], constraint satisfaction [13, 28], computational geometry [27], and even
quantum complexity theory [12]. We refer the reader to the surveys by van den Heuvel [31]
and Nishimura [30] for more background on combinatorial reconfiguration.

Independent Set Reconfiguration. In this work, we focus on the reconfiguration of indepen-
dent sets. Given a simple undirected graph G, a set of vertices S ⊆ V (G) is an independent
set if the vertices of this set are all pairwise non-adjacent. Finding an independent set of
maximum cardinality, i.e., the Independent Set problem, is a fundamental problem in
algorithmic graph theory and is known to be not only NP-hard, but also W[1]-hard and not
approximable within O(n1−ε), for any ε > 0, unless P = NP [34]. Moreover, Independent
Set is known to remain W[1]-hard on graphs excluding C4 (the cycle on four vertices) as an
induced subgraph [4].

We view an independent set as a collection of tokens placed on the vertices of a graph
such that no two tokens are adjacent. This gives rise to (at least) two natural adjacency
relations between independent sets (or token configurations), also called reconfiguration
steps. These two reconfiguration steps, in turn, give rise to two combinatorial reconfiguration
problems. In the Token Jumping (TJ) problem, introduced by Kamiński et al. [22], a single
reconfiguration step consists of first removing a token on some vertex u and then immediately
adding it back on any other vertex v, as long as no two tokens become adjacent. The token is
said to jump from vertex u to vertex v. In the Token Sliding (TS) problem, introduced by
Hearn and Demaine [14], two independent sets are adjacent if one can be obtained from the
other by a token jump from vertex u to vertex v with the additional requirement of uv being
an edge of the graph. The token is then said to slide from vertex u to vertex v along the
edge uv. Note that, in both the TJ and TS problems, the size of independent sets is fixed.
Generally speaking, in the Token Jumping and Token Sliding problems, we are given a
graph G and two independent sets S and T of G. The goal is to determine whether there
exists a sequence of reconfiguration steps – a reconfiguration sequence – that transforms S
into T (where the reconfiguration step depends on the problem).

Both problems have been extensively studied under the combinatorial reconfiguration
framework, albeit under different names [3, 5, 10, 11, 18, 19, 22, 26, 29]. It is known that both
problems are PSPACE-complete, even on restricted graph classes such as graphs of bounded

V. Bartier, N. Bousquet, C. Dallard, K. Lomer, and A. E. Mouawad 44:3

Table 1 Parameterized complexity of Token Jumping and Token Sliding.

Graph Class Token Jumping Token Sliding

{C3, C4}-free graphs FPT (Section 3.1) Open
C4-free graphs W[1]-hard (Section 4.1) W[1]-hard (Section 4.1)
Bipartite graphs Open W[1]-hard (Section 4.2)

Bipartite C4-free graphs FPT (Section 3.1) FPT (Section 3.3)

bandwidth (and then pathwidth) [32] and planar graphs [14]. In general Token Sliding is
more complicated to decide than Token Jumping. However Token Sliding and Token
Jumping can be decided in polynomial time on trees [10], interval graphs [3], bipartite
permutation and bipartite distance-hereditary graphs [11] or line graphs [15]. Lokshtanov
and Mouawad [25] showed that, in bipartite graphs, Token Jumping is NP-complete while
Token Sliding remains PSPACE-complete. In split graphs, Token Jumping is a trivial
problem while Token Sliding is PSPACE-complete [2]. In addition to the classes above,
Token Jumping can be decided in polynomial time for even-hole-free graphs [21]. In
this paper we focus on the parameterized complexity of the Token Jumping and Token
Sliding problems on graphs where some cycles with prescribed length are forbidden. Given
an NP-hard problem, parameterized complexity permits to refine the notion of hardness:
does it come from the whole instance or from a small parameter? A problem Π is FPT
(Fixed Parameterized Tractable) parameterized by k if one can solve it in time f(k) · poly(n).
In other words, the combinatorial explosion can be restricted to a parameter k. In the rest
of the paper, our parameter k will be the size of the independent set (i.e. number of tokens).

Both Token Jumping and Token Sliding are known to be W [1]-hard1 parameterized
by k on general graphs [26]. On the positive side, Lokshtanov et al. showed [26] that Token
Jumping is FPT on bounded degree graphs. Token Jumping is also known to be FPT on
strongly K`,`-free graphs [17, 6], a graph being strongly K`,`-free if it does not contain any
K`,` as a subgraph.

Our results. (For a complete overview of our results, see Table 1). In this paper, we focus
on what happens if we consider graphs that do not admit a (finite or infinite) collection
of cycles of prescribed lengths. Such graph classes contain bipartite graphs (odd-hole-free
graphs), even-hole-free graphs and triangle-free graphs. Our main goal was to understand
which cycles make the independent set reconfiguration problems hard. Our main technical
result consists in showing that Token Sliding is W [1]-hard paramerized by k on bipartite
graphs with a reduction from Multicolored Independent Set. We were not able to
adapt our reduction for Token Jumping and left it as an open question:
I Question 1. Is Token Jumping FPT parameterized by k on bipartite graphs?

On the positive side, we prove that Token Jumping admits a quadratic kernel (i.e. an
equivalent instance of size O(k2) can be found in polynomial time) for {C3, C4}-free graphs
while it is W[1]-hard if we restrict to {C4, . . . , Cp}-free graphs for a fixed constant p (the
same hardness result also holds for Token Sliding). Note that the fact that the problem
is FPT on graphs of girth2 at least 5 graphs also follows from FPT algorithms for strongly
K3,`-free graphs of [17], but even if a polynomial kernel can be derived from their result, the

1 Informally, it means that they are very unlikely to admit an FPT algorithm.
2 The girth of a graph is the length of its shortest cycle.

ISAAC 2020

44:4 On Girth and the Parameterized Complexity of Token Sliding and Token Jumping

degree of our polynomial is better. We were no able to remove the C4 condition in order to
obtain a parameterized algorithms for triangle-free graphs. If an FPT algorithm exists for
triangle-free graphs, it would, in particular answer Question 1.

I Question 2. Is Token Jumping FPT parameterized by k on triangle-free graphs?

We then focus on Token Sliding. While FPT algorithms are (relatively) easy to
design on sparse graphs for Token Jumping, they are much harder for Token Sliding.
In particular, it is still open to determine if Token Sliding is FPT on planar graphs or
H-minor free graphs while they follow for instance from [17, 6] for Token Jumping. Our
main positive result is that Token Sliding on bipartite C4-free graphs (i.e. bipartite graphs
of girth at least 6) admits a polynomial kernel. Our proof is in two parts, first we show that
Token Sliding on bipartite graphs with bounded degree admits a polynomial kernel and
then show that, if the graphs admits a vertex of large enough degree then the answer is always
positive. So Token Sliding is W[1]-hard on bipartite graphs but FPT on bipartite C4-free
graphs. In our positive results, C4-freeness really plays an important role (neighborhoods of
the neighbors of a vertex x are almost disjoint). It would be interesting to know if forbidding
C4 is really important or whether it is only helpful with our proof techniques. In particular,
does Token Sliding admit an FPT algorithm on bipartite C2p-free graphs for some p ≥ 3?
In our hardness reduction for bipartite graphs, all (even) cycles can appear and then such a
result can hold. Recall that we prove that Token Jumping admits a polynomial kernel for
graphs of girth at least 6. It would be interesting to see if our result on bipartite C4-free
graphs can be extended to this class.

I Question 3. Is Token Sliding FPT parameterized by k on graphs of girth at least 5? Or,
slightly weaker, is it FPT on graphs of girth at least p, for some constant p.

Note that the fact that the girth is at least 5 is needed since Token Sliding is W[1]-hard
on bipartite graphs (which have girth at least 4). Let us finally briefly discuss some cases
where we forbid an infinite number of cycles. We have already discussed the case where
odd cycles are forbidden. One can wonder what happens if even cycles are forbidden. It is
shown in [21] that Token Jumping can be decided in polynomial time for even-hole-free
graphs (which is remarkable since computing a maximum independent set in this class is
open). However, as far as we know, the complexity status of the problem is open for Token
Sliding. More generally, one can wonder what happens when we forbid all the cycles of
length p mod q for every pair of integers p, q.

2 Preliminaries

We denote the set of natural numbers by N. For n ∈ N, we let [n] = {1, 2, . . . , n}.

Graphs. We assume that each graph G is finite, simple, and undirected. We let V (G) and
E(G) denote the vertex set and edge set ofG, respectively. The open neighborhood of a vertex v
is denoted by NG(v) = {u | uv ∈ E(G)} and the closed neighborhood by NG[v] = NG(v)∪{v}.
For a set of vertices Q ⊆ V (G), we define NG(Q) = {v 6∈ Q | uv ∈ E(G), u ∈ Q} and
NG[Q] = NG(Q) ∪Q. The subgraph of G induced by Q is denoted by G[Q], where G[Q] has
vertex set Q and edge set {uv ∈ E(G) | u, v ∈ Q}. We let G−Q = G[V (G) \Q].

A walk of length ` from v0 to v` in G is a vertex sequence v0, . . . , v`, such that for all
i ∈ {0, . . . , ` − 1}, vivi+1 ∈ E(G). It is a path if all vertices are distinct. It is a cycle
if ` ≥ 3, v0 = v`, and v0, . . . , v`−1 is a path. A path from vertex u to vertex v is also
called a uv-path. For a pair of vertices u and v in V (G), by distG(u, v) we denote the

V. Bartier, N. Bousquet, C. Dallard, K. Lomer, and A. E. Mouawad 44:5

distance or length of a shortest uv-path in G (measured in number of edges and set to
∞ if u and v belong to different connected components). The eccentricity of a vertex
v ∈ V (G), ecc(v), is equal to maxu∈V (G)(distG(u, v)). The radius of G, rad(G), is equal to
minv∈V (G)(ecc(v)). The diameter of G, diam(G), is equal to maxv∈V (G)(ecc(v)). For r ≥ 0,
the r-neighborhood of a vertex v ∈ V (G) is defined as Nr

G[v] = {u | distG(u, v) = r}. We
write B(v, r) = {u | distG(u, v) ≤ r} and call it a ball of radius r around v; for S ⊆ V (G),
B(S, r) =

⋃
v∈S B(v, r).

A graph G is bipartite if the vertex set of G can be partitioned into two disjoint sets L
(the left part) and R (the right part), i.e. V (G) = L ∪R, where G[L] and G[R] are edgeless.
Given two graphs G and H, we say that G is H-free if G does not contain H as an induced
subgraph.

Reconfiguration. In the Token Jumping problem we are given a graph G = (V,E) and
two independent sets S and T of G, each of size k ≥ 1. The goal is to determine whether
there exists a sequence of k-sized independent sets in G, 〈S0, S1, . . . , S`〉, such that |Si| = k,
Si is an independent set (∀i), S = S0, S` = T , and |Si∆Si+1| = 2. In other words, if we
view each independent set as a collection of tokens placed on a subset of the vertices of
G, then the problem asks for a sequence of independent sets which transforms S to T by
individual token jumps which maintain the independence of the sets. For two independent
sets S and T , we write S ! T in G if there exists a sequence of jumps that transforms S
to T in G. For the closely related problem of Token Sliding, instead of allowing a token
to jump to any vertex of the graph we instead require that a token slides along an edge of
the graph. We use the same terminology for both problems as it will be clear from context
which problem we are referring to. Note that both Token Jumping and Token Sliding
can be expressed in terms of a reconfiguration graph RQ(G, k), where Q ∈ {TS,TJ}. Both
RTJ(G, k) and RTS(G, k) contain a node for each independent set of G of size exactly k. We
add an edge between two nodes whenever the independent set corresponding to one node
can be obtained from the other by a single reconfiguration step. That is, a single token
jump corresponds to an edge in RTJ(G, k) and a single token slide corresponds to an edge
in RTS(G, k). Given two nodes S and T in RTJ(G, k) (RTS(G, k)), the Token Jumping
problem (Token Sliding problem) asks whether S and T belong to the same connected
component of RTJ(G, k) (RTS(G, k)).

3 Positive results

3.1 Token Jumping on {C3, C4}-free

We say that a class of graphs Gε is ε-sparse, for some ε > 0, if for every graph G ∈ G with n
vertices, the number of edges in G is at most n2−ε. By extension, G is said to be ε-sparse.
Given an instance I = (G,S, T, k) of Token Jumping, let H = G−NG[S ∪T] and J denote
the graph induced by NG[S ∪ T]. In the remainder of this section, we show that I is a
yes-instance whenever (at least) one of the following two conditions is true: (1) H is ε-sparse
and contains more than k(2k)1/ε vertices or (2) J is {C3, C4}-free and contains a vertex of
degree at least 3k.

I Lemma 1. Let I = (G,S, T, k) be an instance of Token Jumping and let H = G −
NG[S∪T]. If H is an ε-sparse graph with more than k(2k)1/ε vertices then I is a yes-instance.
Moreover, the length of the shortest reconfiguration sequence from S to T is at most 2k.

ISAAC 2020

44:6 On Girth and the Parameterized Complexity of Token Sliding and Token Jumping

Proof. First, consider an ε-sparse graph H ′ with n > (2k)1/ε vertices. We claim that H ′
contains a vertex with degree less than n

k . Assume otherwise, i.e., suppose that the minimum
degree in H ′ is at least n

k . Then, |E(H ′)| ≥ n2

2k . Moreover, since H ′ is ε-sparse, it holds that
|E(H ′)| ≤ n2−ε. However, n

2

2k ≤ n
2−ε if and only if n ≤ (2k)1/ε, a contradiction.

Now, we shall prove, by induction on k, that H contains an independent set of size at
least k. The statement holds for k = 1 (since H must contain at least one vertex). Now,
consider the case where k > 1 and let z be a vertex with minimum degree in H. Following
the above claim, z has degree less than n

k . Note that the graph H ′ = H −N [z] contains at
least (k − 1)nk ≥ (k − 1)k(2k)1/ε

k = (k − 1)(2k)1/ε vertices. By the induction hypothesis, H ′
contains an independent set X of size at least k − 1. Thus, X ∪ {z} is an independent set in
H of size at least k.

Hence, we can tranform S to T by simply jumping all the tokens in S to an independent
set X ⊆ V (G) \ (S ∪ T) and then from X we jump the tokens (one by one) to T . This
completes the proof. J

I Lemma 2. Let I = (G,S, T, k) be an instance of Token Jumping and let J denote the
graph induced by NG[S ∪ T]. If J is {C3, C4}-free and contains a vertex v of degree at least
3k, then I is a yes-instance. Moreover, the length of the shortest reconfiguration sequence
from S to T is at most 2k.

Proof. Fix w ∈ S ∪ T . First, observe that for any u ∈ N(S ∪ T), u is ajdacent to w and no
neighbor of w (otherwise J would contain a C3), or u is adjacent to at most one neighbor of
w (otherwise J would contain a C4). Therefore, every vertex in N(S ∪ T) has degree at most
2k in J . As J is C3-free, NJ(w) is an independent set. Furthermore, for any u, v ∈ NJ(w),
u 6= v, we have NJ(u) ∩NJ(v) = {w}, that is, w is the only common neighbor of u and v
in J ; otherwise, J would contain C4. Hence, if w has at least 3k neighbors, then at least k
of them only have w as a neighbor in S ∪ T . Thus, we can jump the tokens on S to N(w),
starting with the token on w, if any. Then, we can jump the tokens on the vertices in T .
Clearly, the length of such a reconfiguration sequence is at most 2k. J

I Proposition 3. Let I = (G,S, T, k) be an instance of Token Jumping, let H = G −
NG[S ∪ T], and let J denote the graph induced by NG[S ∪ T]. If H is ε-sparse, ε > 0, and J
is {C3, C4}-free then I admits a kernel with O(k2 + k1+1/ε) vertices.

Proof. If H contains more than k(2k)1/ε vertices then I is a yes-instance by Lemma 1.
If J contains a vertex of degree 3k or more then, again, I is a yes-instance by Lemma 2.
Putting it all together, we have |S ∪ T | ≤ 2k, |NG(S ∪ T)| ≤ 2k(3k − 1) = O(k2), and
|V (G) \NG[S ∪ T]| ≤ k(2k)1/ε = O(k1+1/ε). J

I Theorem 4. Token Jumping parameterized by k admits a kernel with at most O(k2)
vertices on {C3, C4}-free graphs (and then on bipartite C4-free graphs).

Proof. Let I = (G,S, T, k) be an instance of Token Jumping such that G is {C3, C4}-free.
Let H = G−NG[S ∪ T] and J denote the graph induced by NG[S ∪ T]. Since J is {C3, C4}-
free, Lemma 2 implies that if J contains more than 6k2− 2k vertices, then I is a yes-instance.
Kim showed that a C3-free graph with O(k2/ log k) vertices contains an independent set
of size at least k [24]. Hence, if H contains more than O(k2/ log k) vertices, then I is a
yes-instance. Thus, G contains at most O(k2) vertices. The same result holds for bipartite
C4-free graphs since they are {C3, C4}-free. J

V. Bartier, N. Bousquet, C. Dallard, K. Lomer, and A. E. Mouawad 44:7

3.2 Token Sliding on bounded-degree bipartite graphs
Unlike the case of Token Jumping, it is not known whether Token Sliding is fixed-
parameter tractable (parameterized by k) on graphs of bounded degree. In this section we
show that it is indeed the case for bounded-degree bipartite graphs. This result, interesting
in its own right, will be crucial for proving that Token Sliding is fixed-parameter tractable
on bipartite C4-free graphs in the next section. We start with a few definitions and needed
lemmas.

Let R(G, I) = {v | v ∈
⋂
I′|I!I′ I ′} be the subset of I containing all of the tokens v such

that v ∈ I ′ for all I ′ reachable from I. In other words, the tokens on vertices of R(G, I)
can never move in any reconfiguration sequence starting from I. We call vertices in R(G, I)
rigid with respect to G and I. An independent set I is said to be unlocked if R(G, I) = ∅.
Given a graph G and r ≥ 1, a set S ⊆ V (G) is called an r-independent set, or r-independent
for short, if B(v, r) ∩ S = {v}, for all v ∈ S. Note that a 1-independent set is a standard
independent set and a r-independent set, r > 1, is a set where the shortest path between any
two vertices of the set contains at least r vertices (excluding the endpoints).

For a vertex v ∈ V (G) and a set S ⊆ V (G) \ {v}, we let D(v, S) denote the set of vertices
in S that are closest to v. That is, D(v, S) is the set of vertices in S whose distance to v is
minimum. We say D(v, S) is frozen if |D(v, S)| ≥ 2 and it is not possible to slide a single
token in D(v, S) to obtain S′ such that either v ∈ S′ or |D(v, S′)| = 1. Note that, in time
polynomial in n = |V (G)|, it can be verified whether D(v, S) is frozen by simply checking,
for each vertex u ∈ D(v, S), whether u can slide to a vertex w which is closer to v (or to v
itself if u is adjacent to v).

I Lemma 5 ([11]). S ! T in G if and only if R(G,S) = R(G,T) and (S \ R(G,S)) !
(T \R(G,S)) in G−N [R(G,S)]. Moreover, if G is bipartite then R(G,S) and R(G,T) can
be computed in time linear in |V (G)| = n.

I Lemma 6 ([11]). Let G = (L ∪ R,E) be a bipartite graph and let S be an unlocked
independent set of G. Then, in time linear in n, we can compute a reconfiguration sequence
〈S = I0, I1, . . . , I`〉 where I` ∩ L = ∅ and ` = |S ∩ L|.

Let I = (G = (V,E), S, T, k) be an instance of Token Sliding where G is a bipartite
graph of bounded degree ∆. We assume, without loss of generality, that G is connected; as
otherwise we can solve the problem independently on each component of G (and there are at
most k components containing tokens). Moreover, given Lemma 5, we can assume, without
loss of generality, that S and T are unlocked. In other words, we assume that it has been
verified that R(G,S) = R(G,T) and N [R(G,S)] has been deleted from G. We now give a
slightly different version of a result in [11] better suited for our needs.

I Lemma 7 ([11]). Let G be a connected bipartite graph and let S be an unlocked independent
set of G. Let v be a vertex in V (G) \ S such that NG[v] ∩ S = ∅. Let D(v, S) ⊆ L (or
symmetrically D(v, S) ⊆ R) such that distG(u, v) = d, for all u ∈ D(v, S). Then, in time
linear in |V (G)| = n, we can find a reconfiguration sequence 〈S = I0, I1, . . . , I`〉, where
I` = (S \ {u}) ∪ {v} for some vertex u in D(v, S) and ` is at most 2(|S| − 1) + d.

Proof. There are two cases to consider:
(1) If there is a unique token u ∈ D(v, S) which is closest to v or D(v, S) is not frozen then
the reconfiguration sequence obtained by repeatedly moving the token on u to a vertex
which is closer to v gives us the required sequence. Since no other token is moved, we have
I` = (S \ {u}) ∪ {v}.

ISAAC 2020

44:8 On Girth and the Parameterized Complexity of Token Sliding and Token Jumping

(2) In the other case, we have D(v, S) ≥ 2 and D(v, S) is frozen. We assume, without
loss of generality, that D(v, S) ⊆ L. We apply Lemma 6 which returns a reconfiguration
sequence 〈S = I0, I1, . . . , I`〉 where I` ∩ L = ∅ and ` = |S ∩ L|. There exists an index j,
with j < ` < |S ∩ L|, where Ij has a unique token u ∈ D(v, S) which is closest to v. Let
α = 〈I0, I1, . . . , Ij〉. Note that α slides exactly j distinct tokens (not including u) from L

to R. We let Mα denote these tokens. Moreover, α is reversable. Hence, we let α−1 denote
the sequence consisting of applying the slides of α in reverse order. Now, we construct a
sequence β of slides that moves the token on u to v. Recall that this is a sequence of exactly
d slides that repeatedly slides the same token. We denote the resulting independent set (after
applying α · β) by Iβ . We claim that γ = α · β · α−1 is the required sequence that transforms
S to (S \ {u}) ∪ {v}. To see why γ is a valid reconfiguration sequence, it suffices to show
that NG[Mα] ∩NG[v] = ∅. Since NG[v] ∩ S = ∅, we know that d ≥ 2 if both v and D(v, S)
are contained in L (or R) and d ≥ 3 otherwise. If {v}, D(v, S) ⊆ L (or {v}, D(v, S) ⊆ R)
then every vertex in Mα is at distance at least three from v, as needed. Finally, if v ∈ L and
D(v, S) ⊆ R (or v ∈ R and D(v, S) ⊆ L) then every vertex in Mα is at distance at least four
from v. J

I Lemma 8. If G is a connected graph and S and T are any two 2-independent sets of G
such that S ∪ T is also 2-independent then S ! T in G.

Proof. We proceed by induction on |S∆T | = |(S \T)∪ (T \S)|, i.e., the size of the symmetric
difference between S and T . If |S∆T | = 0 then S = T and there is nothing to prove. Hence,
we assume that the statement is true for |S∆T | = q > 0. We compute a shortest path
between all pairs of vertices (u, v) in G, where u ∈ S \ T and v ∈ T \ S. We let (u, v) denote
a pair where the distance is minimized and we fix a shortest path between u and v. There
are two cases to consider:
(1) If S ∩ T = ∅ then we can simply slide u to v along the shortest path and we are done. To
see why, recall that both S and T are 2-independent. Hence, they are both unlocked and if
there is more than one vertex in S \ T that is closest to v then we can simply slide u into
one of its neighbors, say w, that is closer to v to obtain a unique vertex which is closest to v;
none of those neighbors are adjacent to a vertex in S since S is 2-independent. Now, assume
that there exists a vertex x along the shortest path from w to v such that x ∈ N(y), y ∈ S.
This contradicts the choice of u since y is closer to v.
(2) If S ∩ T 6= ∅ then there are two cases. When the shortest path from u to v does not
contain any vertex in NG[S ∩ T] then we apply the same reasoning as above. Otherwise, let
W = w1, w2, . . . , wq denote the vertices in NG[S ∩ T] along the shortest path from u to v
(sorted in the order in which they are visited). We divide W into three sets X = W ∩ (S ∩T),
Y = W ∩ (NG(X)), and Z = W \ (X ∪ Y). In other words, X denotes the set of vertices
in S ∩ T , Y denotes the vertices used as entry and exit points for the vertices in X, and Z
denotes the vertices in NG(S ∩ T) visited along the shortest path without passing through
a vertex NG(Z) ∩ (S ∩ T). Since S ∩ T is 2-independent, no vertex in Y ∪ Z can have two
neighbors in S ∩ T . Moreover, since we have a shortest path from u to v, if there exists
x ∈ X then NG(x) ∩ Z = ∅. In particular, the shortest path either visits a vertex x ∈ S ∩ T
and two of its neighbors or only visits at most three neighbors of x; as otherwise we can
find a shorter path from u to v. If the shortest path visits three neighbors w, y, and z, of
a vertex x ∈ S ∩ T then we can safely replace this sub-path by w, x, z. Hence, we assume
in what follows that the shortest path visits at most two neighbors of any vertex in S ∩ T .
We construct, from W , the sequence A = a1, a2, . . . , ap of “affected” vertices in S ∩ T . In
other words, if the shortest path from u to v visits a vertex in S ∩ T or visits one or two

V. Bartier, N. Bousquet, C. Dallard, K. Lomer, and A. E. Mouawad 44:9

of its neighbors then we add the vertex to A (in the order in which the visits occur). We
now proceed iteratively as follows. We slide ap to v, then ap−1 to ap, . . ., and then finally
we slide u to a1. Note that between every one of those pairs of vertices we have a shortest
path; since we are sliding along the shortest path from u to v. Moreover, after moving each
token to its target position, we maintain a 2-independent set S′. Therefore, for each such
shortest path the intersection with NG[S′] remains empty. J

Let G be a graph and let X ⊆ V (G). The interior of X is the set of vertices in X at
distance at least three from V (G) \X (separated by at least two vertices). We say a set X is
fat if its interior is connected and contains a 2-independent set of size at least 2k.

I Lemma 9. Let G be a graph of maximum degree ∆. Let v ∈ V (G) and r ∈ N. If B(v, r)
contains more than 2k(1 + ∆ + ∆2)2 vertices then B(v, r) is fat.

Proof. We only need to prove that the interior of B(v, r), that is B(v, r − 2), contains a
2-independent set of size at least 2k; as B(v, r − 2) is connected by construction. First, note
that any graph of maximum degree ∆ on more than 2k(1 + ∆ + ∆2) vertices must contain a
2-independent set of size at least 2k. So it suffices to show that B(v, r − 2) contains more
than 2k(1 + ∆ + ∆2) vertices. We divide B(v, r) into layers, where L0 = {v}, L1 = N(v), . . .,
and Lr = Nr(v). Since G has maximum degree ∆, for every i ≥ 1, layer Li contains at most
(∆− 1)i−1∆ vertices. If B(v, r − 2) contains more than 2k(1 + ∆ + ∆2) vertices then we are
done. Otherwise, Lr−2 must contain at most 2k(1+∆+∆2) vertices. Consequently, Lr−1∪Lr
would contain at most 2k∆(1 + ∆ + ∆2) + 2k∆2(1 + ∆ + ∆2) = (1 + ∆ + ∆2)(2k∆ + 2k∆2)
vertices. Therefore, B(v, r) contains at most 2k(1 + ∆ + ∆2) + (1 + ∆ + ∆2)(2k∆ + 2k∆2) =
(1+∆+∆2)(2k+2k∆+2k∆2) which is equal to 2k(1+∆+∆2)2 vertices, a contradiction. J

I Lemma 10. Let I = (G,S, T, k) be an instance of Token Sliding where G is a bounded-
degree bipartite graph. If V (G) \ (S ∪ T) contains a fat set X then I is a yes-instance.

Proof. First, recall that we assume that G is connected and both S and T are unlocked. Let
I be a 2-independent set of size 2k in the interior of X (at distance at least three from any
vertex outside of X). We prove that S can be transformed into S′ ⊂ I. Similar arguments
hold for transforming T into T ′ ⊂ I. Hence, the statement of the theorem follows by applying
Lemma 8 on S′ and T ′.

We proceed by induction on |S∆S′|, i.e., the size symmetric difference between S and S′.
If |S∆S′| = 0 then S = S′ and we are done. Otherwise, we reduce the size of the symmetric
difference as follows. Recall that initially S ∩ S′ = ∅; as X ⊆ V (G) \ (S ∪ T). However, the
size of the intersection will increase as more tokens are moved to S′. We pick a pair (u, v)
such that u ∈ S \ S′ and v ∈ S′ and the distance between u and v is minimized. There are
two cases 2 consider:
(1) If v does not contain a token (or v ∈ S′ \ S) then the shortest path from u to v does not
intersect with NG[S′ ∩ S]. We therefore invoke Lemma 7 in the graph G− (N [S′ ∩ S]). This
guarantees that the token on u slides to v and every other token remains in place.
(2) Otherwise, v already contains a token (or v ∈ S′ ∩ S). We invoke Lemma 8 on the graph
induced by the interior of X and transform C = S′ ∩ S ⊂ I into another 2-independent set
C ′ ⊆ I that does not contain v; this is possible since |C| = |C ′| ≤ k. Now we can again
invoke Lemma 7 similarly to the previous case. J

I Theorem 11. Token Sliding parameterized by k admits a kernel with O(k2∆5) vertices
on bounded-degree bipartite graphs. Moreover, the problem can be solved in O?(k2k∆5k)-time.

ISAAC 2020

44:10 On Girth and the Parameterized Complexity of Token Sliding and Token Jumping

Proof. Let I = (G,S, T, k) be an instance of Token Sliding where G is a bipartite graph
of maximum degree ∆. We assume, without loss of generality, that G is connected and S
and T are unlocked; for otherwise we can solve connected components independently and
we can return a trivial no-instance if R(G,S) 6= R(G,T) (Lemma 5). Next, from Lemmas 9
and 10, we know that each connected component of V (G) \ (S ∪ T) contains at most O(k∆4)
vertices; otherwise we can return a trivial yes-instance. Since the number of components in
V (G) \ (S ∪ T) is bounded by 2k∆ and |S ∪ T | ≤ 2k, we get the desired bound. To solve the
problem, it suffices to construct the complete reconfiguration graph and verify if S and T
belong to the same connected component. This concludes the proof. J

3.3 Token Sliding on bipartite C4-free graphs
Equipped with Theorem 11, we are now ready to prove that Token Sliding admits a
polynomial kernel on bipartite C4-free graphs. Our strategy will be simple. We show that
if the graph contains a vertex of large degree then we have a yes-instance. Otherwise, we
invoke Theorem 11 to obtain the required kernel.

We start with a few simplifying assumptions. Let I = (G,S, T, k) be an instance of
Token Sliding where G = (L ∪R,E) is a connected bipartite C4-free graphs. We assume
that both S and T are unlocked (Lemma 5). Moreover, we assume that each vertex in G
can have at most one pendant neighbor. This assumption is safe because no two tokens can
occupy two pendant neighbors of a vertex; as otherwise S or T would be locked. Moreover,
if a token is placed on a pendant neighbor of a vertex v then no other token can reach v.

Let v ∈ V (G) be a vertex of degree at least k2 + k + 1 in G. We let up denote the
pendant neighbor of v (if it exists). We assume, without loss of generality, that v ∈ L. We let
N1 = NG(v) \ {up} = {u1, u2, . . . , uq}, N2 = N2

G(v), and N3 = N3
G(v). Since G is bipartite,

N1 ⊆ R, N2 ⊆ L, and N3 ⊆ R. Moreover, since G is C4-free, each vertex in N2 has exactly
one neighbor in N1. Therefore, we partition N2 into sets Nu1 , Nu2 , . . ., Nuq

, where each
set Nui contains the neighbors of ui in N2, that is, N(ui) \ {v}. We also partition N3 into
two sets Msmall and Mbig. Each vertex in Mbig contains vertices connected to at least k + 1
sets in N2. Note that, because of C4-freeness, each vertex in N3 is connected to at most
one vertex of any set Nui

. We let Msmall = N3 \Mbig. Each vertex in Msmall has at most k
neighbors in N2. In other words, each vertex in Msmall is connected to at most k sets, each
one of those sets being the neighborhood of a vertex in N1.

The proof proceeds in five stages. We first show how to transform S to S1 such that
S1∩B(v, 3) ⊆ N2. In other words, we can guarantee that all tokens in the ball of radius three
around v are contained in N2. We then tranform S1 to S2 such that S2 ∩B(v, 3) ⊆ N1 ∪N3.
Next, we tranform S2 to S3 such that S3 ∩B(v, 3) ⊆ N1 ∪Msmall. Then, we tranform S3 to
S4 such that S4 ∩B(v, 3) ⊆ N1 and finally to S5 such that S5 ⊆ N1. By applying the same
strategy starting from T , we obtain T5 ⊆ N1. We conclude our proof by showing that S5
can be transformed to T5.

I Theorem 12. Token Sliding parameterized by k admits a kernel with O(k12) vertices
on bipartite C4-free graphs.

4 Hardness results

4.1 Token Sliding and Token Jumping on C4-free graphs
In the Grid Tiling problem we are given an integer k ≥ 0 and k2 sets Si,j ⊆ [m]× [m], for
0 ≤ i, j ≤ k − 1, of cardinality n called tiles and we are asked whether it is possible to find
an element s∗i,j ∈ Si,j for every 0 ≤ i, j ≤ k − 1 such that s∗i,j and s∗i,j+1 share the same first

V. Bartier, N. Bousquet, C. Dallard, K. Lomer, and A. E. Mouawad 44:11

coordinate while s∗i,j and s∗i+1,j share the same second coordinate for each 0 ≤ i, j ≤ k − 1
(including modulo k). It was proven in [9] that Grid Tiling parameterized by k isW [1]-hard.
We prove the next theorem via a reduction from Grid Tiling. Following the construction
in [4] to give a graph G with the desired properties and extending it to a {C4, . . . , Cp}-free
graph G′ which gives a reduction to Token Sliding.

I Theorem 13. For any p ≥ 4, Token Sliding is W [1]-hard on {C4, . . . , Cp}-free graphs.

Construction of G. Given an instance of Grid Tiling, Si,j ⊆ [m]× [m] (0 ≤ i, j ≤ k − 1)
and an integer p ≥ 4, we use the construction described in [4] to create a graph G with the
following properties:

P1 – G can be partitioned into 8k2(p+ 1) cliques V1, . . . , V8k2(p+1) of size n with some
edges between them.
P2 – G is {C4, . . . , Cp}-free.
P3 – The instance of Grid Tiling has a solution if and only if ∃I ⊆ V (G), such that I
is an independent set of size 8k2(p+ 1).

Note that as each Vi is a clique, any maximum independent set I of G can have at most one
vertex in every clique.

Construction of G′. For k′ = 8k2(p + 1), we construct an instance of Token Sliding
(G′, S, T, k′ + (3k′ + 1)p2 + p

2) by extending the graph G to a new graph G′. We label the
k′ cliques in G arbitrarily as V1, . . . , Vk′ . For each 1 ≤ i ≤ k′ we add two vertices xi and yi
adjacent to all vertices in Vi. These will respectively be starting and ending positions of
tokens. Informally, we want to force all the tokens to be in their respective Vi at the same
time to obtain an independent set in G of size k′. We do this by creating guard paths, which
are paths on p vertices that will be alternating between starting and target positions of
tokens. Note that we can assume p is even, since if p is odd we can use p+ 1 instead to create
a graph which is {C4, . . . , Cp}-free . Let PG be a guard path with vertices g1, . . . , gp and for
each xi let Pxi

be a guard path with vertices xi1, . . . , xip such that xi is adjacent to xip and
gp is adjacent to xi1. For each yi let Pyi be a guard path with vertices yi1, . . . , yip such that
yi is adjacent to yi1 and g1 is adjacent to yip. Finally, for each i let Pzi

be a guard path
between xi and yi with vertices zi1, . . . , zip such that xi is adjacent to zip and yi is adjacent
to zi1. This completes the construction of G′ (see Figure 1). The source independent set S
is the set containing all of the xi and all of the guard path vertices with odd indices:

S =
⋃
i

({xi} ∪ {xij | j is odd} ∪ {yij | j is odd} ∪ {zij | j is odd}) ∪ {gj | j is odd} .

The target independent set T consists of all of the yi and all of the guard path vertices with
even indices:

T =
⋃
i

({yi} ∪ {xij | j is even} ∪ {yij | j is even} ∪ {zij | j is even}) ∪ {gj | j is even} .

I Lemma 14. For any p ≥ 4, G′ is {C4, . . . , Cp}-free.

I Lemma 15. If there is a solution to the Grid Tiling instance then there is a reconfiguration
sequence from S to T in G′.

ISAAC 2020

44:12 On Girth and the Parameterized Complexity of Token Sliding and Token Jumping

Vi

xi

yi

zi1
zi2

zi(p−1)
zip

Vj

xj

yj

zj1
zj2

zj(p−1)
zjp

g1
g2

gp−1
gp

xj1xj2xj(p−1)xjp

xi1xi2xi(p−1)xip

yjp
yj(p−1)yj2yj1

yipyi(p−1)yi2yi1

Figure 1 The construction of G′ for two cliques Vi, Vj in G.

Proof. By P3, there exists an independent set I containing one vertex vi in every Vi. This
gives the following reconfiguration sequence from S to T . Move each token on xi to vi. Then,
move the tokens along the guard paths: for all odd j starting with the greatest j values move
the token on each zij to zi(j+1), then move the tokens on xij to xi(j+1), gj to gj+1, and yij
to yi(j+1). Finally, move each token on vi to yi. This completes the proof. J

I Theorem 16. For any p ≥ 4, Token Jumping and Token Sliding are W [1]-hard on
{C4, . . . , Cp}-free graphs.

4.2 Token Sliding on bipartite graphs
This section is devoted to proving the following theorem:

I Theorem 17. Token sliding on bipartite graphs is W[1]-hard parameterized by k.

The proof of Theorem 17 consists in a reduction from Multicolored Independent
Set. In what follows, I := (G, k, (V1, . . . , Vk)) denotes an instance of Multicolored
Independent Set, which is known to be W [1]-hard parameterized by k [9]. We first detail
the construction of the equivalent instance I ′ := (G′, Is, Ie, 4k+2) of Token Sliding, where
G′ is a bipartite graph and Is, Ie are independent sets of size 4k + 2, and we prove that if I
is a yes-instance, then I ′ is a yes-instance. The more involved proof of the converse direction
is detailed in the full version of the paper [1].

Construction of G′. In what follows, V (G′) := (A,B) denotes the bipartition of G′. For
every p ∈ {1, . . . , k}, both A and B contain two copies of the set Vp denoted as A2p−1, A2p
and B2p−1, B2p respectively, plus some additional vertices that will be described in the next
subsection. Two vertices u′, v′ ∈ V (G′) are said to be equivalent and we write u′ ∼ v′ if and
only if they are copies of the same vertex in G. With this definition, every vertex u ∈ Vp
has exactly four copies in G′ (one in each copy of Vp). Note that the ∼ relation is transitive
and symmetric. We also define the sets A := ∪kp=1A2p−1 ∪A2p and B := ∪kp=1B2p−1 ∪B2p.
For every vertex u′ of A ∪B, the corresponding vertex of u′ denoted as orr(u′) is the unique
vertex u ∈ V (G) that u′ is a copy of. With these definitions at hand, we can now explain
how the copies of the sets V1, V2, . . . , Vk are connected in G′. For every two vertices u′ ∈ Ai
and v′ ∈ Bj there is an edge connecting u′ to v′ in G′ if and only if:
1. Ai and Bj are not copies of the same subset of V (G) and (orr(u′), orr(v′)) ∈ E(G), or
2. Ai and Bj are copies of the same subset of V (G) and u′ � v′

V. Bartier, N. Bousquet, C. Dallard, K. Lomer, and A. E. Mouawad 44:13

A2p−1 A2p

B2pB2p−1

u v w u v w

u v w u v w

A2p−1 A2p

B2pB2p−1

u v w u v w

u v w u v w

Figure 2 Connections between the four copies of Vp in A ∪ B. Vertices with the same name
are equivalent vertices. The red square represent tokens: two tokens are positioned on equivalent
vertices at the left, and on non-equivalent vertices at the right.

In other words, if Ai and Bj are not copies of the same subset, we connect these sets in
the same way there corresponding sets are connected in G. If at the contrary Ai and Bj are
copies of the same subset, then G′[Ai ∪Bj] induces a complete bipartite graph minus the
matching consisting of every two pairs of equivalent vertices in Ai ∪ Bj . The connection
between four copies of the same subset of V (G) is illustrated in Figure 2. The following
observation follows directly from the definition of G′:

I Observation 1. Let I ′ be an independent set of G′ such that for every p ∈ {1, 2, . . . , k} we
have I ′∩A2p−1 = {u2p−1} and I ′∩B2p−1 = {v2p−1}. Then the set I := {orr(u1), . . . , orr(uk)}
is a multicolored independent set of G.

Observation 1 ensures that any independent set of a reconfiguration sequence of G′ having
exactly one vertex in A2p−1 and one vertex in B2p−1 for every p ∈ {1, 2, . . . , k} corresponds
to a multicolored independent set of G. Note that up to that point, we did not make use of
the sets A2p and B2p. The following observation explains why we need two copies of every
Vp in both sides of the bipartition:

I Observation 2. Let I ′ be an independent set ofG′ and p ∈ {1, 2, . . . , k} such that I ′∩A2p−1 =
{u2p−1}, I ′ ∩A2p = {u2p}, and u2p−1 ∼ u2p. Then the tokens on u2p−1 and u2p cannot move
to B.

If at some point in the reconfiguration sequence two tokens are positioned on equivalent
vertices in A, then these tokens lock each other at their respective position in some sense.
Note that by symmetry of the construction, the same observation can be made when two
tokens are positioned on equivalent vertices in B. On the contrary, if two tokens on the same
copies of Vp in A are positioned on two non-equivalent vertices we have the following:

I Observation 3. Let I ′ be an independent set of G′ and p ∈ {1, 2, . . . k} such that I ′∩A2p−1 =
{u2p−1}, I ′ ∩A2p = {u2p}, and u2p−1 � u2p. Then I ′ ∩ (B2p−1 ∪B2p) = ∅.

This observation not only ensures that B2p−1 ∪B2p = ∅ but also ensures that no other
token but the ones positioned on u2p−1 and u2p can move to B2p−1 ∪ B2p. Then, by
Observations 2 and 3, either there are two tokens on equivalent vertices in A2p−1 ∪A2p and
then these tokens cannot move to B (and ensures that if there is a token on B2p−1 ∪ B2p
it must be on an equivalent vertex), or there are two tokens on non-equivalent vertices
forbidding any other token to move to B2p−1 ∪B2p.

Definition of the initial and target independent sets. The initial independent set Is
consists of two sets of 2k vertices Astart and Bstart plus two vertices sA, sB included in A,
and the target independent set Ie consists in two sets of 2k vertices Aend and Bend plus two

ISAAC 2020

44:14 On Girth and the Parameterized Complexity of Token Sliding and Token Jumping

B1 B2 B3 B4 B2k−1 B2k

A1 A2 A3 A4 A2k−1 A2k

. . .
1 2 2k

. . .
1 2 2k

. . .
1 2 2k

. . .
1 2 2k

Astart A Aend

BstartBBend

sB

eA

eB

sA

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

Figure 3 The constructed graph G′. Vertices in red are the vertices of Is. An arrow between a
vertex v and a subset of vertices indicates that v is complete to this subset. An arrow between a
vertex v and a brace indicates that v is complete to the subsets included in the brace. A double
arrow between two sets indicate these sets induce a complete bipartite graph. The connections
between A and Bend ∪Bstart are symmetric and have been omitted for the sake of clarity.

vertices eA, eB included in B. The two sets Is and Ie are disjoint from A ∪ B. The graph
induced by Astart ∪Bend ∪ {sA, eB} and the graph induced by Aend ∪Bstart ∪ {sB , eA} are
complete bipartite graphs. The main goal of this section is to explain how to connect the set
Astart ∪Bstart and the set Aend ∪Bend to A ∪B in order to ensure that any reconfiguration
sequence transforming one into the other enforces the 2k tokens starting on Astart and the
2k tokens starting on Bstart to switch sides by going through A ∪B. More particularly, we
will show the existence of an independent set that satisfies the condition of Observation
1 in any such reconfiguration sequence, giving a multicolored independent set of G. For
p ∈ {1, 2, . . . , 2k}, we denote by as,p and bs,p the vertices of Astart and Bstart respectively
and we denote by ae,p and be,p the vertices of Aend and Bend respectively. These vertices are
connected to A ∪B as follows:
1. the vertices as,p and ae,p are complete to B − ∪p−1

i=1Bi, and
2. the vertices bs,p and be,p are complete to A− ∪p−1

i=1Ai.

An illustration of the full construction is given in Figure 3. By construction, no token
starting on Astart ∪ {sA} can move to Bend ∪ {eB} as long as there are at least two tokens
on Astart ∪ {sA} (and the same goes for Bstart ∪ {sB} and Aend ∪ {eA}). Since there are
initially 2k + 1 tokens on Astart ∪ {sA} and since N(sA) ∩B = ∅, the 2k tokens initially on
Astart must move to B at some point in the sequence, and the same goes for Bstart and A.
The tokens initially on sA and sB have a special role and act as “locks”: without these token,
the last token remaining on Astart (resp. Bstart) would be able to move directly to Bend
(resp. Aend) without never going through B (resp. A). Let us now explain the connections to
A ∪B.

I Observation 4. Let I ′ be an independent set of G′ such that {as,p, as,p+1, . . . , as,2k} ⊆ I ′
for some p < 2k. Then the tokens on {as,p+1, as,p+2, . . . , as,2k} are frozen. Furthermore the
token on as,p cannot move to ∪2k

i=p+1Bp.

By symmetry, the same observation can be made for tokens on Bstart. This shows that
the tokens initially on Astart and Bstart must respect a strict order to move respectively to
B and A: the only tokens that can initially move are the tokens on as,1 and bs,1 and these
have no choice but to move to B1 and A1 respectively. After such a move the tokens on as,2
and bs,2 are free to move to B2 and A2 respectively, and so on. Suppose that after the first 4
moves, there is exactly one token in each of the four subset A1, B1, A2 and B2. Then it is
not hard to see - but will be formally proved in the next section - that these tokens lie on

V. Bartier, N. Bousquet, C. Dallard, K. Lomer, and A. E. Mouawad 44:15

equivalent vertices, corresponding to a unique vertex of G. By Observation 2 these tokens
cannot move to the other side of the bipartite graph and must stay at the same position
while the remaining tokens on Astart and Bstart moves to A∪B. With the full constructions
of G′, Is and Ie at hand, the direct part of the reduction is easy to obtain by moving the
tokens in the right order. The complete proof is deferred to the full version of the paper [1].

I Lemma 18. If there is a multicolored independent set of size k in G then there exists a
reconfiguration sequence transforming Is to Ie in G′.

Well-organized configurations. To simplify the tracking of tokens along the transformation,
we give different colors to the tokens initially on Astart and Bstart. The tokens initially on
Astart are the blue tokens and the tokens initially on Bstart are the red tokens. Given a
configuration C, MA(C) (resp. MB(C)) is the maximum integer p ∈ J1, 2kK such that there
is a token on Ap (resp. Bp). By convention, if there is no token on X ∈ {A,B}, we set
MX(C) = 0. A configuration C is well-organized if there is a token on either sA or eB and
on either sB or eA and if it satisfies the following conditions:
1. For every p ≤MA(C) and every q ≤MB(C) there is exactly one token on Ap and exactly

one token on Bq.
2. If MA(C) < 2k then for every MA(C) < p ≤ 2k there is a token on as,p. If MB(C) < 2k

then for every MB(C) < q ≤ 2k there is a token on bs,q.

Since the construction and the definition of well-organized configurations are symmetric,
we can always suppose that MA(C) ≤MB(C) for any well-organized configuration C. Note
that the initial configuration is well-organized. We say that two configurations C and C ′ are
adjacent if C can be transformed into C ′ by moving exactly one token.
Throughout the proof let S := C1, . . . , CN denote a shortest reconfiguration sequence from
Is to Ie. We say that a token moves from a set X to a set Y at time t and we write
(t : X → Y) if there exists two sets X,Y ⊆ V (G′) and two vertices x ∈ X, y ∈ Y such
that Ct+1 = Ct − {x}+ {y}. When the sets X and Y contain exactly one vertex we write
(t : x→ y) by abuse of notation. A move that transforms a well-organized configuration into
a configuration that is not well-organized is a bad move. We aim to show the following:

I Lemma 19. A shortest reconfiguration sequence from Is to Ie contains no bad move.

With Lemma 19 at hand, the proof of the converse part of the reduction easily follows:

I Lemma 20. If there exists a reconfiguration sequence from Is to Ie in G′, then there exists
a multicolored independent set in G.

Proof. Consider a shortest reconfiguration sequence S from Is to Ie, which exists by suppo-
sition. By Lemma 19 this sequence contains no bad moves, therefore all the configurations
of S are well-organized since the initial configuration is. Consider the configuration C just
before the first token reaches Aend ∪ Bend (which exists since Aend ∪ Bend ⊆ Ie). By the
definition of well-organized configurations there can be no token on Astart ∪Bstart in C and
thus we have MA(C) = MB(C) = 2k. Then by Observation 1 there exists a multicolored
independent set in G. J

The proof of Lemma 19 is deferred to the full version of the paper [1].

ISAAC 2020

44:16 On Girth and the Parameterized Complexity of Token Sliding and Token Jumping

References
1 Valentin Bartier, Nicolas Bousquet, Clément Dallard, Kyle Lomer, and Amer E. Mouawad.

On girth and the parameterized complexity of token sliding and token jumping. CoRR,
abs/2007.01673, 2020. arXiv:2007.01673.

2 Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, Yota Otachi, and Florian
Sikora. Token sliding on split graphs. In 36th International Symposium on Theoretical Aspects
of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, pages 13:1–13:17,
2019. doi:10.4230/LIPIcs.STACS.2019.13.

3 Marthe Bonamy and Nicolas Bousquet. Token sliding on chordal graphs. CoRR, abs/1605.00442,
2016. arXiv:1605.00442.

4 Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Stéphan Thomassé, and Rémi Watrigant.
Parameterized complexity of independent set in H-free graphs. In Christophe Paul and Michal
Pilipczuk, editors, 13th International Symposium on Parameterized and Exact Computation,
IPEC 2018, August 20-24, 2018, Helsinki, Finland, volume 115 of LIPIcs, pages 17:1–17:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.IPEC.2018.17.

5 Paul S. Bonsma, Marcin Kaminski, and Marcin Wrochna. Reconfiguring independent sets in
claw-free graphs. In Algorithm Theory - SWAT 2014 - 14th Scandinavian Symposium and
Workshops, Copenhagen, Denmark, July 2-4, 2014. Proceedings, pages 86–97, 2014.

6 Nicolas Bousquet, Arnaud Mary, and Aline Parreau. Token jumping in minor-closed
classes. In Fundamentals of Computation Theory - 21st International Symposium, FCT
2017, Bordeaux, France, September 11-13, 2017, Proceedings, pages 136–149, 2017. doi:
10.1007/978-3-662-55751-8_12.

7 Richard C. Brewster, Sean McGuinness, Benjamin Moore, and Jonathan A. Noel. A dichotomy
theorem for circular colouring reconfiguration. Theor. Comput. Sci., 639:1–13, 2016.

8 Luis Cereceda, Jan van den Heuvel, and Matthew Johnson. Connectedness of the graph of
vertex-colourings. Discrete Mathematics, 308(56):913–919, 2008.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

10 Erik D. Demaine, Martin L. Demaine, Eli Fox-Epstein, Duc A. Hoang, Takehiro Ito, Hirotaka
Ono, Yota Otachi, Ryuhei Uehara, and Takeshi Yamada. Polynomial-time algorithm for sliding
tokens on trees. In Algorithms and computation, volume 8889 of Lecture Notes in Comput.
Sci., pages 389–400. Springer, Cham, 2014. doi:10.1007/978-3-319-13075-0_31.

11 Eli Fox-Epstein, Duc A. Hoang, Yota Otachi, and Ryuhei Uehara. Sliding token on bipartite
permutation graphs. In Algorithms and Computation - 26th International Symposium, ISAAC
2015, Nagoya, Japan, December 9-11, 2015, Proceedings, pages 237–247, 2015.

12 Sevag Gharibian and Jamie Sikora. Ground state connectivity of local hamiltonians. In
Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015,
Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, pages 617–628, 2015. doi:10.1007/
978-3-662-47672-7_50.

13 Parikshit Gopalan, Phokion G. Kolaitis, Elitza N. Maneva, and Christos H. Papadimitriou.
The connectivity of Boolean satisfiability: computational and structural dichotomies. SIAM
Journal on Computing, 38(6):2330–2355, 2009.

14 Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computation. Theor.
Comput. Sci., 343(1-2):72–96, 2005. doi:10.1016/j.tcs.2005.05.008.

15 Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha
Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems.
Theoretical Computer Science, 412(12-14):1054–1065, 2011. doi:10.1016/j.tcs.2010.12.005.

16 Takehiro Ito, Marcin Kamiński, and Erik D. Demaine. Reconfiguration of list edge-colorings
in a graph. Discrete Applied Mathematics, 160(15):2199–2207, 2012.

http://arxiv.org/abs/2007.01673
https://doi.org/10.4230/LIPIcs.STACS.2019.13
http://arxiv.org/abs/1605.00442
https://doi.org/10.4230/LIPIcs.IPEC.2018.17
https://doi.org/10.1007/978-3-662-55751-8_12
https://doi.org/10.1007/978-3-662-55751-8_12
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-13075-0_31
https://doi.org/10.1007/978-3-662-47672-7_50
https://doi.org/10.1007/978-3-662-47672-7_50
https://doi.org/10.1016/j.tcs.2005.05.008
https://doi.org/10.1016/j.tcs.2010.12.005

V. Bartier, N. Bousquet, C. Dallard, K. Lomer, and A. E. Mouawad 44:17

17 Takehiro Ito, Marcin Kamiński, and Hirotaka Ono. Fixed-parameter tractability of token
jumping on planar graphs. In Algorithms and computation, volume 8889 of Lecture Notes in
Comput. Sci., pages 208–219. Springer, Cham, 2014. doi:10.1007/978-3-319-13075-0_17.

18 Takehiro Ito, Marcin Kaminski, Hirotaka Ono, Akira Suzuki, Ryuhei Uehara, and Katsuhisa
Yamanaka. On the parameterized complexity for token jumping on graphs. In Theory and
Applications of Models of Computation - 11th Annual Conference, TAMC 2014, Chennai,
India, April 11-13, 2014. Proceedings, pages 341–351, 2014.

19 Takehiro Ito, Hiroyuki Nooka, and Xiao Zhou. Reconfiguration of vertex covers in a graph.
IEICE Transactions, 99-D(3):598–606, 2016. URL: http://search.ieice.org/bin/summary.
php?id=e99-d_3_598.

20 Wm. Woolsey Johnson and William E. Story. Notes on the “15” puzzle. American Journal of
Mathematics, 2(4):397–404, 1879.

21 Marcin Kaminski, Paul Medvedev, and Martin Milanic. Complexity of independent set
reconfigurability problems. Theor. Comput. Sci., 439:9–15, 2012. doi:10.1016/j.tcs.2012.
03.004.

22 Marcin Kamiński, Paul Medvedev, and Martin Milanič. Complexity of independent set
reconfigurability problems. Theoretical Computer Science, 439:9–15, 2012.

23 Graham Kendall, Andrew J. Parkes, and Kristian Spoerer. A survey of NP-complete puzzles.
ICGA Journal, pages 13–34, 2008.

24 Jeong Han Kim. The Ramsey number R(3, t) has order of magnitude t2/ log t. Random
Structures Algorithms, 7(3):173–207, 1995. doi:10.1002/rsa.3240070302.

25 Daniel Lokshtanov and Amer E. Mouawad. The complexity of independent set reconfiguration
on bipartite graphs. ACM Trans. Algorithms, 15(1):7:1–7:19, 2019. doi:10.1145/3280825.

26 Daniel Lokshtanov, Amer E. Mouawad, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh.
Reconfiguration on sparse graphs. In Algorithms and Data Structures - 14th International
Symposium, WADS 2015, Victoria, BC, Canada, August 5-7, 2015. Proceedings, pages 506–517,
2015.

27 Anna Lubiw and Vinayak Pathak. Flip distance between two triangulations of a point set is
NP-complete. Comput. Geom., 49:17–23, 2015. doi:10.1016/j.comgeo.2014.11.001.

28 Amer E. Mouawad, Naomi Nishimura, Vinayak Pathak, and Venkatesh Raman. Shortest
reconfiguration paths in the solution space of boolean formulas. In Automata, Languages, and
Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015,
Proceedings, Part I, pages 985–996, 2015.

29 Amer E. Mouawad, Naomi Nishimura, and Venkatesh Raman. Vertex cover reconfiguration
and beyond. In Algorithms and Computation - 25th International Symposium, ISAAC 2014,
Jeonju, Korea, December 15-17, 2014, Proceedings, pages 452–463, 2014.

30 Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018. doi:10.3390/
a11040052.

31 Jan van den Heuvel. The complexity of change. Surveys in Combinatorics 2013, 409:127–160,
2013.

32 Marcin Wrochna. Reconfiguration in bounded bandwidth and treedepth. CoRR, abs/1405.0847,
2014. arXiv:1405.0847.

33 Marcin Wrochna. Homomorphism reconfiguration via homotopy. In 32nd International
Symposium on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015,
Garching, Germany, pages 730–742, 2015.

34 David Zuckerman. Linear degree extractors and the inapproximability of max clique and chro-
matic number. Theory of Computing, 3(1):103–128, 2007. doi:10.4086/toc.2007.v003a006.

ISAAC 2020

https://doi.org/10.1007/978-3-319-13075-0_17
http://search.ieice.org/bin/summary.php?id=e99-d_3_598
http://search.ieice.org/bin/summary.php?id=e99-d_3_598
https://doi.org/10.1016/j.tcs.2012.03.004
https://doi.org/10.1016/j.tcs.2012.03.004
https://doi.org/10.1002/rsa.3240070302
https://doi.org/10.1145/3280825
https://doi.org/10.1016/j.comgeo.2014.11.001
https://doi.org/10.3390/a11040052
https://doi.org/10.3390/a11040052
http://arxiv.org/abs/1405.0847
https://doi.org/10.4086/toc.2007.v003a006

	Introduction
	Preliminaries
	Positive results
	Token Jumping on {C_3,C_4}-free
	Token Sliding on bounded-degree bipartite graphs
	Token Sliding on bipartite C_4-free graphs

	Hardness results
	Token Sliding and Token Jumping on C_4-free graphs
	Token Sliding on bipartite graphs

